基于事件模型的产品功能设计研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产品概念设计是产品设计过程中最活跃、最富有创造性的阶段之一。功能是概念设计的主要处理对象。功能的抽象化、表达、分解和推理是概念设计阶段的核心问题。近年来,事件作为一种具有广阔应用前景的知识表示方法,逐渐成为如人工智能等知识处理领域的研究热点之一。本文从事件角度出发,研究基于事件模型的产品功能设计相关问题。完成的主要工作如下:
     1.基于对产品构成本质问题的认知思考,提出了一种产品的事件认知方式。根据对产品具体实体构成和抽象功能构成的分析,从认知角度探讨了产品的事件构成问题,提出了一种将事件作为产品基本构成单元的认知方式:产品本质上可看作是保证体现产品功能的事件有控制地、有序发生的系统。产品的事件认知方式符合人们的思维习惯,便于理解和使用。
     2.为了给事件这种产品基本构成单元提供统一的描述方式,建立了事件的数学描述模型。在事件表示模型中,采用命题逻辑来表示事件的本体,集合论和域关系演算来表示事件的变体,且变体是本体约束下事件的可变空间,进而成功地将事件的本体和变体有机结合来表示事件整体;基于事件表示模型,建立了描述事件选择、投影、例化、连接、分解及等价等操作的事件运算模型。上述两个模型统称为事件模型。事件模型的事件本体给出了事件的变化依据,事件变体圈定了事件的变化范围,事件操作实现了事件的变化方法,从而为产品功能设计和设计多样性的研究奠定了理论基础。
     3.针对产品功能表达需同时表达功能内涵和外延的要求,提出了产品功能的事件表达方法。基于事件模型,采用事件的本体表示功能的内涵,事件的变体表示功能的外延,借助事件本体对变体的约束作用来反映功能内涵和外延的辩证关系,进而提出了产品功能的事件表达方法。同时,给出了描述功能的事件知识分类方法和组织方法,并提出了基于事件模型的产品发明创意提出方法。功能的事件表达方法有利于拓展设计空间,便于进行联想扩展,有助于得到更多创新解并提高设计问题的求解效率。
     4.在事件功能表达方法的基础上,给出了基于事件模型的功能建模方法。在探讨了基于事件模型的产品设计多样性和功能设计基本过程的前提下,首先,给出了借助事件知识层次树实现总功能抽象的方法;其次,确定了事件功能的分解原则和分解方法,建立了表达产品功能构成的事件功能分解树,并给出了该树的图形表示、数学描述和求解算法等;最后,结合事件知识层次树,给出了拓展事件功能分解树的概念和拓展方法,并探讨了事件知识重用等问题。基于事件模型的功能建模方法可降低问题的复杂度,提高设计效率,拓展设计空间。
     5.将基于事件模型的产品功能设计方法应用于空间可展开天线设计和网络智能自动辅导系统研发中,取得了满意的结果。一是,给出了可展开天线展开功能的事件表达和抽象,进而提出了两种新的可展开天线创意;二是,将上述模型和方法应用于“乐辅通”网络智能自动辅导系统的创意提出、总功能分解、功能结构建立及功能模块开发中,提高了系统的智能性和研发效率。这两个例子验证了本文模型和方法的正确性与有效性。
The conceptual design is one of the most active and creative stages in the productdesign process. The function is the main processing object of the conceptual design. Theabstraction, representation, decomposition and reasoning of function are the core issuesof the conceptual design. In recent years, as a kind of knowledge representation methodwith broad application prospects, the event has become one of the hot spots of theknowledge processing fields such as artificial intelligence. From the perspective of theevent, this paper studied the correlative issues of the functional design based on theevent model. The main research work can be described as follows.
     1. Based on the cognitive thinking of the product composition, an event cognitivestyle of the product was proposed. According to the analysis of the concrete entitativeand abstract functional composition of product, from the view of point of cognition, thecomposite problem of the product with the event was explored. An event cognitive stylethat used the event as the basic compositive unit was proposed. The products can beessentially seen as the systems that ensure the events reflecting the product functionsoccur controlled and orderly. This cognitive style is in line with people's thinking habits,and is convenient for people to understand and use.
     2. In order to provide the unified description way for the event which acts as thebasic compositive unit of product, the mathematical representation model of the eventwas built. In the event representation model, the ontology is defined based on the theoryof propositional logic to describe the connotation of the event and the variant is definedbased on the theory of domain relational calculus and set theory to express the variationrange of the event, and the variant is alterable part of the event under the constraints ofthe ontology. It can successfully combine the ontology and variant together to representthe whole event. Based on the event representation model, an event operation modelwas built to describe the event operations such as selection, projection, instantiation,connection and decomposition etc. The event representation model and the eventoperation model constitute the event model. In the event model, the ontology of theevent gives the basis of event change, the variant delineates the change range of theevent, and the operations of event realize the change methods of the event. It lays thefoundation for the research about product functional design and design diversity.
     3. Depending on the requirement that the functional representation should expressthe connotation and the extension of function simultaneously, a functionalrepresentation with event was proposed. Based on the event model, the ontology of event is used to describe the connotation of function and to reflect the stability offunction. The variant of the event is used to represent the extension and to incarnate thevariety of function. The constaints of the ontology on the variant is used to reflect thedialectical relationship between the connotation and extension of function. Thus theevent description model of product function was established. Then the classification andorganization of the event knowledge were studied, and the method of raising inventiveproduct originality based on the event model was proposed. The event functionalrepresentation is conducive to expand the design space, is convenient for spreadingassociation, and is contribute to obtain more innovative solutions and improve theefficiency of design.
     4. On the basis of the event functional representation, the function modelingmethod based on the event model was given. Based on a study of the diversity and thebasic processes of product design with the event model, firstly, the abstraction methodof the total function with the help of the event knowledge hierarchy tree was given.Secondly, by determining the decomposition principles and decomposition basis of theevent function, the event functional decomposition tree was established to express thefunction structure of the product, and the graphical representation, mathematicaldescription and solution algorithm, etc. were studied. Thirdly, combining the eventknowledge hierarchy tree, the concept and the expansion method of the event functionaldecomposition expansion tree were built and the reuse of the event knowledge was alsostudied. Theses methods can reduce the complexity of the design problem, arebeneficial to improve the design efficiency, and are able to expand the design space.
     5. The above models and methods were applied to the design of spatial deployableantenna and an intelligent tutoring system, and have obtained the satisfactory results.Firstly, the event representation and abstract of expand function of spatial deployableantenna was given, two originality of deployable antenna were put forward. Secondly,the proposed models and methods were applied to the research and development processof a network intelligent tutoring system, which improved the system's intelligence andthe efficiency of its research and development. These two applications verified thecorrectness and effectiveness of the proposed models and methods.
引文
[1]陈胜昌.重大技术装备制造业发展研究[R].2007-2008中国生产力发展研究报告,2009,1-94.
    [2]路甬祥.工程设计的发展趋势和未来[J].机械工程学报,1997,33(l):18-21.
    [3]路甬祥.21世纪中国制造业面临的挑战与机遇[J].中国机械工程学会会讯,2004,(11):1-14.
    [4] Chang X M, Sahin A, Terpenny J. An ontology-based support for productconceptual design[J]. Robotics and Computer-Integrated Manufacturing,2008,24:755-762.
    [5] John E. Computer tools for integrated conceptual design[J]. Design Studies,1995,16:471-488.
    [6] Pahl G, Beitz W. Engineering design: a systematic approach[M]. Britain:Springer,1996.
    [7] French M J. Conceptual design for engineers[M]. London: The Design Council,1985.
    [8] Wynne H, Irene M Y. Current research in the conceptual design of mechanicalproducts[J]. Computer-Aided Design,1998,30(5):377-389.
    [9] Lassi A, Matti P. Exploring problem decomposition in conceptual design amongnovice designers[J]. Design Studies,2009,30:38-59.
    [10] Li W Q, Li Y, Wang J, et al. The process model to aid innovation of productsconceptual design[J]. Expert Systems with Applications,2010,37(5):3574-3587.
    [11]谢友柏.产品的性能特征与现代设计[J].中国机械工程,2000,11(1):26-32.
    [12]邹慧君,汪利,王石刚,等.机械产品概念设计及其方法综述[J].机械设计与研究,1998,(2):9-12.
    [13]包恩伟,孙守迁,潘云鹤.面向产品创新的概念设计技术研究[J].计算机集成制造系统,2001,7(1):23-28.
    [14]邓家褆,韩晓建,曾硝,等.产品概念设计--理论、方法与技术[M].北京:机械工业出版社,2002.
    [15]马峻.创新设计的协同与决策技术[M].北京:科学出版社,2008.
    [16]孙守迁.计算机辅助概念设计[M].北京:清华大学出版社,2004.
    [17]邹慧君,张青.计算机辅助机械产品概念设计中几个关键问题[J].上海交通大学学报,2005,39(7):1145-1149.
    [18]舒慧林,刘继红,钟毅芳.计算机辅助机械产品概念设计研究综述[J].计算机辅助设计与图形学报.2000,12(12):947-954.
    [19] Qin S. Conceptual design: issues and challenges[J]. Computer-Aided Design.2000,32(849):849-850.
    [20] Umede Y, Ishii M, Tomiyama T, et al. Supporting conceptual design based onthe function-behavior-state modeler[J]. AI EDAM,1996,10(4):275-288.
    [21] Shai O, Reich Y, Rubin D. Creative conceptual design: extending the scope byinfused design[J]. Computer-Aided Design,2009,41(3):117-135.
    [22] Altshuller G S. Creativity as an Exact Science: The Theory of the Solution ofInventive Problem Solving[M]. New York: Gordon&Breach SciencePublishing,1984.
    [23] Altshuller G S. The Innovation Algorithm, TRIZ, Systematic Innovation andTechnical Creativity[M]. Worcester: Technical Innovation Center, INC.,1999.
    [24]张祥唐,陈家豪.可拓方法与TRIZ方法在产品创新设计上的应用[J].工业工程,2004,7(2):33-37.
    [25]檀润华.创新设计:TRIZ发明问题解决理论[M].北京:机械工业出版社,2002.
    [26] Yoshikawa H. General design theory as a formal theory of design[A]. In:Intelligent CAD, I. Yoshikawa H, Gossard D.(Eds). North-Holland,1989.
    [27] Tomiyama T, Yoshikawa H. Extended general design theory[A]. In: DesignTheory for CAD. Yoshikawa H, Warman E A.(Eds). North-Holland,1987:95-130.
    [28] Tomiyama T, Umeda Y, Yoshikawa H. A CAD for functional design[J]. Annalsof the CIRP,1993,42(1):143-146.
    [29] Umeda Y, Tomiyama T, Yoshikawa H, et al. Using functional maintenance toimprove fault tolerance[J]. IEEE Expert, Intelligent Systems&TheirApplications,1994,9(3):25–31.
    [30]蔡文.物元模型及其应用[M].北京:科学技术文献出版社,1994。
    [31]蔡文.可拓论及其应用.科学通报[J],1999,44(7):673-682.
    [32]蔡文,杨春燕,何斌.可拓学基础理论研究的新进展[J].中国工程科学,2003,5(2):80-87.
    [33]杨春燕.可拓学的重要科学问题及其关键点[J].哈尔滨工业大学学报,2006,38(7):1087-1090.
    [34] Suh N P. The Principle of Design[M]. London: oxford University Press,1990.
    [35] Feng Yixiong, Tan Jianrong, Wei Zhe, et al. Research on Key Technologies forProduct Axiomatic Design and Configuration Integration[C]. In Proceedings ofthe2nd IEEE/ASME International Conference on Mechatronic and EmbeddedSystems and Applications,2006:1-6.
    [36] Tufan Koc, Yaprak Mutu. A Technology Planning Methodology Based onAxiomatic Design Approach[C]. Technology Management for the Global Future.In Proceedings of PICMET2006,2006,3:1450-1456.
    [37] Crabowski H. Universal Design Theory: Elements and Applicability toComputers in Universal Design Theory[M]. Aachen: Shaker Verlag,1998.
    [38] Akao Y, Ono S, Harada A, et al. Quality deployment including cost, reliabilityand tecnology[J]. Quality,1983,13(3):61-77.
    [39]谢友柏.现代设计理论和方法的研究[J].机械工程学报,2004,40(4):1-9.
    [40]谢友柏.现代设计理论中的若干基本概念[J].机械工程学报,2007,43(11):7-15.
    [41]谭建荣,谢友柏,陈定芳等.机电产品现代设计:理论、方法与技术[M].北京:高等教育出版社,2009.
    [42]孙守迁,包恩伟,潘云鹤.基于组合原理的概念创新设计[J].计算机辅助设计与图形学学报,1999,11(3):262-265.
    [43]孙守迁,黄琦,潘云鹤.计算机辅助概念设计研究进展[J].计算机辅助设计与图形学学报,2003,15(6):643-650.
    [44]邹慧君,张青,郭为忠.广义概念设计的普遍性、内涵及理论基础的探索[J].机械设计与研究,2004,20(3):10-14.
    [45]邹慧君.对设计的内涵、作用和方法的思考[J].机械设计与研究,2010,26(1):7-14.
    [46] Rinderle J R, Krishnan V. Constraint Reasoning in Concurrent Design[C]. InProceeding of the Second ASME Design Theory and Methodology Conference,Chicago,1990.
    [47]赵克,李向宁,石莉.定性推理在产品概念设计中的应用研究[J].机械科学与技术,2002,21(6):1028-1030.
    [48]赵克.面向并行工程的并行设计过程理论研究[D].西安:西安电子科技大学,1996.
    [49]邵晨曦,许屹,张毅.机械装置的定性空间推理与仿真[J].系统仿真学报,2005,17(8):2008-2011.
    [50]李姗,邓益民.基于Kuipers定性推理方法的概念设计建模与仿真.机械研究与应用,2013,26(1):23-26.
    [51] Rawilson J G. Creative thinking and brainstorming[M]. Farnborough,Hampshire: Gower,1981.
    [52]谢友柏.现代设计与知识获取[J].中国机械工程,1996,7(6):36-41.
    [53]张执南,谢友柏.现代设计的基本属性[J].机械设计与研究,2012,28(3):1-3.
    [54]谢友柏.设计科学中关于知识的研究--经济发展方式转变中要考虑的重要问题[J].中国工程科学,2013,15(4):14-22.
    [55]郭钢,汤华茂,罗妤.基于语义的产品功能形式化建模[J].计算机集成制造系统,2011,17(6):1171-1177.
    [56] Chakrabarti A, Bligh T. A scheme for functional reasoning in conceptualdesign[J]. Design Studies,2001,22(6):493–517.
    [57] Chakrabarti A, Srinivasan V, Ranjan B S C, et al. A case for multiple views offunction in design based on a common definition[J]. Artificial Intelligence forEngineering Design, Analysis and Manufacturing,2013,27(03):271-279.
    [58] Yoshioka M, Umeda Y, Takeda H, et al. Physical concept ontology for theknowledge intensive engineering framework[J]. Advanced EngineeringInformatics,2004,18(2):95–113.
    [59] Umeda Y, Takata S, Kimura F, et al. Toward integrated product and process lifecycle planning-An environmental perspective[J]. CIRP Annals-ManufacturingTechnology,2012,61(2):681-702.
    [60] Gero J S. Computational models of innovative and creative design processes[J].Technological Forecasting and Social Change,2000,64(2-3):183–196.
    [61] Gero J S, Smith G J. Context, situations, and design agents[J]. Knowledge-basedsystems,2009,22(8):600–609.
    [62] Gero J S, Maher M L (Eds). Modeling creativity and knowledge-based creativedesign. Psychology Press,2013.
    [63] Chandrasekaran B. Representing function: relating functional representation andfunctional modeling research streams[J]. AI EDAM-Artificial Intelligence forEngineering Design Analysis and Manufacturing,2005,19(2):65–74.
    [64] Banerjee B, Chandrasekaran B. A constraint satisfaction framework forexecuting perceptions and actions in diagrammatic reasoning[J]. Journal ofArtificial Intelligence Research,2010,39(1):373-427.
    [65] Kitamura Y, Sano T, Namba K, et al. A functional concept ontology and itsapplication to automatic identification of functional structures[J]. AdvancedEngineering Informatics,2002,16(2):145-163.
    [66] Stone R B, Wood K L. Development of a functional basis for design[J]. Journalof Mechanical Design,2000,122:359-370.
    [67]戴文跃,田万录.功能是主观的还是客观的?[J].自然辩证法研究,1999,15(7):21-24.
    [68]叶元烈.机械现代设计方法学[M].北京:中国计量出版社,2000.
    [69]廖林清.机械设计方法学[M].重庆:重庆大学出版社,1996.
    [70]鲁明山.机械设计学[M].北京:北京航空航天大学出版社,1995.
    [71] Kitamura Y, Koji Y, Mizoguchi R. An ontological model of device function:industrial deployment and lessons learned[J]. Applied Ontology,2006,1(3):237-262.
    [72] Deng Y M. Function and behavior representation in conceptual mechanicaldesign[J]. Artificial Intelligence for Engineering Design, Analysis andManufacturing,2002,16(5):343-362.
    [73]祖耀,肖人彬,张智明.基于变功能参数的机械产品创新设计方法[J].中国机械工程.2009,20(5):601-606.
    [74] Van Eck D. On the conversion of functional models: bridging differencesbetween functional taxonomies in the modeling of user actions[J]. Research inEngineering Design,2010,21(2):99-111.
    [75] Erden M S, Komoto H, Van Beek T J, et al. A review of function modeling:approaches and applications[J]. Artificial Intelligence for Engineering Design,Analysis and Manufacturing,2008,22(2):147-169.
    [76] Rodenacker W. Methodisches Konstruieren[M]. Berlin: Springer-Verlag,1971.
    [77] Hirtz J, Stone R B, Mcadams D A, et al. A functional basis for engineeringdesign: reconciling and evolving previous efforts[J]. Research in EngineeringDesign,2002,13(2):65-82.
    [78] Kitamura Y, Mizoguchi R. Ontology-based description of functional designknowledge and its use in a functional way server[J]. Expert Systems withApplication,2003,24(2):153-166.
    [79] Gero J S, Kazakov V. Adaptive enlargement of state spaces in evolutionarydesigning[J]. Artificial Intelligence in Engineering Design, Analysis andManufacturing,2000,14(l):31-38.
    [80] Gero J S, Kannengiesser U. The situated function–behaviour–structureframework[J]. Design Studies,2004,25(4):373–391.
    [81] Tang H H, Lee Y Y, Gero J S. Comparing collaborative co-located anddistributed design processes in digital and traditional sketching environments: Aprotocol study using the function–behaviour–structure coding scheme[J]. DesignStudies,2011,32(1):1-29.
    [82] Gero J S, Kannengiesser U. Representational affordances in design, withexamples from analogy making and optimization[J]. Research in EngineeringDesign,2012,23(3):235-249.
    [83] Umeda Y, Ishii M, Yoshioka M, et al. Supporting conceptual design base on thefunction-behavior-state modeler[J]. Artificial Intelligence for EngineeringDesign, Analysis and Manufacturing,1996,10(4):275-288.
    [84] Deng Y M, Tor S B, Britton G. A. Abstracting and exploring functional designinformation for conceptual mechanical product[J]. Design Engineering withComputers,2000,16(4):36-52.
    [85]邓益民,郑堤.机电产品功能与行为表达方法综述[J].工程设计学报.2008,13(3):164-169.
    [86] Oshioka M, Umeda Y, Takeda H, et al. Physical concept ontology for theknowledge intensive engineering framework[J]. Advanced EngineeringInformatics,2004,18(2):95-113.
    [87] Chandrasekaran B, Josephson J R. Function in Device Representation[J].Computer Aided Engineering,2000,16(2):162-177.
    [88] Chandrasekaran B, Stone R B, McAdams D A. Developing design templates forproduct platform focused design[J]. Journal of Engineering Design,2004,15(3):209-228.
    [89] Iwasaki Y, Vescovi M, Fikes R, et al. Casual Functional RepresentationLanguage with Behavior-based Semantics[J]. Applied Artificial Intelligence,1995,9(1):5-31.
    [90] Iwasaki Y, Chandrasekaran B. Design verification through function andbehavior-oriented representations: Bridging the gap between function andbehavior[C]. In Proceedings of the second International Conference of ArtificialIntelligence in Design, Pittsburgh,1992.
    [91] Kitamura Y, Segawa S, Sasajima M, et al. An Ontology of Classification Criteriafor Functional Taxonomies[C]. ASME2011International Design EngineeringTechnical Conferences and Computers and Information in EngineeringConference. American Society of Mechanical Engineers,2011:297-306.
    [92] Simon Szykman, Janusz W Racz, Ram D Sriram. The Representation ofFunction in Computer-based Design[C]. In Proceeding of the1999SAMEDesign Engineering Technical Conference.1999.
    [93] Anne M, Kenne K. Device Representation the Significance of FunctionalKnowledge[J]. IEEE Expert,1991,6(2):22-25.
    [94] Miles L D. Techniques of Value Analysis and Engineering[M]. New York:McGraw–Hill,1972.
    [95] Buur J A. Theoretical Approach to Mechatronics Design[D]. Denmark:Technical University of Denmark,1990.
    [96] Hansen C T. An Approach to Simultaneous Synthesis and Optimization ofComposite Mechanical system[J]. Journal of Engineering Design,1995,6(3):249-266.
    [97] Kirschman C F, Fadel G M. Classifying Function for Mechanical Design[J].Transaction of the ASME, Journal of Mechanical Design,1998,120(3):475-482.
    [98] Schmekel H. Functional Models and Design Solutions[J]. Annals of CIRP,1989,38:129-132.
    [99]谢清,谭建荣,冯毅雄.面向配置设计的产品功构建模方法[J].计算机辅助设计与图形学学报,2006,18(4):102-107.
    [100]郝泳涛,秦琴.产品的特征功能表达模型及其基因编码[J].同济大学学报:自然科学版,2009,37(6):115-120.
    [101]张立,陈刚,王玉柱,等.基于本体的功能建模框架及协同设计环境研究[J].计算机集成制造系统,2007,13(3):456-465.
    [102]陈旭玲.机电产品技术演化与升级创新的概念设计研究[D].合肥:合肥工业大学,2011.
    [103]吴斌,沈精虎.概念产品设计模型的研究与实现[J].机械工程学报,2002,38(3):50-53.
    [104]胡于进,杨波.产品概念设计的计算机辅助功能建模[J].机械与电子,2007,(9):64-66.
    [105]陆亮.面向产品创新的计算机辅助概念设计技术的研究[D].杭州:浙江大学,2004.
    [106] Bytheway C W. The creative-aspect of FAST diagram[C]. Proc.SAVE Conf.,An Advanced Course of Instruction for the Value Engineers,1971.
    [107] Kevin N O,Kristin L W. Techniques in Reverse Engineering and New ProductDevelopment Product Design[M].北京:清华大学出版社,2003.
    [108] Malmqvist J. Computer-based approach towards including design historyinformation in product models and function-Means trees[C], Proceedings ofDTM-95,Boston,1995:593-602.
    [109]占向辉,李彦,贾爱军,孙玉帅.面向创新设计的科学效应库研究[J].工程设计学报,2005,12(1):1-6.
    [110] Gero J S. Computational Models of Innovative and Creative DesignProcesses[J]. Technological Forecasting and Social Change,2000,64(2):183-196,2000.
    [111] Miller G, Beckwith R, Fellbaum C, et al. Introduction to WordNet: An onlinelexical database[J]. International Journal of Lexicography,1990,3(4):235–312.
    [112]董振东,董强.知网和汉语研究.当代语言学[J],2001,3(1):33-44.
    [113] Chung S, Timberlake A. Tense, aspect, and mood[J]. Language Typology andSyntactic Description,1985,3:202-258.
    [114] Tenny C, Pustejovsky J. Events and the semantics of opposition[C]. InProceedings of Events as Grammatical Object, CSLI Publications, Stanford,2000.
    [115] Allan J, Papka R, Lavrenko V. On-line new event detection and tracking[C]. InProceedings of the21st Annual International ACM SIGIR Conference onResearch and Development in Information Retrieval, New York, USA,1998:37-45.
    [116] Allan J, Carbonell J, Doddington G, et al. Topic detection and tracking pilotstudy: Final report[C]. In Proceedings of the DARPA Broadcast NewsTranscription and Understanding Workshop,1998.
    [117] Yang Y, Carbenell J, Brown R. Learning approaches for detecting and trackingnews event[J]. IEEE Intelligent Systems,1999,14(4):32–43.
    [118] Filatova E, Hatzivassiloglou V. Domain-independent detection, extraction, andlabeling of atomic events[C]. In Proceedings of RANLP, Borovetz, Bulgaria,2003:145-152.
    [119] Filatova E, Hatzivassiloglou V. Event-based extractive summarization[C]. InProceedings of ACL2004Workshop on Summarization, Barcelona, Spain,2004:104–111.
    [120] Stokes N, Carthy J. Combining semantic and syntactic document classifiers toimprove first story detection[C], In Proceedings of the24th annual internationalACM SIGIR conference on Research and development in information retrieval,2001:424-425.
    [121] National Institute of Standards and Technology, ACE (Automatic ContentExtraction) Chinese Annotation Guidelines for Events[R],2005.
    [122]刘宗田,黄美丽,周文,等.面向事件的本体模型,计算机科学[J],2009,36(11):189-192.
    [123]周文,刘宗田,孔庆苹.基于事件的知识处理研究综述[J].计算机科学,2008,35(2):160-162.
    [124]任工昌,刘永红,张优云.机械产品概念设计及功能表达[J].机械,2002,29(4):1-4.
    [125] Whitehead A N. Process and Reality[M]. New York: Fress Press,1978.
    [126] Jansen A, Niyogi P. Point process models for spotting keywords in continuousspeech[J]. IEEE Transactions on Audio Speech and Language Processing,2009,17(8):1457-1470.
    [127] Poshyvanyk D, Gueheneuc Y, Marcus A, et al. Feature location usingprobabilistic ranking of methods based on execution scenarios and informationretrieval[J]. IEEE Transactions on Software Engineering,2007,33(6):420-432.
    [128] Saggion H, Cunningham H, Bontcheva K, et al. Multimedia indexing throughmulti-source and multi-language information extraction: the MUMIS project[J].Data&Knowledge Engineering,2004,48(2):247-264.
    [129] Bai L, Lao S Y, Smeaton A F, et al. Semantic Analysis of Field Sports Videousing a Petri-Net of Audio-Visual Concepts[J]. Computer Journal,2009,52(7):808-823.
    [130] Wang X Y, Hripcsak G, Markatou M, et al. Active computerizedpharmacovigilance using natural language processing, statistics, and electronichealth records: a feasibility study[J]. Journal of the American MedicalInformatics Association,2009,16(3):328-337.
    [131] Kim J. Causation, Nomic Subsumption, and the Concept of Events[J]. Journal ofPhilosophy70,1973:217-236.
    [132] Nelson K, Gruendel J. Event knowledge: structure and function indevelopment[M]. Erlbaum,1986.
    [133] Schank R C, Abelson R P. Scripts, Plans, Goals and Understanding: An Inquiryinto Human Knowledge Structures[M]. Hillsdale: The Artificial IntelligenceSeries, Lawrence Erlbaum Associates Publishers,1977.
    [134] Zhou W, Liu Z, Zhao Y, et al. A semi-automatic ontology learning based onWordNet and event-based natural language processing technologies. InProceedings of ICIA’06Conference,2006.
    [135]干红华.基于事件的因果关系可计算化分析研究[D].杭州:浙江大学,2003.
    [136]王寅.事件域认知模型及其解释力[J].现代外语,2005,18:17-26.
    [137]袁崇义,屈婉玲,王捍贫,刘田.离散数学及其应用[M].北京:机械工业出版社,2002.
    [138]耿素云,屈婉玲.离散数学[M].北京:高等教育出版社,2004.
    [139]邓辉文.离散数学(第二版)[M].北京:清华大学出版社,2010.
    [140] Codd E F. Relational Completeness of Data Base Sublanguages[A]. In R. Rustin(Eds), Database Systems, California: Prentice Hall,1972:65-98.
    [141] Astrahan M M, Blasgen M W, et al. System R: relational approach to databasemanagement[J]. ACM Transactions on Database Systems,1976,1(2):97-137.
    [142] Lacroix M, Pirotte A. Domain-oriented Relational Languages[C]. In Proceedingof3rd VLDB, Tokyo,1977:370-378.
    [143]叶尚辉.天线结构设计[M].西安:西北电讯工程学院出版社,1980.
    [144]段宝岩.天线结构拓扑、形状与机电综合优化设计[D].西安:西安电子科技大学,1989.
    [145]段宝岩.天线结构分析、优化与测量[M].西安:西安电子科技大学出版社,1998.
    [146]段宝岩.柔性天线结构分析、优化与精密控制[M].北京:科学出版社,2005.
    [147]马汉炎.天线技术[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [148]宋铮,张建华,黄冶.天线与电波传播[M].西安:西安电子科技大学出版社,2011.
    [149]罗鹰,段宝岩.星载可展开天线结构现状与发展[J].电子机械工程,2005,21(5):30-34.
    [150]刘明治,高桂芳.空间可展开天线结构研究进展[J].宇航学报,2003,24(1):82-87.
    [151]赵泓滨.星载天线的发展趋势[J].测控与通信,2010,(1):13-17.
    [152]王宏建,刘和光,张德海.星载可展开天线研究[J].空间科学学报,2010,30(3):263-269.
    [153]刘荣强,田大可,邓宗全.空间可展开天线结构的研究现状与展望[J].机械设计,2010,27(9):1-10.
    [154]王援朝.充气天线结构技术概述[J].电讯技术,2003,(2):6-11.
    [155]关晓红.浅谈星载天线技术[J].电子世界,2003,(1):80-81.
    [156]罗鹰.大型星载可展开天线的动力优化设计与工程结构的系统优化设计[D].西安:西安电子科技大学,2004.
    [157]罗鹰,段宝岩.周边桁架式展开天线几何布局优化[J].空间科学学报,2004,24(2):132-137.
    [158]王从思.可展开天线中柔性多体系统动力学DAES的数值方法研究[D].西安:西安电子科技大学,2004.
    [159]狄杰建.索网式可展开天线结构的反射面精度优化调整技术研究[D].西安:西安电子科技大学,2005.
    [160]徐海强.基于太空热环境下的可展开天线反射面调整的研究[D].西安:西安电子科技大学,2007.
    [161]刘士华.大型空间可展开天线压电智能结构研究[D].西安:西安电子科技大学,2005.
    [162]张京街,关富玲,胡其彪等.带弹簧节点的大型构架式展开天线结构的设计和研究[J].空间结构,2000,6(2):30-37.
    [163] Guan F L, Shou J J, Hou G Y, et al. Static analysis of synchronism deployableantenna[J]. Journal of Zhejiang University: Science,2006,7(8):1365-1371.
    [164]陈向阳,关富玲.六棱柱单元可展抛物面天线结构设计[J].宇航学报,2001,22(1):75-78.
    [165]陈向阳,关富玲.六棱柱单元可展天线结构设计[J].空间科学学报,2001,21(1):68-72.
    [166]陈向阳,关富玲,岳建如.可展星载抛物面天线结构设计[J].空间结构,2000,6(4):41-46.
    [167]赵孟良,关富玲.考虑摩擦的周边桁架式可展开天线展开动力学分析[J].空间科学学报,2006,26(3):220-226.
    [168]陈务军,张淑杰.空间可展开结构体系与分析导论[M].北京:中国宇航出版社,2006.
    [169]田大可,刘荣强.单元构架式可展天线工作表面母线的拟合方法[C].2009哈尔滨工业大学机电学院博士生论坛,哈尔滨,2009.
    [170]刘荣强,田大可,邓宗全.构架式可展开天线背架的空间几何建模[C].2009空间机电与空间光学专业委员会学术会议论文集,大连,2009:42-49.
    [171]谭惠丰,李云良,毛丽娜等.空间充气展开支撑管的自振特性研究[J].哈尔滨工业大学学报,2008,40(5):709-713.
    [172]王长国,杜星文,万志敏等.空间充气天线反射器受冲击气体质量损失分析[J].哈尔滨工业大学学报,2006,38(4):507-510.
    [173]李洲洋,陈国定,王三民等.大型可展开卫星天线的展开过程仿真研究[J].机械设计与制造,2006,(7):67-69.
    [174]张春.径射状空间可展开天线的多体动力学分析[D].西安:西北工业大学,2007.
    [175] Shipley T F. An invitation to an event[A]. In Shipley T F, Zacks J M.(Eds.)Understanding events: How humans see, represent, and act on events, OxfordUniversity Press, New York,2008:3–30.
    [176] Clausing D P. World-Calss Concurrent Engineering, Concurrent Engineering:Tools and Technologies for Mechanical System Design[A]. In Edward J H.(Eds.) IOWA,1992.
    [177]刘文剑,金天国.产品自顶向下设计的研究现状及发展方向[J].计算机集成制造系统,2002,8(l):1-7.
    [178] Simithers T. AI-based design versus geometry-based design or why design cantnot be supported by geometry alone[J]. Computer-Aided Design,1989,21(3):141-150.
    [179]李卫华等译, E.丽奇著.人工智能引论[M],广州:广东科技出版社,1986.
    [180] Manyika J, Chui M, Bughin J, et al. Disruptive technologies: Advances that willtransform life, business, and the global economy[R]. McKinsey Global Institute,May,2013.
    [181] Carbonell J R. AI in CAI: An artificial intelligence approach to computer-aidedinstruction[J]. IEEE Transactions on Man–Machine System,1970,11(4):190-202.
    [182] Stevens A L, Collins A. The goal structure of a Socratic tutor[C]. In Proceedingsof the National ACM Conference, Seattle, WA,1977:256-263.
    [183] Brown J S, Burton R R. Multiple representations of knowledge for tutorialreasoning[A]. In Bobrow D G, Collins A.(Eds.), Representation andunderstanding, Orlando, FL: Academic Press,1975:311-349.
    [184] Brown J S, Burton R R. A Tutoring and Student Modeling Paradigm for GamingEnvironments[J]. ACM SIGCSE Bulletin,1976,8(1):236-246.
    [185] Brown J S, Burton R R. Diagnostic models for procedural bugs in basicmathematical skills[J]. Cognitive Science,1978,2:155-192.
    [186] Clancey W J. Tutoring rules for guiding a case method dialogue[J]. InternationalJournal of Man-Machine Studies,1979,11(9):25-49.
    [187] Anderson J R, Boyle C F, Reiser B J. Intelligent tutoring systems[J]. Science,1985,228:456-462.
    [188] Anderson J R, Boyle C F, Yost G. The geometry tutor[C]. In Proceedings of theNinth International Joint Conference on Artificial Intelligence. Los Angeles, CA,1985:1-7.
    [189] Johnson W L. Intention-based diagnosis of novice programming errors[R].Research notes in artificial intelligence. Los Altos, CA: Kaufmann.
    [190] Sleeman D H. PIXIE: a shell for developing intelligent tutoring systems[A]. InLawler R, Yazdani M.(Eds.), AI and education: learning environments andintelligent tutoring systems, Norwood, NJ: Ablex,1982:239-265.
    [191] Shute V J, Glaser R. A Large-Scale Evaluation of an Intelligent DiscoveryWorld: Smithtown[J]. Interactive Learning Environments,1990,1(1):51-77.
    [192] Shute V J. Who is likely to acquire programming skills?[J]. Journal ofEducational Computing Research,1991,7(1):1-24.
    [193] Shute V J, Gawlick-grendell L A, Young R K, et al. An experiential system forlearning probability: Stat Lady description and evaluation[J]. InstructionalScience,1996,24(1):25-46.
    [194] Mitrovic A. An intelligent SQL tutor on the web[J]. International Journal ofArtificial Intelligence in Education,2003,13(2-4):171-195.
    [195] Graesser A C, Lu S, Jackson G T, et al. A. AutoTutor: a tutor with dialogue innatural language[J]. Behavioral Research Methods, Instruments, and Computers,2004,36:180-193.
    [196] Peylo C, Thelen T, Rollinger C, et al. A web-based intelligent educationalsystem for PROLOG[C]. In Proceedings of the ITS Workshop on Adaptive andIntelligent Web-based Education Systems,2000:62-68.
    [197] Clark B, Fry J, Ginzton M, et al. A Multimodal Intelligent Tutoring System forShipboard Damage Control[C]. In Proceedings of2001International Workshopon Information Presentation and Multimodal Dialogue, Verona, Italy,2001:121-125.
    [198] Crowley R S, Medvedeva O. An intelligent tutoring system for visualclassification problem solving[J]. Artificial Intelligence in Medicine,2006,36(1):85-117.
    [199] Ishizaka A, Lusti M. An expert module to improve the consistency of AHPmatrices[J]. International Transactions in Operational Research,2004,11(1):97-105.
    [200] Alexandros P, Maria G, Georgios G. Interactive Problem Solving Support in theAdaptive Educational Hypermedia System MATHEMA[J]. IEEE Transactionson Learning Technologies,2009,2(2):93-106.
    [201] Aleven V, McLaren B M, Sewall J. Scaling Up Programming by Demonstrationfor Intelligent Tutoring Systems Development: An Open-Access Web Site forMiddle School Mathematics Learning[J]. IEEE Transactions on LearningTechnologies,2009,2(2):64-78.
    [202] VanLehn K, Lynch C, Schulze K, et al. Andes physics tutoring system: Fiveyears of evaluations[C]. In Proceedings of the12th International Conference onArtificial Intelligence in Education, Amsterdam, Netherlands,2005:678-685.
    [203] Guzma E, Conejo R. Self-assessment in a feasible, adaptive Web based testingsystem[J], IEEE Transactions on Education,2005,48(4):688-695.
    [204] Aleven V, Koedinger K R, Cross K. Tutoring answer explanation fosterslearning with understanding[C]. In Proceedings of the9th Artificial Intelligencein Education Conference, Amsterdam, Netherlands,1999:199-206.
    [205] Martin K N, Arroyo I. AgentX: Using reinforcement learning to improve theeffectiveness of intelligent tutoring systems[C]. In Proceedings of the7thInternational Conference on Intelligent Tutoring Systems, Maceió, Brazil,2004:564-572.
    [206] Mu oz-Merino P J, Kloos C D. A software player for providing hints inproblem-based learning according to a new specifcation[J]. ComputerApplications in Engineering Education,2009,17(3):272-284.
    [207] Ernest F. Jess in Action: Rule-Based Systems in Java[M]. New York: ManningPublications,2003.
    [208] Maxwell M. Psycho-cybernetics: A new way to get more living out of life[M].Indiana: Prentice-Hall,1960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700