黄土高原四个乡土树种耗水规律与抗旱特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以黄土高原四个乡土树种:辽东栎(Quercus liaotungensis)、大叶细裂槭(Acer stenolobum Rehd.var.megalophyllum)、白刺花(狼牙刺Sophora viciifolin)和虎榛子(Ostryopsis davidiana)为实验材料,在盆栽模拟土壤干旱环境下,研究了不同土壤水分条件下四个乡土树种幼苗的耗水特性、生长、干物质积累分配的变化规律及各树种不同层次水平的水分利用效率。探讨了不同土壤水分条件下各树种水分代谢、渗透调节物质、保护酶活性、光合作用及光合色素含量的时空变化,旨在揭示四个树种抗旱生理机制的差异并综合评价了四个树种的抗旱性强弱、生态反应和适应机制,取得主要结果如下:
     1.四个乡土树种的耗水特性不同。不同树种的最大耗水时期、最高耗水日以及日耗水最高时段有所不同;随土壤水分含量的减少,最高耗水时期、最高耗水日及日耗水高峰有提前的趋势;耗水高峰期多集中6、7、8三个月(白刺花集中在7、8、9三个月)。土壤水分含量高低决定各树种耗水量的多少,总趋势是:适宜水分>中度干旱>重度干旱。土壤水分含量对大叶细裂槭耗水量的影响最大,对其它树种影响较小。不同水分处理下耗水量均是白刺花>辽东栎>大叶细裂槭>虎榛子。随土壤水分含量的减少,白刺花和大叶细裂槭的耗水变化幅度较小,虎榛子和辽东栎耗水高峰出现时间提前。白刺花属高耗水高水分利用效率的树种,中度干旱对其耗水量以及耗水规律几乎没有影响,且水分利用效率有所提高。虎榛子属低耗水低水分利用效率树种,耗水系数最大。大叶细裂槭对水分亏缺敏感,但其适应生长的水分范围很宽,属广适性树种,适应性强,成活率在干旱下最高。辽东栎属低耗水高水分利用效率的树种,但其幼苗不耐高温强光,适宜于在林下生长。
     2.各树种在不同月份、不同天气状况下的蒸腾速率日变化规律不同。各树种在不同月份、不同天气状况下的蒸腾速率日变化规律不同。不同树种在不同季节、不同天气状况下的蒸腾速率或者是单峰、或者是双峰;在严重干旱下或生长后期,由于气孔的生理调控能力下降而呈不规律的变化。对蒸腾速率与环境因子的相关分析表明,环境因子对树种蒸腾速率影响的大小顺序依次是:光强、气温和相对湿度。不同水分处理下各树种对这3个主要环境因子的反应不同。
     3.土壤水分条件对四个树种水分状况的影响不同。大叶细裂槭在干旱胁迫下主要通过增加根系吸水维持较高的叶水势,维持叶片含水量不致于下降过多,具有御旱植物的特点。白刺花则通过一些生理调节方式增加叶片的保水力维持较高的水分含量,具有耐旱植物的特点。虎榛子通过降低叶水势以增强吸水力维持较高的叶水势,但其叶片保水力较差。辽东栎的叶水势变化较平稳,与其叶片组织含水量较稳定有关。综合来看白刺花、辽东栎较抗旱;大叶细裂槭、虎榛子抗旱性较弱。
     4.土壤干旱对各树种渗透调节物质以及光合色素含量变化的影响不同。随土壤干旱
    
    程度的加剧,各树种叶片中可溶性糖含量均呈上升趋势。游离脯氨酸含量随生长进程
    以及干旱程度加剧变化较为复杂。四个树种K+含量不同时期不同水分处理变化不同。
    白刺花K+含量在各处理中均显著高于其它树种,其K+含量与其抗早性成正相关。可溶
    性蛋白质含量随土壤干旱加剧变化较为复杂,无明显规律。叶绿素总量随干旱胁迫时
    间延长呈下降趋势,叶绿素b下降而叶绿素a上升,类胡萝卜素的含量及性质较稳定。
    不同土壤水分条件对各树种保护酶活性、细胞膜结构影响不同。白刺花以其渗透保护
    性物质提高质膜稳定性,同时其三个保护酶能够相互协同作用降低膜脂过氧化程度减
    少水分胁迫造成的伤害。虎棒子则通过保持较高的酶活性降低质膜过氧化以维持膜结
    构的完整性。大叶细裂械对水分胁迫的反应敏感,但其保护酶调节能力较强,对水分
    亏缺的适应范围很宽。辽东栋幼苗对环境因子的适应性较差,影响其保护酶活性的因
    素较多,酶活性变幅较大。
    5.不同土壤水分含量对各树种的生长、干物质分配影响不同。白刺花、大叶细裂械
    属生长较快的树种,辽东栋、虎棒子属生长较慢的树种,但它们对干旱都具有良好的
    适应性。树木生长的不同时期,土壤水分对其蒸腾、光合的影响程度不同;不同的树
    种在相同的时期对土壤水分含量以及其它环境因子的敏感程度也不同。随土壤水分含
    量变化各树种水分利用效率变化不同。辽东栋属低蒸腾高水分利用效率,梭化效率稳
    定型树种;大叶细裂械属高蒸腾高光合、梭化效率、水分利用效率较高的树种;虎棒
    子属生长缓慢耗水少、水分利用效率低的树种;白刺花属高耗水高生长量、高水分利
    用效率的树种。不同土壤水分条件下环境因子对树木光合速率的影响不同。由通径分
    析结果表明:适宜水分下光照强度对光合速率影响最大,其次是气温;中度干旱下大
    气湿度对Pn的直接作用最大,光强次之;重度干旱下大气温度对树种Pn影响最大,
    其次为大气湿度,光强最小。通过对各生理指标与光合速率的相关和通径分析结果表
    明,在不同水分处理下,影响Pn的主导因子不同。适宜水分条件下,Gs对Pn的直
    接作用最大;中度干旱胁迫下Ci成为限制光合作用的主导因子;重度干旱?
Using four native species (Acer stenolobum Rehd.var.megalophyllum.Sophora viciifolin,Quercus liaotungensis,Ostryopsis davidiana)of Loess Plateau as experiment materials and Pot culture experiments simulating different soil water status ,this paper mainly deals with water consumption characteristic and growth ,biomass allocation regular and WUE of different level of four native tree species under three different soil water. Time and space change of water metabolism, osmotic adjustment substance, principal protective enzyme activity, photosynthesis and photosynthetic pigment of four tree species of different soil water stress, we expected to discover difference of drought-resistance mechanism and comprehensive evaluate
    Drought-resistance characteristic of four native tree species are different. By experiment, we discovered ecological responses and adaptability mechanism with soil water stress. This result provided scientific basis of rational chosen tree species and plant construction in Loess Plateau. The mail results are as follows:
    1. Different soil water content had obvious affected on water consumption of 4 tree species. Time and date of the highest water consumption had notably difference. The highest water consumption of four tree species concentrated on 6,7,8 month. Soil water content decided on water consumption ,the trend is normal water>media stress> severe stress. According to sort with water consumption under different soil water content ,the trend is Sophora viciifolin > Ouercus liaotungensis > Acer stenolobum Rehd.var.megalophyllum>Ostryopsis davidiana . Sophora viciifolin has higher water consumption and WUE characteristic, Ostryopsis davidiana belong to low water consumption and WUE species and has the highest water coefficient. Acer stenolobum Rehdvar.megalophyllum was sensible to soil water deficit, but it grows under widely water condition and fine adaptability and higher survival rate. Quercus liaotungensis has low water consumption and high WUE characteristic and its see
    dling has weakly resistance on high temperature and strong light.
    2. Change regular of date transpiration rate of different tree species have obvious different under different month and climate. Transpiration rate of seedling on sun day surpass that of cloudy day and summers surpass autumns. Curve of transpiration rate of different seedling was single or two peaks. Transpiration rate declined with the deepening of soil water stress. Correlation analysis with transpiration and environment elements showed that sunlight has the stronger effect on transpiration rate secondly is air temperature and RH. Different responses to principle environment factor of different tree species under different soil water content.
    3. Different soil water content has affected water metabolism of 4 trees species. Acer stenolobum Rehdvar.megalophyllum has higher leaf water potential, keeping higher leaf water content. It has drought avoidance characteristic. Ostryopsis davidiana decreased leaf water potential to increase organ water content and has weakly leaf water retention capability. Change of leaf water potential and water content of Ouercus liaotungensis is
    
    
    stable. Sum up, Quercus liaotungensis and Sophora viciifolin has stronger drought-resistance characteristic.
    4. Different soil water content had obvious affected on osmotic adjustment substance and photosynthetic pigment content of four tree species. Leaf Soluble sugar content of four seedlings ascended with descending soil water content. Chant of leaf praline content has no obvious regular with growing and water deficit. Change of leaf K+ content has notable different with different growth stage and water deficit. Leaf K+ content of Sophora viciifolin has significantly surpassed other seedling; K+ content has positive correlation with drought-resistance. Change of leaf soluble protein content has complex with soil water decreasing. Chlorophyll content descended with prolonging water stress time, Chlorophyll a ascended and
引文
[1].蒋定生等编著.黄土高原水土流失与治理模式.北京:中国水利水电出版社,1997
    [2].吴钦孝,杨文治 黄土高原植被建设与可持续发展[M].北京:科学出版社,1998,37~702
    [3].侯庆春,韩蕊莲,李宏平 关于黄土丘陵典型地区植被建设中有关问题的研究[J] 水土保持通报,2000,7(2):102~110
    [4].王韶唐.植物抗旱的生理机.植物生理生化进展,1983,2:120~133
    [5].黎裕.作物抗旱鉴定方法与指标,干旱地区农业研究.1993,11(1)91~99
    [6].胡荣海.农作物抗旱鉴定方法和指标.作物品种资源,1986,(4):36~38
    [7].尹田夫等.大豆科学,1986,5(3):223~226
    [8].胡新生,王世绩.树木水分胁迫机理与耐旱性研究进展及展望.林业科学,1998,34(2):77~78
    [9].陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展.植物学通报,1999,16(5):555~580
    [10].刘友良.植物水分逆境生理.北京:农业出版社,1992:56~118
    [11].于同泉,秦岭,王有年.渗透胁迫板栗苗可溶性糖的累积及组分变化的研究.北京农学院学报,1996,11(6):43~47
    [12].顾振瑜,胡景江,文建雷等.元宝枫对干旱适应性的研究.西北林学院学报,1999,14(2)1~6
    [13].王爱国,罗广华.羟自由基启动下的脱氧核糖降解及其产物的TBA反应.生物化学与生物物理进展,1993,20:150~152
    [14].吕庆,郑荣梁,干旱及活性氧引起小麦膜脂过氧化及脱氧化.中国科学(C辑),1996,26(1):26~30
    [15].夏新莉,郑彩霞,尹伟伦.土壤干旱对樟子松针叶膜脂过氧化膜脂成分和乙烯释放的影响.林业科学,2000,36(3):8~12
    [16].蒋明义.水分胁迫下植物体内.OH的产生与细胞的氧化损伤.植物学报,1999,41:(3)229~234
    [17].胡景江,顾振瑜,文建雷.水分胁迫对元宝枫膜脂过氧化作用的影响.西北林学院学报,1999,14(2):7~11
    [18].姚允聪.不同浇水处理过程中柿幼树SOD,CAT和膜脂过氧化作用的变化.北京农学院学报,1994,9(1):22~27
    [19].陈立松,刘景辉.水分胁迫对荔枝叶片活性氧代谢的影响.园艺学报,1998,25(3):241~246
    [20].孙昌祖.渗透胁迫对青杨叶片氧自由基伤害及膜脂过氧化的影响.林业科学,1993,29(3)104~109
    [21].王宝山,赵思齐.干旱对小麦幼苗膜脂过氧化及保护酶的影响.山东师范大学学报(自然科学版),1987,2(11):29~39
    [22].吴林,李亚东,刘洪章.水分逆境对沙棘生长和叶片光合作用的影响.吉林农业大学学报,1996,18(4):45~49
    [23].蒋明义,荆家海,王韶唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响.植物生理学报,1991,17(2):80~84
    [24].刘飞虎,张寿文,梁雪妮.干旱胁迫下苎麻生理生化指标研究简报.江西农业大学学报,1998,20(2):195-196
    [25].程维新,赵家义.关于灌溉农田作物耗水量问题.水利学报,1983(4)
    [26].李银芳.不同水分生境对梭梭耗水量的影响.干旱区研究,1991,9(4)45~50
    [27].韩蕊莲,梁宗锁.黄土高原适宜树种苗木的耗水特性.应用生态学报,1994,5(2)210~213
    [28].蒋进.极旱环境中两种梭梭蒸腾的生理生态学特点.干旱区研究,1992,9(4)14~17
    [29].王孟本,李洪建,柴宝峰,冯彩平.树种蒸腾作用、光合作用和蒸腾效率的比较研究.植物生
    
    态学报,1999,23(5)401~410
    [30].王福林.黄土丘陵区沙棘造林抗旱指标初探,沙棘,1998,(2)
    [31].韩蕊莲,梁宗锁.土壤水分不同含水量下沙棘耗水特性研究,沙棘,1991,(4):33~35
    [32].李洪建,柴宝峰,王孟本.北京杨水分生理生态特性研究.生态学报,2000,20(3) 417~422
    [33].葛滢,常杰,刘珂等.杭州石荠芋蒸腾的生理生态学研究.植物生态学报,1999,23(4).320~326
    [34].汤章城.植物的干旱生理研究.生态学报,1983,3(3):196~204
    [35].王臣立,韩士杰,黄明茹.干旱胁迫下沙地樟子松ABA变化及生理响应.东北林业大学学报,2001,29(1):40~43
    [36].梁宗锁,王俊峰.简述沙棘抗旱性及其耗水特性研究现状.沙棘,1997,10(1):28~31
    [37].张锡梅等.不同作物在不同土壤含水量条件下的耗水特性.生态学报,1991,9(1):97~98
    [38].武玉叶,李德全,赵士杰等.土壤水分胁迫下小麦渗透调节与光合作用.作物学报,1999,(6):752~758
    [39].郭俊荣,王伯荪,张宏达.银杏的蒸腾特性及其对遮阴的响应.植物学报,1998,40(6):567~572
    [40].刘奉觉,郑世锴,巨关升等.树木蒸腾耗水测算技术的比较研究.林业科学,1997,33(2):117~122
    [4l].谈峰,梁莉,周彦兵.杜仲叶片蒸腾速率的因子分析.西南师范大学学报,1996,21(2)162~167
    [42].王孟本,李洪建,柴宝峰.柠条的水分生理生态学特性.植物生态学报,1996,20(6):494~501
    [43].王仲春,黄镇,罗新书.几种果树蒸腾强度和气孔阻力的日变化与抗旱性的关系.山东农业大学学报,1988,19(1):39~46
    [44].王仲春.水分胁迫对苹果蒸腾强度和气孔扩散阻力的影响.山东农业大学学报,1987,8(4):33~40
    [45].蒋进,王永增.几种旱生植物盆栽苗木的水分关系和抗旱性排序.干旱区研究,1992,9(4):31~37
    [46].李洪建,王孟本,柴宝峰.黄土区4个树种水势特征的研究.植物学研究,2001,21(1):100~105
    [47].魏天兴,余新晓,朱金兆等.黄土区防护林主要造林树种水分供需关系研究.应用生态学报,2001.12(2):185~189
    [48].朱志诚.陕北黄土高原植被基本特征及其对土壤性质的影响.植物生态学与地植物学学报,1993,17(3):280~286
    [49].杨敏生,裴保华,张树常.树木抗旱性研究进展.河北林果研究,1997,12(1):88~89
    [50].夏阳.水分逆境对果树脯氨酸和叶绿素含量变化的影响.甘肃农业大学学报,1993,28(1):26~31
    [51].阮成江,李代琼.黄土丘陵区沙棘气孔导度及其影响因子.西北植物学报,2001,21(6)::1078~1084
    [52].阮成江,李代琼,姜峻.半干旱黄土丘陵区沙棘的水分生理生态及群落特性研究.西北植物学报,2000,20(4):621~627
    [53].梁宗锁,李敏,王俊峰.沙棘抗旱造林现状与改进意见.沙棘,1998,11(3):8~13
    [54].刘昌明,王会肖著.土壤—作物—大气界面水分过程与节水调控.北京:科学出版社,1999:30~37
    [55].邹琦.植物光合作用的气孔与非气孔限制.作物抗旱生理生态研究,北京:中国农业科学技术出版社,1994:155~163
    [56].贺康宁,田阳,史常青,张光灿等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境.林业科学,2003,39(1):10~16
    [57].山仑,徐萌.节水农业及其生理生态基础.应用生态学报,1991,2(1):70~76
    
    
    [58].徐世昌.水分胁迫对玉米光合性能及产量的影响.作物学报,1995,2(3):354~363
    [59].高俊凤.植物生理学实验技术.世界出版社,1999
    [60].中国科学院上海植物生理研究所编.现代植物生理学实验指南.科学出版社,1999
    [61].李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,1992,18(1):37~44
    [62].高爱丽,赵秀梅,秦鑫.水分胁迫下小麦叶片渗透调节与抗旱性的关系.西北植物学报,1991,11(1):58~63
    [63].王宝山.生物自由基与植物膜伤害.植物生理学通讯,1988(2):12~16
    [64].孙国荣,张睿,姜丽芬,阎秀峰.干旱胁迫下白桦实生苗叶片的水分代谢与部分渗透调节物质的变化.植物研究,2001,21(3):413~415
    [65].阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响.生态学报,1999,19(6):850~854
    [66].蔡宝峰等.晋西黄土丘陵区若干树种水分重量及抗旱性量化研究.植物研究,2000,20(1):79~85
    [67].王孟本等.黄土区树种抗旱指标的研究.植物研究,1999,19(3):341~346
    [68].蒋明义等.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯,1996,32(2):144~150
    [69].王建华等.超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用.植物生理学通讯,1989(1):1~7
    [70].王忠.植物生理学.北京:中国农业出版社,2000,288
    [71].王洪春.植物抗逆性与生物膜结构功能研究进展.植物生理学通讯,1985(2):60~66
    [72].李天红,李绍华.水分胁迫地苹果苗木结构性碳水化合物组分及含量的影响.中国农学通报,2002,18(4):35~39
    [73].武宝轩,格林托德.小麦幼苗中超氧化物歧化酶活性与幼苗脱水耐受力相关研究.植物学报.1985,27:152~160
    [74].李德全,邹琦,程炳嵩.植物在逆境下的渗透调节.山东农业大学学报,1989(2):75~80
    [75].Boyer I S .Plant productivity and environment .Science, 1982,218
    [76].Bohnert H.J.,Nelson D.E.,Jensen R.G.Adaptations to environmental stresses.The Plant Cell, 1995,7:1099~1111
    [77].Bohnert H.J., Jensen R.G.,Stratigies for engineering water-stress tolerance in plants,Trends in Biotechnology, 1996,14:89~97
    [78].Borowitzka L J. In L G. Palrg and D. Aspinall (eds).The physiology and Biochemistry of Drought Resistance in plants. Academic press,Sydney, 1981,97~130
    [79].Bowler C.Van Montagu,Inze D.Superoxide dismutase and stress tolerance. Ann Rer plant Physiol plant tool Biol, 1992(43)83
    [80].Cutler J M. et al. Influence of water deficits and osmotic adjustment on leaf elongation in rice. Crop sci,1980,20:314~318
    [81].Dhindsa AS. Mutowe W. Drought tolerance in two mosses: Correlated with enzymatic defense against lipid peroxidation. J Eep Bot. 1981,32:79~91
    [82].Dhindsa RS. Drought stress enzymes of glutathione metabolism, oxidation injury and protein synthesis in Tortula ruralis.Plant physiol, 1991,95:648
    [83].Dong J G, Olson D, Silverstone A, Yang SF. Sequence of a Cdna coding for a 1-aminocyclo propan-1-carboxylate oxidate homolog from apple fruit. Plant physiol, 1982,98:1530~1531
    [84].Downton W J S. Plant Sci.lett., 1983,30:137~143
    [85].Gerald A. Berkowitz and Martin Gibbs. Effect of osmotic stress on photosynthesis studied
    
    with isolated spinach chloroplast. Plant physiol,1982,70:1143-1148
    [86] .Gogorcena Y, Iturbe-Ormaetxe I, Escurdeo PR, Becana M. Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant physiol,1995,108:753-759
    [87] .Hanson, A D. et al. Capacity for praline accumulation during water stress in barley and its implications forbreeding for drought resistance. Crop Sci. 1979, 19:489-493
    [88] .Hanson, A D, Rathinasabapathi B, Rivoal J et al. Osmoprotective compounds in the plumbaginaceae: A natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci USA 1994,91:306-310
    [89] .Hellebust J A. Osmoregulation. Ann Rev plant physiol, 1976,27:485-505
    [90] .Hillel D. Soil and water physical principles and processes. New York : Academic Press, 1971, 175-243
    [91] .Jones M M, Rawson H M, plant physiol, 1979,45:103-111
    [92] .Koster KL.Glass formation and desiccation tolerance in seeds. Plant Physiol, 1996,96:302-304
    [93] .Kramer P.J. Water relation of plants .New York :Academic Press ,1983. 108-220
    [94] .Kramer P J. Water Relations of plant, Academic press,1983,INC.(Lond),404-405
    [95] .Larcher W. Plant ecophysiology. Verlag Eagan Ulmer Stuttgart, 1991,175-230
    [96] .Levitt J. Responses of plants to Environmental stresses, Academic press, New York, 1980,2.
    [97] .Ludlow M M., Chu, A.C.P.,Clement R J., et al. Adaptation of species of centrosema to water stress. Aust.J. Plant physiol, 1983,10:119-130
    [98] .Moran J F, Becana M, Iturbe-Ormaetxe I, Frchilla S, Klucos R V, Aparicio-Pejop. Drought induces oxidative stress in pea plants.Planta, 1994, 194:346-352
    [99] .Moran J M. Difference in osmoregulation between wheat genotypes. Nature,1977,270:234-235
    [100] .Mukerjee SP, Choudhuri MA. Implication of hydrogen peroxide-ascorbate system on membrane permeability of water stress vigna seedlings .New phytol, 1985,35:1258-1266
    [101] .Nuccio M. L., Rhodes D.R., McNeil S D. et al .Metabolic engineering of plants for osmotic stress resistance. Current Opinion Plant Biol, 1999,2:128-134
    [102] .Paul K.P and J.E Thompson. Invitro simulation of senescence-related membrane damage by ozone induced lipid proxidation.Nature, 1980, 283:504-506
    [103] .Scandalios J G. Oxygen stress and superoxide dismutasea. Plant physiol, 1993,101:7-11
    [104] .Senaratna et al. Simulation of dehydration injury to membranes from soybean axes by free radicals. Plant physiol. 1984,77:472-474
    [105] .Smirnoff N. The role of active oxygen in the response of plant to water deficit and desiccation. Nevv phytol, 1993, 125:27-58
    [106] .Smimoff N. Plant resistance to environmental stress. Current.Opinion Biotech, 1998,9:214-219
    [107] .Tuner NC. Concurrent comparisons of stomata behavior, water status, and evaporation of maixe in soil at high or low water potential. Plant physiol. 1975,55:932-936
    [108] .Vehiba K. Selective oxidation of tvrptoha and histidine residues in protein through the coppy-catalyzed autoxiation of 1-ascorbic acid.Biol.Chein,1988,52:1529-1533
    [109] .Wang.z ,Quebedeaux, B.and Stute, GW. Osmotic adjustment: effect of water stress on carbohydrates in apple under water stress . Aust.J. Plant physiol. 1995,22: 747-754

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700