给水处理工艺初级絮凝阶段表征及强化控制机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规给水处理的核心操作单元为絮凝、沉淀和过滤,其中絮凝常作为三个核心单元中的第一个单元。在絮凝单元中,所形成絮体的粒度、有效密度和结构强度等性质,对后续两个单元的运行效能,例如沉后水水质、滤后水水质和滤池反洗周期等,都具有较大的影响。因此,絮凝工艺的关键在于能否形成良好的絮体。絮体的团聚是逐步渐进的过程,即絮凝初始时存在大量微小絮体,由微小絮体凝聚成小絮体,再凝聚成中等絮体,最后成长为大絮体。其中,小絮体成长为中等絮体的阶段作为絮体成长过程中的初始阶段具有重要的研究意义,在本文中,这一阶段被称为初级絮凝阶段。为了研究初级絮凝阶段的特征,进行了大量絮凝-静沉-快速过滤实验,以聚合氯化铝为絮凝剂,高岭土和腐殖酸的混合悬浊液为原水,通过非连续流给水处理在线监测系统,监测絮凝-静沉-快速过滤过程中水中的浊度、颗粒数量和粒度分布、滤池指定位置的压力。所实现的初级絮凝阶段的表征,包括划分方法、颗粒分布特征变化规律、形态变化规律、定义、影响因素,以及与后续处理工艺间的关系等。并研究了初级絮凝阶段的强化方法和机制,这些成果对絮凝理论和给水处理工艺优化控制的研究具有重要意义。
     首先,分析了絮凝-沉淀-过滤过程中颗粒分布特征随絮凝时间变化规律,以表征各单元运行效能为目的,建立了常规给水处理工艺过程颗粒分布检测方法,得到如下结论:应用沉后水浊度和2~5μm颗粒数量诊断絮凝-沉淀工艺固液分离效果,应用沉淀初期粒度分形维数下降速度v诊断絮凝出水絮体沉降性能,应用RSS0.5诊断滤后水水质稳定性,应用滤层水头损失上升速率诊断滤层水力参数,各参数间均具有较好的相关性(R2>0.9)。
     其次,通过对絮凝过程中颗粒分布特征随絮凝时间变化规律的分析,研究了絮凝过程的分段方法、定义和特征。研究结果表明:粒度分形维数适合作为絮凝过程分段的依据,并通过分析其一阶导数随絮凝时间变化规律,将絮凝过程分为准备阶段、初级絮凝阶段、成长阶段和稳定阶段四个部分。并提出了初级絮凝阶段的定义和分析了其特征,找出了表征初级絮凝阶段絮体变化的方法:应用KaG、‘’和Dfg综合评价。并以前面得到的常规给水处理工艺过程颗粒分布检测方法为基础,定量分析了初级絮凝阶段对给水处理工艺中各单元的影响,研究了初级絮凝阶段对给水工艺各单元的影响,实验结果表明初级絮凝阶段絮凝速度每增加1%,絮凝效率增加1.7%,沉淀速度增加4.2%,出水水质稳定性增加0.85%,滤层水头损失增长速度减少0.17%,即初级絮凝阶段的任何变化在后续处理单元都能得到体现和放大的结论,为水厂生产控制及水厂自控研究提供了新的方法。
     之后建立起加入时间参数的二维DLA模型,模拟研究了絮凝过程中絮体形态随时间变化规律,动力学参数对初级絮凝阶段形成絮体的形态的影响,初级絮凝阶段絮体形态对絮凝出水絮体形态的影响,并在前人研究的基础上改进了絮体分步成长模型,并对模型进行分析计算。研究结果表明:絮体在成长过程中会沿某一优势方向优先生长。初级絮凝阶段形成的絮体具有“活性点”(2-4个),在成长阶段絮体只会在活性点上成长,并根据活性点的不同成长成不同形态的絮体。絮体有效密度只与初级絮凝阶段形成絮体的有效密度、粒径和活性点数量相关。
     最后,以前面的研究为基础,提出初级絮凝阶段的强化控制方法,分析了强化方法对初级絮凝阶段的影响,并通过考察沉淀和过滤阶段的运行效能,推断絮凝出水中絮体的沉降性能和粘附性能等性质,最终研究得到了初级絮凝阶段强化控制机制,为实际中强化絮凝工艺的建设、管理和研究提供了新的理论基础。
The traditional water treatments mainly contain three units, flocculation, sedimentation and filtration, with flocculation always being the first step of these three units. In the process of flocculation, the characteristics of the flocs, such as the floc size, density and structure strength, have great effects on water quality of the sedimentation outlet and the filter outlet,the period of filter backwash cycle, and other operating parameters. Therefore, the key of flocculation is forming easily-settled flocs in the process. The flocs forming process starts with the small colloidal particles. They aggregate to small flocs, then medium flocs, finally big flocs. The stage of small flocs growing into medium flocs, being defined as the primary flocculation stage in this study, has great research significance.
     For learning the characteristics of the primary flocculation stage, a series of flocculation-sedimentation-rapid filtration experiments have been finished, with PACL being coagulatant, and the suspension of koalin and fluvic acid being the initial water. Through non continuous online monitoring system of water treatment, water turbidity, particle number and size distribution, the pressure of the specified location in filter were monitored. The characteristics of the primary flocculation stage, got knowledge from this study, include segmentation, the law of particle distribution characteristics, its defination effect factors, and the relation with the subsequence treatment units, diagnosis method of water in the process of each unit and the whole process, control mechanism on the subsequent process of primary flocculation stage, the strengthening mechanism of primary flocculation. These results are of major importance on the research of flocculation theory and optimization control in waterworks.
     First, the law of particle distribution characteristics changing with time in flocculation-sedimentation filtration process, was studied. The method of detecting particle distribution in traditional water treatment process was established, in order to quantify the efficiency of each unit. This method consists of applying water turbidity and2~5μm particle number to diagnosing flocculation-sedimentation process of solid-liquid separation effect, applying precipitation initial fractal dimension decreased rate of v to diagnosing flocculation floc settling properties, applying RSS0.5to diagnosing filtered water quality stability, applying filter head loss rate of rise to diagnosing filter hydraulic parameters. There is a good relationship between these factors (R2>0.9).
     Secondly, through analyzing the law of partical distribution characteristics changing with time in flocculation process, the segmentation,defination and characteristics of flocculation were studied. As the results shown, the fractal dimension of particle flocculation process could be used as the basis of flocculation process segmentation. Through the analysis of its derivative rule with the flocculation time changes, the flocculation process is divided into four stages, preparation stage, primary-flocculation stage, growth stage and stable stage. And then the definition of primary-flocculation stage was given,and its characteristics were studied by application of KaG,‘’ and Dfg comprehensive evaluation. Through the quantitative analysis of primary flocculation stage effects on each unit of water supply process, the mechanism of primary flocculation stage dominating the water supply process unit was obtained, which could provide a new method for the study of production control and automatic control of waterworks waterworks. The result shows that when flocculation speed increase1%, flocculation efficiency increase1.7%, settling properties increase4.2%, filtered water quality stability increas0.85%, and filter hydraulic parameters increas0.17%.
     Thirdly, two-dimensional DLA model with time parameters was set up, and used to simulate and study the floc morphologial rules with time, the effect of floc morphology kinetic parameters on the floc forming of primary flocculation stage, and the effect of floc morphology of primary flocculation stage on that of floccutation outlet. On the basis of other previous research, floc step growth model was improved, and the new model was uesd to analyze and caculate.The results shows that the floc will grow on one certain direction prior to the other ones; the flocs forming in primary flocculation stage have ‘active site’(2-4in one core); in the growth stage, the flocs will only grow at the active site, and according to different active sites grow into different patterns of flocs; the effective density of flocs could alone be effected by the effective density, particle size and quantity of active site of flocs forming in primary flocculation stage.
     Above all, strengthening control method of primary flocculation stage was established, whose effect on primary flocculation stage was alse studied. Through investigating the efficiency of sedimentation and filtration, the settling and adhesion properties of flocs in flocculation outlet were infered. Finally, the mechanism of primary flocculation stage strengthening control was found, which could become the theoretical basis of construction, management and research of strengthening flocculation in practice..
引文
[1]王喜峰,周祖昊,贾仰文,等.水资源演变研究现状及进展[J].水电能源科学,2010,28(8):20-23.
    [2] Serra T, Colomer J, Casamitjana X. Aggregation and Breakup of Particles ina Shear Flow[J]. Journal of Colloid and Interface Science,1997,187(2):466-473.
    [3]罗岳平,李宁,李建国,等.自来水中悬浮颗粒物的检测和控制[J].给水排水,2000,26(3):26-31.
    [4]袁宗宣,郑怀礼,舒兴武.絮凝科学与技术的进展[J].重庆大学学报(自然科学版),2001,24(2):143-147.
    [5] Packham R F. Some Studies of the Flocculation of Dispersed Clays withHydrolyzing Salts[J]. Journal of Colloid Science,1965,20(1):81-92.
    [6] Gregory J. Monitoring Particle Aggregation Processes[J]. Advances inColloid and Interface Science,2009,147-148:109-123.
    [7] Yuan Y, Farnood R R. Strength and Breakage of Activated Sludge Flocs[J].Powder Technology,2010,199(2):111-119.
    [8] Delichatsios M A, Probstein R F. Flocculation in Turbulent Flow: Theoryand Experiment[J]. Journal of Colloid and Interface Science,1975,51(3):394-405.
    [9] Higashitani K, Tanaka T, Matsuno Y. A Kinematic Interpretation onFlocculation Mechanism of Hydrophobic Colloids[J]. Journal of Colloid andInterface Science,1978,63(3):551-560.
    [10]蒋展鹏,傅涛,杨志华,等.颗粒形态与异向聚沉速率——混凝形态学的动力学研究之一[J].中国给水排水,1993,9(4):4-8.
    [11]傅涛,蒋展鹏,杨志华,等.颗粒形态与同向聚沉速率——混凝形态学的动力学研究之二[J].中国给水排水,1993,9(5):8-12.
    [12] Vigil R, Vermeersch I, Fox R. Destructive Aggregation: Aggregation withCollision-Induced Breakage[J]. Journal of Colloid and Interface Science,2006,302(1):149-158.
    [13] Zollars R L, Ali S I. Shear Flocculation in the Presence of RepulsiveInterparticle Forces[J]. Journal of Colloid and Interface Science,1986,114(1):149-166.
    [14] Sato D, Kobayashi M, Adachi Y. Effect of Floc Structure on the Rate ofShear Flocculation[J]. Journal of Colloid and Interface Science,2004,272(2):345-351.
    [15] Gregory J. Optical Monitoring of Particle Aggregates[J]. Journal ofEnvironmental Sciences,2009,21(1):2-7.
    [16] Mandelbrot B B, Passoja D E, Paullay A J. Fractal Character of FractureSurfaces of Metals[J]. Nature,1984,308:721-722.
    [17] Meakin P. Fractal Aggregates[J]. Advances in Colloid and Interface Science,1987,28:249-331.
    [18] Chakraborti R K, Gardner K H, Atkinson J F, et al. Changes in FractalDimension during Aggregation[J]. Water Research,2003,37(4):873-883.
    [19]朱洁,陈洪斌,孙博雅.颗粒计数法用于给水处理的评述[J].净水技术,2009,28(1):1-6.
    [20]孙博雅.颗粒计数法用于水厂运行优化的研究[D].上海:同济大学环境工程学科硕士学位论文,2008:7-9.
    [21]陈伟,孙博雅,陈洪斌,等.机械加速澄清池的运行优化研究[J].给水排水,2008,34(2):7-10.
    [22]南军,贺维鹏,姜卫东,等.颗粒计数仪在水处理絮凝过程中的应用研究[J].环境科学与技术,2008,31(12):132-135.
    [23] Tanaka M, Komagata M, Tsukada M, et al. Fractal Analysis of The Influenceof Surface Roughness of Toner Particles on Their Flow Properties andAdhesion Behavior[J]. Powder Technol.,2008,186,1-8.
    [24] Martan J, Przybylski G, Tabaka R, et al. Fractal Analysis of RoughnessProfile Induced by Ion Bombardment of Metal Surface[J]. Vacuum,2005,78,217-221.
    [25] Hu S, Li M, Xiang J, et al. Fractal Characteristic of Three Chinese Coals[J].Fuel,2004,83(10):1307-1313.
    [26] Borodich F M. Some Fractal Models of Fracture[J]. J. Mech. Phys. Solids,1997,45(2):239-259.
    [27] Prosperini N, Perugini D. Particle Size Distributions of Some Soils fromThe Umbria Region (Italy): Fractal Analysis and Numerical Modelling[J].Geoderma,2008,145(3-4):185-195.
    [28] Bushell G C, Yan Y D, Woodfield D, et al. On Techniques for theMeasurement of the Mass Fractal Dimension of Aggregates[J]. Advances inColloid and Interface Science,2002,95(1):1-50.
    [29] Stone M, Krishnappan B G. Floc Morphology and Size Distributions ofCohesive Sediment in Steady-State Flow[J]. Water Research,2003,37(11):2739-2747.
    [30] Jarvis P, Jefferson B, Parsons S A. Floc Structural Characteristics UsingConventional Flocculation for a High Doc, Low Alkalinity Surface WaterSource[J]. Water Research,2006,40(14):2727-2737.
    [31]刘百仓,黄尔,鲁金凤,等.混凝工艺水力条件的优化与絮体尺寸特性的研究[J].环境工程学报,2010,4(9):1968-1972.
    [32]贺维鹏.动态絮凝过程水中絮体分形成长与流场协同作用仿真研究[D].哈尔滨:哈尔滨工业大学市政工程学科博士学位论文,2012:17-24.
    [33] Witten T A, Sander L M. Diffusion-Limited Aggregation[J]. PhysicalReview B,1983,27(9):5688-5697.
    [34]高睿,谢淑云,陶继东.在MATLAB平台下实现DLA分形聚集生长的模拟[J].西南师范大学学报,2005,30(1):83-86.
    [35] Mandelbrot B B,王继振.分形——自然界的几何学[J].世界科学,1991,11:1-4.
    [36] Kim A S, Stolzenbach K D. The Permeability of Synthetic FractalAggregates with Realistic Three-dimensional Stucture[J]. Joural of Colloidand Interface Science,2002(253):315-328.
    [37] Rajat K C, Joseph F A, John F V B. Characterization of Alum Floc by ImageAnalysis[J]. Environment Science Technology,2000,(34):3969-3976.
    [38]张济忠.分形[M].北京:清华大学出版社,1995:7-187.
    [39] MandelbrotB B. How Long is the Coast of Britain, Statistical Self Similarityand Fractional Dimension[J]. Science,1967(155):636-638.
    [40]秦耀辰,刘凯.分形理论在地理学中的应用研究进展[J].地理科学进展,2003(22):426-436.
    [41] Torres F E, Russel W B, Schowalter W R. Simulation of Flocculation inViscous Flows[J]. Journal of Colloid and Interface Science,1991,145(1):51-73.
    [42] Li D H, Ganczarczyk J. Fractal Geometry of Particle Aggregates Generatedin Water and Wastewater Treatment Processes[J]. Environmental Scienceand Technology,1989,23(11):1385-1389.
    [43] Stone M, Krishnappan B G. Floc Morphology and Size Distributions ofCohesive Sediment in Steady-State Flow[J]. Water Research,2003,37(11):2739-2747.
    [44] Serra T, Logan B E. Collision Frequencies of Fractal Bacterial Aggregateswith Small Particles in a Sheared Fluid[J]. Environmental Science andTechnology,1999,33(13):2247-2251.
    [45] Li X, Logan B E. Collision Frequencies between Fractal Aggregates andSmall Particles in a Turbulently Sheared Fluid[J]. Environmental Scienceand Technology,1997,31(4):1237-1242.
    [46]钟润生,张锡辉,肖峰,等.絮体分形结构对沉淀速度影响研究[J].环境科学,2009,30(8):2353-2357.
    [47]金鹏康,井敏娜,王晓昌.引入分形维数的混凝动力学方程数值求解[J].环境工程,2008,29(8):2149-2153.
    [48]李彦.聚合氯化铝(PAC)混凝絮体分形结构及气浮去除特性的研究[D].西安:西安建筑科技大学环境工程学科硕士学位论文,2004:28-59.
    [49] Wang Y, Gao B Y, Xu X M, et al. Characterization of Floc Size, Strengthand Structure in Various Aluminum Coagulants Treatment[J]. Journal ofColloid and Interface Science,2009,332(2):354-359.
    [50] Chakraborti R K, Gardner K H, Atkinson J F, et al. Changes in FractalDimension during Aggregation[J]. Water Research,2003,37(4):873-883.
    [51]常颖,张金松,王宝贞,等.基于分形理论的混凝控制研究[J].中国给水排水,2005,21(2):1-5.
    [52] Johnson C P, Li X, Logan B E. Settling Velocities of Fractal Aggregates[J].Environmental Science and Technology,1996,30(6):1911-1918.
    [53] Sato D, Kobayashi M, Adachi Y. Effect of Floc Structure on the Rate ofShear Flocculation[J]. Journal of Colloid and Interface Science,2004,272(2):345-351.
    [54] Sutherland D N. A Theoretical Model of Floc Structure[J]. Journal ofColloid and Interface Science,1967,25(3):373-380.
    [55] Thill A, Veerapaneni S, Simon B, et al. Determination of Structure ofAggregates by Confocal Scanning Laser Primaryscopy[J]. Journal ofColloid and Interface Science,1998,204(2):357-362.
    [56] Thill A. Structural Interpretations of Static Light Scattering Patterns ofFractal Aggregates-II. Experimental Study[J]. Journal of Colloid andInterface Science,2000,228(2):386-392.
    [57] Thill A, Moustier S, Aziz J, et al. Flocs Restructuring During Aggregation:Experimental Evidence and Numerical Simulation[J]. Journal of Colloid andInterface Science,2001,243(1):171-182.
    [58] Chakraborti R K, Atkinson J F, Benschoten J E V. Characterization of AlumFloc by Image Analysis[J]. Environmental Science and Technology,2000,34(18):3969-3976.
    [59] Biggs S, Habgood M, Jameson G J, et al. Aggregate Structures Formed via aBridging Flocculation Mechanism[J]. Chemical Engineering Journal,2000,80(1-3):13-22.
    [60]武若冰,王东升,汤鸿霄.絮体分形结构形成机制探讨[J].环境科学学报,2007,27(10):1599-1603.
    [61] Kim A, Stolzenbach K D. Aggregate Formation and Collision Efficiency inDifferential Settling[J]. Journal of Colloid and Interface Science,2004,271(1):110-119.
    [62] Spicer P T, Pratsinis S E. Shear-Induced Flocculation: The Evolution of FlocStructure and the Shape of the Size Distribution at Steady State[J]. WaterResearch,1996,30(5):1049-1056.
    [63] Dekkers P, Friedlander S K. The Self-Preserving Size Distribution Theory-I.Effects of the Knudsen Number on Aerosol Agglomerate Growth[J]. Journalof Colloid and Interface Science,2002,248(2):295-305.
    [64] Dekkers P J, Tuinman I L, Marijnissen J C M, et al. The Self-PreservingSize Distribution Theory-II. Comparison with Experimental Results for Siand Si3N4Aerosols[J]. Journal of Colloid and Interface Science,2002,248(2):306-314.
    [65] Hopkins D, Ducoste J J. Characterizing Flocculation under HeterogeneousTurbulence[J]. Journal of Colloid and Interface Science,2003,264(1):184-194.
    [66]王毅力,卢佳,杜白雨,等.聚合氯化铁-腐植酸(PFC-HA)絮体的不同拓扑空间下分形维数的研究[J].环境科学学报,2008,28(4):606-615.
    [67]卢佳,王毅力,杜白雨,等.聚合氯化铁-腐植酸(PFC-HA)絮体的粒度和分形维数的动态变化[J].环境科学学报,2008,28(4):624-633.
    [68] Jarvis P, Jefferson B, Parsons S A. Floc Structural Characteristics UsingConventional Flocculation for a High Doc, Low Alkalinity Surface WaterSource[J]. Water Research,2006,40(14):2727-2737.
    [69] Logan B E, Kilps J R. Fractal Dimensions of Aggregates Formed inDifferent Fluid Mechanical Environments[J]. Water Research,1995,29(2):443-453.
    [70] Spicer P T, Pratsinis S E, Raper J, et al. Effect of Shear Schedule on ParticleSize, Density, and Structure during Flocculation in Stirred Tanks[J]. PowderTechnology,1998,97(1):26-34.
    [71]李冬梅,施周,梅胜,等.絮凝条件对絮体分形结构的影响[J].环境科学,2006,27(3):488-492.
    [72]李冬梅,施周,梅胜,等.高浓度悬浊液架桥絮凝分形体的形态学研究[J].中国给水排水,2006,22(19):95-99.
    [73] Xiao F, Zhang B, Ma J, et al. Effects of Low Temperature on Floc FractalDimensions and Shape Factors During Alum Flocculation[J]. Journal ofWater Supply: Research and Technology,2009,58(1):21-27.
    [74] Spicer P T, Pratsinis S E. Shear-Induced Flocculation: The Evolution of FlocStructure and the Shape of the Size Distribution at Steady State[J]. WaterResearch,1996,30(5):1049-1056.
    [75] Kostoglou M, Konstandopoulos A G. Evolution of Aggregate Size andFractal Dimension During Brownian Flocculation[J]. Journal of AerosolScience,2001,32(12):1399-1420.
    [76] Fukasawa T, Adachi Y. Direct Observation on the Brownian Flocculation ofPSL Particles through Optical Primaryscope in the Regime near CriticalFlocculation Concentration (CCC)[J]. Journal of Colloid and InterfaceScience,2010,344(2):343-347.
    [77] Spicer P T, Keller W, Pratsinis S E. The Effect of Impeller Type on Floc Sizeand Structure During Shear-Induced Flocculation[J]. Journal of Colloid andInterface Science,1996,184(1):112-122.
    [78]常青.水处理絮凝学[M].北京:化学工业出版社,2003:31-44.
    [79]胡筱敏.混凝理论与应用[M].北京:科学出版社,2007:25-33.
    [80] Park S, Lee K W. Brownian Flocculation of Fractal Agglomerates:Analytical Solution Using the Log-Normal Size Distribution Assumption[J].Journal of Colloid and Interface Science,2000,231(1):129-135.
    [81] Gregory J. Optical Monitoring of Particle Aggregates[J]. Journal ofEnvironmental Sciences,2009,21(1):2-7.
    [82] Hopkins D, Ducoste J J. Characterizing Flocculation under HeterogeneousTurbulence[J]. Journal of Colloid and Interface Science,2003,264(1):184-194.
    [83] Serra T, Colomer J, Logan B E. Efficiency of Different Shear Devices onFlocculation[J]. Water Research,2008,42(4-5):1113-1121.
    [84]蒋展鹏,尤作亮.混凝形态学的研究进展[J].给水排水,1998,24(10):70-75.
    [85] Li D H, Ganczarczyk J. Fractal Geometry of Particle Aggregates Generatedin Water and Wastewater Treatment Processes[J]. Environmental Scienceand Technology,1989,23(11):1385-1389.
    [86] Camp T R, Stein P C. Velocity Gradients and Internal Work in FluidMotion[J]. Journal of the Boston Society of Civil Engineers,1943,85:219-237.
    [87] Dentel S K, Kingery K M. Theoretical principles of streaming currentdetection[J]. Water Science&Technology,1989,21(6-7):443-453.
    [88]曲久辉,李圭白,崔福义,等.流动电流与ζ电位相关规律的实验分析[J].哈尔滨建筑工程学院学报,1994,27(5):37-41.
    [89]南军,李圭白.新型混凝投药智能复合环控制系统[J].中国给水排水,2001,17(9):49-51.
    [90]曲久辉,李圭白,崔福义,等.流动电流检测器的检测机理及其数学模式-SCD混凝投药控制系统相关因素研究I[J].哈尔滨建筑工程学院学报,1993,26(5):61-67.
    [91]曲久辉,李圭白,崔福义.流动电流的基本特性-SCD混凝投药控制系统相关因素研究II[J].哈尔滨建筑工程学院学报,1993,27(2):50-55.
    [92] Kind M, Mersmann A. On supersatu ration during mass crystallization fromsolution [J]. Chemical Engineering Technology,1990,13(1):50-56.
    [93]刘夕清,范玉梅.激光光散射法测定混凝絮体形成时间的初步研究[J].工业用水与废水.2008,39(5):56-59.
    [94]赵建海,刘夕清,刘连生.混凝过程絮体开始形成和开始沉降时间研究[J].环境污染与防治.2009,31(7):62-65.
    [95] He W P, Nan J, Li H Y. Characteristic analysis on temporal evolution of flocsize and structure in low-shear flow. Water Research,2012,46(2):509-520.
    [96] Spicer P T, Pratsinis S E. Coagulation and fragmentation: Universalsteady-state particle-size distribution[J]. AIChE Journal,1996,42(6):1612-1620.
    [97] Soos M, Moussa AS, Ehrl L, Sefcik J, Wu H, Morbidelli M. Effect of shearrate on aggregate size and morphology investigated under turbulentconditions in stirred tank. Journal of Colloid and Interface Science,2008,319(2):577-589.
    [98] Selomulya C., Amal R., Bushell G., et al. Evidence of shear rate dependenceon restructuring and breakup of latex aggregates. Journal of Colloid andInterface Science,2001,236(1):67-77.
    [99] Spicer P T, Pratsinis S E. Shear-induced flocculation: the evolution of flocstructure and the shape of the size distribution at steady state[J]. WaterResearch,1996,30(5):1049-1056.
    [100] Witten T A, Sander L M. Diffusion-Limited Aggregation: A Kinetic CriticalPhenomenon[J]. Physical Review Letters,1981,47(19):1400-1403.
    [101] Barra F, Davidovitch B, Levermann A, et al. Laplacian Growth andDiffusion Limited Aggregation: Different Universality Classes[J]. PhysicalReview Letters,2001,87(13):4501-4504.
    [102] Gaylord R J, Tyndall W. Diffusion-Limited Aggregation[J]. Mathematica inEducation,1992,1(3):6-10.
    [103] Sander L M. Diffusion-Limited Aggregation: A Kinetic CriticalPhenomenon[J]. Contemporary Physics,2000,41(4):203-218.
    [104] Kockar H, Bayirli M, Alper M. A New Example of the Diffusion-LimitedAggregation: Ni–Cu Film Patterns[J]. Applied Surface Science,2010,256(9):2995-2999.
    [105] Mathiesen J, Procaccia I, Swinney H L, et al. The Universality Class ofDiffusion-Limited Aggregation and Viscous Fingering[J]. EurophysicsLetters,2006,76(2):257-263.
    [106] Kovács T, Bárdos G. Cluster Growth by Diffusion-Limited Aggregation inShear Flow[J]. Physica A: Statistical and Theoretical Physics,1997,247(1-4):59-66.
    [107] Tolman S, Meakin P. Off-Lattice and Hypercubic-Lattice Models forDiffusion-Limited Aggregation in Dimensionalities2-8[J]. Physical ReviewA,1989,40(1):428-437.
    [108] Menshutin A Y, Shchur L N, Vinokur V M. Probing Surface Characteristicsof Diffusion-Limited-Aggregation Clusters with Particles of Variable Size[J].Physical Review E,2007,75(1):401-404.
    [109]庞寿全,陈乐,郑容森.多集团聚集生长的模拟研究[J].安徽农业科学,2008,36(22):9358-9360.
    [110]井敏娜.基于MATLAB平台的絮凝体分形仿真模拟[D].西安:西安建筑科技大学市政工程学科硕士学位论文,2008:25-47.
    [111]秦朝燕,邱祖民,陈文有.絮凝体的三维DLA模型分形模拟[J].南昌大学学报,2010,32(2):122-126.
    [112]蒋文天,邱祖民.絮凝体DLA模型仿真及其废水处理[J].计算机与应用化学,2009,26(2):233-239.
    [113]陈乐,翁甲强.粒子运动区域和粒子源距离对局部区域聚集生长的影响[J].广西物理,2007,28(2):4-7.
    [114] Meakin P. Noise-Reduced and Anisotropy-Enhanced Eden andScreened-Growth Models[J]. Physical Review A,1988,38(1):418-426.
    [115] Tao R. Diffusion-Limited Aggregation with Surface Tension[J]. PhysicalReview A,1988,38(2):1019-1026.
    [116] Vicsek T. Pattern Formation in Diffusion-Limited Aggregation[J]. PhysicalReview Letters,1984,53(24):2281-2284.
    [117] Halsey T C, Duplantier B, Honda K. Multifractal Dimensions and TheirFluctuations in Diffusion-Limited Aggregation[J]. Physical Review Letters,1997,78(9):1719-1722.
    [118] Saberi A A. Linear Relationship Statistics in Diffusion LimitedAggregation[J]. Journal of Physics: Condensed Matter,2009,21(46):46-51.
    [119] Ball RC, Brady RM, Rossi G, et al. Anisotropy and Cluster Growth byDiffusion-Limited Aggregation[J]. Physical Review Letters,1985,55(3):1406-1409.
    [120]党建武.神经网络技术及应用[M].北京:中国铁道出版社,2000:2-10.
    [121] Joo DS, Jin D, Park H. Determination of optimal coagulant dosing rate usingan artificial neural network[J]. Journary of Water supply: Research andTechnology-AQUA,2000,49(1):49-55.
    [122] Baxter CW, Stanley SJ, Zhang Q. Development of a full-scale artificialneural network model for the removal of natural organic matter by enhancedflocculation[J]. Journal of Water Supply: Research and Technology-AQUA,1999,48(4):129-136.
    [123]白桦.基于神经网络的混凝投药系统预测模型[J].中国给水排水,2002,18(6):46-47.
    [124] Boger Z. Applations of neural networks to water and wastewater treatmentplant operation[J]. ISA Transactions,1992,31(1):25-31.
    [125]田禹,王宝贞,周定.基于BP人工神经网络的臭氧生物活性炭系统建模研究[J].中国给水排水,1998,14(3):24-27.
    [126]李玉仙.给水处理工艺的系统集成与优化[D].西安:西安建筑科技大学市政工程学科博士学位论文,2007:117-120.
    [127]崔福义,石明岩,赵天慧.给水处理系统高效经济运行研究之一[J].哈尔滨建筑大学学报,1999,32(6):5-8.
    [128] Zhang H W, Tian X, Chen C F. Resarch on Optimal Operation ofWater-Production System[J]. Transactions of Tianjin University,1999,5(2):215-218.
    [129]徐勇鹏,刘广奇,王在刚.颗粒数作为水质替代参数的研究[J].哈尔滨商业大学学报(自然科学版),2006,2:005.
    [130] Riester M, Lutz A, Hilgers H, et al. Taber abraser/liquid particle countcoupling for the determination of sliding wear of metallized plastics[J].Surface and Coatings Technology,1997,97(1):649-655.
    [131]陈伟,孙博雅,陈洪斌.机械加速澄清池的运行优化研究[J].给水排水,2008,34(2):7-10.
    [132] Hargesheimer E E, McTigue N E, Mielke J L, et al. Tracking filterperformance with particle counting[J]. Journal-American Water WorksAssociation,1998,90(12):32-41.
    [133] McTigue N E. National assessment of particle removal by filtration[M].Amer Water Works Assn,1998.
    [134]孙博雅.颗粒物计数法用于水厂运行优化的研究[D].同济大学,2008.
    [135]戴婕,伍海辉,窦茵,等.颗粒计数仪器在给水处理工艺中的应用探索[J].给水排水,2007,33(9):27-30.
    [136] Hargesheimer E E, McTigue N E, Lewis C M. Fundamentals of drinkingwater particle counting[M]. American Water Works Association,2000.
    [137]杨艳玲,李星,刘美洲,等.用颗粒计数和浊度联合评价颗粒物去除作用[J].北京工业大学学报,2007,33(11):1199-1202.
    [138]岳舜生.水的浊度问题[J].中国给水排水,1995,11(4):33-35.
    [139] Liu J, Xu H, Sun Z W. Toward an Understanding of the TurbidityMeasurement of Heteroflocculation Rate Constants of DispersionsContaining Particles of Different Sizes[J]. Langmuir,2007,23(23):11451-11457.
    [140]南军,贺维鹏,姜卫东,等.颗粒计数仪在水处理絮凝过程中的应用研究[J].环境科学与技术,2008,31(12):132-135.
    [141] Srivastava RM. Effect of Sequence of Measurement on Particle Count andSize Measurements Using a Light Blockage(HIAC)Particle Counter[J].Water Research,1993,27(5):939-942.
    [142]朱洁,陈洪斌,孙博雅.颗粒物计数法用于给水处理的评述[J].净水技术,2009,28(1):1-6.
    [143]杨艳玲,李星,刘美洲,等.用颗粒计数和浊度联合评价颗粒物去除作用[J].北京工业大学学报,2007,33(11):1119-1202.
    [144]孙博雅,陈洪斌,陈伟,等.颗粒计数法用于自来水厂运行的优化[J].中国环境科学,2008,28(2):126-130.
    [145] Friedlander S K, Wang C S. The Self-preserving Particle Size Distributionfor Flocculation by Brownian Motion[J]. Journal of Colloid InterfaceScience,1966,22(1):126-132.
    [146] Friedlander S K. Smoke Dust and Haze[M]. New York: John Wiley and Sons.1997:67-80.
    [147] Logan B E, Kilps J R. Fractal dimensions of aggregates formed in differentfluid mechanical environments[J]. Water Research,1995,29(2):443-453.
    [148] Frederick W P. Water Quality and Treatment[M]. New York: Mc Graw-Hill.1990:45-50.
    [149]杨静,伍修馄,李改平,谭允祯.煤尘粒度分形特征的研究[J].山东大学学报自然科学版,2010,29(2):31-36.
    [150]蒋文天,邱祖民.絮凝体DLA模型仿真及其废水处理[J].计算机与应用化学,2009,26(2):233-239.
    [151]谢云霞,罗文峰,李后强.大气颗粒物的分形特征[J].世界科技研究与发展,2004,26(6):24-29.
    [152]金鹏康,王晓昌,郭坤.絮凝体的DLA分形模拟及其分形维数的计算方法[J].环境化学,2007,26(1):5-9.
    [153]庞寿全,陈乐,郑容森.多集团聚集生长的模拟研究[J].安徽农业科学,2008,36(22):9358-9360.
    [154]秦朝燕,邱祖民,陈文有.絮凝体的三维DLA模型分形模拟[J].南昌大学学报,2010,32(2):122-126.
    [155] Ball R C, Brady R M, Rossi G, et al. Anisotropy and Cluster Growth byDiffusion-Limited Aggregation[J]. Physical Review Letters,1985,55(3):1406-1409.
    [156]贺维鹏.动态絮凝过程水中絮体分形成长与流场协同作用仿真研究[D].哈尔滨:哈尔滨工业大学市政工程学科博士学位论文,2012:34-34.
    [157] Amirtharajah A, Wetstein D P. Initial Degradation of Effluent QualityDuring Filtration [J]. Journal-American Water Works Association,1980,72(9):518-524.
    [158] Qureshi N. The effect of backwashing rate on filter performance[J].Journal-American Water Works Association,1982,74(5):242-248.
    [159] Cranston KO, Amirtharajah A. Improving the Initial Effluent Quality of aDual-Media Filter by Coagulants in Backwash[J]. Journal-American WaterWorks Association,1987,79(12):50-63.
    [160]许保玖,安鼎年.给水处理理论与设计[M].北京:中国建筑工业出版社,1992:178-179.
    [161]李圭白,张杰.水质工程学[M].北京:中国建筑工业出版社,2005:48-79.
    [162]高睿,谢淑云,陶继东.在MATLAB平台下实现DLA分形聚集生长的模拟[J].西南师范大学学报,2005,30(1):83-86.
    [163]蒋文天,邱祖民.絮凝体DLA模型仿真及其废水处理[J].计算机与应用化学,2009,26(2):233-239.
    [164]陈乐,翁甲强.粒子运动区域和粒子源距离对局部区域聚集生长的影响[J].广西物理,2007,28(2):4-7.
    [165]谭万春,王云波,李冬梅,等.计算机模拟技术在絮体分形成长研究中的应用[J].水处理技术,2005,31(1):16-19.
    [166] Sutherland DN. A theoretical model of floc structure[J]. Journal of ColloidInter Science.1967,25:373-380.
    [167] Tambo N, Watanabe Y. Physical aspect of flocculation processⅠ. The flocdensity function and aluminum floc[J]. Water Research,1979,13:409-419.
    [168] Jarvis P, Jefferson B, Gregory J, et al. A Review of Floc Strength andBreakage[J]. Water Research,2005,39(14):3121-3137.
    [169]王补宣,盛文彦,彭晓峰,等.剪切力作用下颗粒的絮凝与破碎[J].热科学与技术,2007,6(3):189-192.
    [170]李冬梅,谭万春,黄明珠,等.絮凝体的分形特性研究[J].给水排水,2004,30(5):5-10.
    [171] Soos M, Moussa A S, Ehrl L, et al. Effect of Shear Rate on Aggregate Sizeand Morphology Investigated under Turbulent Conditions in Stirred Tank[J].Journal of Colloid and Interface Science,2008,319(2):577-589.
    [172]王冠鹏,张颜.硅藻土的特性及在水处理中的应用分析[J].辽宁化工.2011,40(12):1241-1243.
    [173]孙德文,宋宝祥.硅藻土的理化特性及其在造纸领域的应用[J].2010,29(8):65-65.
    [174]李晓斌,魏成兵.硅藻土在废水处理中的应用[J].江苏环境科技.2008,21(4):71-74.
    [175]潘红霞,杨义,肖传山.污水处理中硅藻土的应用[J].科技资讯.2010:14.
    [176]莫涛涛.硅藻土与强化混凝联用在微污染源水处理中的应用研究[D].广东:中山大学环境工程硕士学位论文.2007:1-2.
    [177]刘蕴娴,王银叶,黎原小溪.硅藻土处理低浓度含氟地下水的实验研究[J].天津城市建设学院学报.2008,14(3):194-196.
    [178]温彦平.硅藻土对饮用水中微量卤代烃吸附性能的研究[J].太原理工大学学报.2002,33(5):547-547.
    [179]张锦,李圭白,余敏,欧阳红,杨海燕,马军,陈忠林.新生态水合二氧化锰对水中酚类化合物的吸附和氧化[J].水处理技术.2002,27(5):263-265.
    [180] Colthurst J M, Singer P C. Removing trihalomethane precursors bypermanganate oxidation and manganese dioxide adsorption [J].Journal-American Water Works Association,1982,74(2):77-83.
    [181]杨威.水合氧化锰的净水机理与应用[M].化学工业出版社.2008:25-84.
    [182]李圭白,杨艳玲,李星,等.锰化合物净水技术[J].中国建筑出版社.2006,8:54-56.
    [183] Ma J, Graham N, Li G. Effectiveness of permanganate preoxidation inenhancing the flocculation of surface water-laboratory case studies[J].Journal of Water Supply: Research and Technology-AQUA.1997,46:1-11.
    [184]杨威,杨艳玲,李星,等.胶态水合二氧化锰絮凝粒子的结构形貌及其混凝机理[J].环境科学,2007,28(5):1050-1055.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700