用户名: 密码: 验证码:
从噬菌体肽库中筛选与人转铁蛋白受体特异性结合的肽
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人转铁蛋白受体(human transferrin receptor,hTfR)是一类Ⅱ型跨膜蛋白,其N端位于细胞内,C端位于细胞外,主要功能是以内化的方式介导细胞对铁离子的吸收。由于hTfR在肿瘤细胞表面及组成血脑屏障的脑毛细血管内皮细胞的表面高密度分布,而且其介导的内化途径可准许较大的分子进入细胞,故hTfR是药物传递系统中十分具有吸引力的靶点之一。大量的研究结果证明了以转铁蛋白受体介导的内化途径来进行药物设计这一思路的可行性,其适用性很广,可介导的药物不仅包括金属离子,化学药物,还包括蛋白、肽以及寡核苷酸等。被改建的药物具有更强的组织分布特异性,更长的半衰期及更好的可控性,在疾病的诊断和治疗中,尤其是在肿瘤治疗和中枢神经疾病的治疗方面具有良好的前景。
     噬菌体呈现肽库是近年来发展很快的一项技术,它已成为为已知分子寻找相应配体的有效工具。
     本实验中,我们以hTfR为靶蛋白,从噬菌体呈现随
    
    第四军医大学硕士学位论文
    机12肤库中筛选与之结合的肤,经过三轮生物淘筛和噬
    菌体ELISA,我们获得了8个阳性重组噬菌体克隆。DNA
    测序及根据DNA序列推导出的短肤的一级结构表明8个
    克隆中含有两个共同的短肤序列RXXXR和RXR。在噬菌
    体ELISA实验中,A410nm吸光值最高的噬菌体被命名为
    B18(其所呈现的肤命名为P18)。经网上蛋白BLAST分
    析,未发现P18与包括转铁蛋白在内的任何已知蛋白有
    同源性,竞争抑制实验也表明转铁蛋白不能抑制B18与
    转铁蛋白受体的结合,说明B18与转铁蛋白受体的结合
    位点不同于转铁蛋白。流式细胞术和细胞免疫组化均表
    明B18可以与高表达hTfR的细胞SMMC一7721『结合。噬菌
    体在荷瘤小鼠的体内分布实验表明,归巢于肿瘤组织的
    噬菌体B18是对照噬菌体的5.23倍,说明B18在肿瘤组
    织中有一定程度的特异性富集。
     为了进一步证明P18在脱离了噬菌体之后仍具有介
    导其它分子与活细胞上的hTfR结合的能力,我们用基因
    工程的方法构建了表达GST一P18的融合基因,GST一P18
    经大肠杆菌表达、亲和层析纯化后,进行流式细胞术分
    析和激光共聚焦显微镜观察,实验结果表明GST一P18可
    以与SMMC·7721结合并且主要结合于细胞膜上。
Human transferrin receptor (hTfR) is a II type transmembrane protein of which N terminal is in the cytoplasm and C terminal is out of the cytoplasm. It plays an important role in mediating the iron ion being uptaked by cells through endocytosis way. On the surfaces of tumor cells and the brain capillary endothelia cells, which consist of the brain blood barrier, the expressione levels of hTfR are high. And it has been proved that endocytosis is an efficient way to transport big molecules into cells. The two features mentioned above make hTfR an attractive target in drug delivery system and many researches have verified the feasibility of such strategy. Many therapeutic molecules such as anti-cancer drugs, proteins, peptides, DNA, PNA and so on can be delivered into cells with higher specificity through this method.
    
    
    hTfR has great potential in medical diagnosis and therapy, especially in treatment of cancer and central nervous system diseases.
    Phage-display technology is a powerful tool in finding the ligands for proteins, enzymes, antibodies and et al.
    In our study a phage-display 12 peptides library was screened with hTfR. After three cycles biopanning and phage ELISA, 8 positive phages were selected. DNA sequencing revealed that two consensus peptides sequences were included in the 8 positive phages, one is RXR and the other is RXXXR. The phage, which had highest A410nm absorbtion in phage ELISA was named as B18, and the peptide displayed was named as P18.
    The binding of B18 to hTfR is dose-dependent. Blast online analysis indicated that none homogeneouse sequence with PI 8 was found in proteins including Tf. Competition assay also demonstrated that the binding between B18 and hTfR could not be blocked by Tf which indicated that the binding site of B18 to hTfR is distinct from Tf, so the binding between Tf and hTfR will not be interfered with by B18. The assays of flow cytometry and
    
    cell immochemistry indicated that B18 has the ability to bind to SMMC-7721 on which the hTfR were highly expressed.
    When phage B18 and B26, a control phages were injected into the nude mice from tail vein, B18 recovered from tumor was as 5.23 times as B26, which indicated that B18 could home to tumor tissues specifically.
    In order to study whether the peptide still has the ability to direct other molecules to bind to hTfR when it was departed from phage, GST-P18 fusion gene was constructed and expressed in E.coli. The fusion protein was purified by affinity chromatography. The flow cytometry assay indicated that the fusion protein could bind to SMMC-7721 and when it was observed with a confocal laser-scanning microscopy, the imagines showed that the fusion protein was mainly binded on the cell membrane.
引文
[1] 常彦忠,段相林,钱忠明.转铁蛋白受体2及其功能与相关疾病.生物化学与生物物理进展,2003;30(4):533-536
    [2] Jing SQ, Trowbridge IS. Identification of intermolecular disulfide bonds of the human transferrin receptor and its lipid-attachment site [J]. EMBO , 1987; 6:327-331
    [3] Omary MB,Trowhridge IS. Biosynthesis of the human serum transferrin receptor in cultured-cells. J Biol Chem 256:2888-2892
    [4] Rutledge EA, Enns CA. Cleavage of the transferrin receptor is influenced by composition of the O-linked carbohydrate at position 104.J Cell Physiol, 1996,168:284-293
    [5] Lawrence CM, Ray S, Bahyonshew M. Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell, 1999, 93:111-123
    [6] Fuchs H, Lueken U, Tauber R. Structure model of phospholipid-reconstitude human transferrin receptor derived by electron microscopy. Structure, 1998, 6:1235-1243
    [7] Sun H, Li H, Sadler PJ. Transferrin as metal ion mediator. Chem Rev, 1999, 99:2817-2842
    [8] Zak O, Ikuta K, Alsen P. The synergistis anion-binding sites of human transferrin: chemical and physical sffects of site-directed mutagenesis. Biochemistry, 2002, 41: 7416-7423
    [9] Cheng YF, Zak O, Aisen P. Structure of the human transferrin receptor transferrin complex, Cell, 2004, 116:565-576
    
    
    [10] Moons T, Morgan EH, Transferrin and transferrin receptor function in brain barrier system. Cell Mol Neurobiol, 2000, 20:77-95
    [11] Qian ZM, Liao QK, To Y. Transferrin bound and transferrin receptor free iron uptake by the cultured brain astrocytes. Cell Mol Biol. 2000, 46:541-545
    [12] Enns CA, Suomalainnen HA. Human transferrin receptor expression of the receptor is assigned to chromosome 3. Proc Natl Acad Sci USA, 1982, 79:3241-3245
    [13] Inoue T, Cavanaugh PG, Steck PA. Differences in transferrin response and numbers of transferrin receptors in rat and human mammary carcinoma lines of different metastatic potentials. J Cell Physical, 1993, 156:212-217
    [14] 龙华,曾勇,郑英.转铁蛋白的研究与发展.生物工程进展,2001,21(2):32-35
    [15] Leibold EA, Munro HN. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5-subunit untranslated region of ferritin heavy-subunit and light-subunit mRNAs. Proc Natl Acad Sci USA, 1988, 85:2171-2175
    [16] Basilion JP, Kennedy MC, Beinert H. Overexpression of iron-reponsive element-binding protein and its analytical characterization as the RNA-binding form, devoid of an iron-sulfur cluster. Arch Biochem Biophys, 1994, 311:517-522
    [17] Qian ZM. Nitric Oxide and changes of iron metabolism in exercise. Biol Rev Camb Philos Soc, Nov 2002, 77(4): 529-536.
    [18] 王福安,张学庸,胡家露.生物大分子的内化.北京:科学出版社,1995,106-108
    [19] Miller G. Science, 2002,297(8): 1116-1118
    [20] Qian ZM, Li H,Sun H. Targted drug delivery via the
    
    transferrin receptor-mediated endocytosis pathway. Pharmacol Rev, 2002, 54(4):561-587)
    [21] Harris WR, Chen Y, Wein K. Equilibrium-constants for the binding of indium(Ⅲ) to human serum transferrin. Inorg Res. 1994, 37:3634-3638
    [22] Messori L, Orioli P, Banholzer V, Paris I, Zatta P. Formation of titanium(Ⅳ) transferrin by reaction of human serum apotransferrin with titanium complex. FEBS Lett, 1999, 442:157-161
    [23] Smith CA, Sutherland-Smith AJ, Keppler BK, Kratz F, Baker EN. Binding of rutbenium(Ⅲ) anti-tumor drugs to human laetoferrin probed by high resolution Ⅹ-ray crytallographie structure analyses. J Biol Inorg Chem, 1996, 1:424-443
    [24] Zhang L, Szeto KY, Wong WB, Loh TT, Sadler PJ, Sun H. Interactions of bismuth with human lactoferrin and recognition of the Bi~Ⅲ-lactoferrin complex by intestinal cells. Biochemistry, 2001, 40:13281-13287
    [25] Sun H, Li H, Mason AB, Woodworth RC, Sadler PJ. Competitive binding of bismuth to transferrin and albumin in aqueous solution and in blood plasma. J Biol Chem, 2001, 276:8829-8835
    [26] Sizensky JA, Barahas K, Faulk WP. Chhaeterization of the anti-cancer activity if transferrin-adriamycin conjugates. Am J Reprod Immunal. 1992, 27:163-166
    [27] Singh M, Atwal H, Micetich R. Transferrin directed of adriamycin to human cells. Anticancer Res. 1998, 18:1423-1428
    [28] Lai BT, Gao JP, Lanks KW. Mechanism of action and spectrum of cell lines sensitive to a doxorubicin-transferrin conjugates. Cancer Chemother Pharm. 1998, 41:155-160
    [29] Bejaoui N, Page M, Noel C. Cytotoxicity of transferrin-dauorubin conguates on small cell carcinoma
    
    of the Iung(SCCL) cell line NCI-H69. Anticancer Res. 1991, 11:2211-2213
    [30] Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O, Ogiwara N, Johkura K,Yonermura Y. Intracellular targeting therapy of cisplatin encapsulated transferrin polyethylene glyco liposome on peritoneal dissemination of gastric cancer. Int J Cancer, 2002, 99:130-137
    [31] Tanska T, Fujishima Y, Kaneo Y. Receptor mediated endocytosis and cytotoxicity of transferrin-mitomycin C conjugate in HepG2 cell and primary cultured rat hepatocyte. Biol Pharm Bull, 2001, 24:268-273
    [32] Liao WP, Dehaven J, Chen JX, Rojanasakul Y, Lamm DL, Ma JKH. Liposomal delivery of alpha-interferon to murin bladder tumor cells via transferrin receptor-mediated endocytosis. Drug Deliv, 1998, 5:111-118
    [33] Laske DW, Akbasak A, Youle RJ, Oldfield EH. Efficacy of direct intractumor therapy with targeted protein toxins for solid human glimomas in nude mice. J Neurosurg, 1994, 80:520-526
    [34] Laske DW, Youle RJ, Oldfield EH. Tumor regression with regional distribution of the targeted toxin Tf-CRM107 in patients with maligmant brain tumors. Nat Med, 1997,3:1362-1368
    [35] Hagibara H, Walbridge S, Olson AW, Oldfield EH, Youle RJ. Vascular protection by chloroquine during brain tumor therapy with Tf-CRM107. Cancer Res. 2000, 60:230-234
    [36] Schnier BS, Groner B. Retroviral targeted delivery. Gene Ther, 1996, 3:1069-1073
    [37] Yang Y, Nunes FA, Berencsi K, Gonczol E, Wilson JM. Cellular-immunity to viral-antigens limits El-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA,
    
    1994, 91:4407-4411
    [38] 查锡良,药立波.医学分子生物学.北京:人民卫生出版社,2004:224
    [39] Kircheis R, Wightman L, Kursa M, Osterman E, Wagner E. Tumor targeted gene delivery: an attractive strategy to use highly actuve effector molecules in cancer treatment. Gene Ther, 2002,9:731-735.
    [40] Xu L, Pirollo KF, Tang WH, Ralt A, Chang EH. Transferrin-liposome mediated systemetic p53 gene therapy in combination with radiation in regression of huamn head and neck cancer xenografts. Hum gene ther, 1999,10:2941-2952
    [41] Xu L, Pirollo KF, Chang EH. Transferrin-liposome mediated p53 sensitization of squamous cell carcinoma of the head and neck to radiation in vivo. Hum gene ther, 1997, 8:467-475
    [42] Seki M, Iwakawa J, Chen H, Cheng PW, p53 and PTEN/MMAC1/TEP1 gene therapy of human prostate PC3 carcinomo xenograft, using transferrin facilitated lipofection gene delivery strategy. Hum gene ther, 2002, 13:761-773
    [43] Kireheis R, Wightman L, Schreiber A, Robitza B, Rossler V, Kursa M, Wagner E. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application.Gene Ther, 2001,8(1): 28-40.
    [44] Yang DF, Shen GX, Tian DY.The construction of t ransferrin receptor- mediated HSV-TK gene transfer system and its effect on human hepatocellular carcinoma cells in vitro.Zhonghua Gan Zang Bing Za Zhi, February 20, 2004; 12(2): 88-90.
    [45] Wilson CB and Berger MS. The Gliomas.USA: W.B. Saunders company, 1999. 115-123
    [46] Friden PM, Walus LR, Watson P. Blood-brain barrier
    
    penetration and in vivo activity of an NGF conjugate. Science, 1993, 259:373-377
    [47] Jefferies WA, Brandon MR, Hunt SV, William AF, Gatter KG, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature(Lond), 1984, 312:162-163
    [48] Wu D, S BW, Vinters HV, Pardridge WM. Pharmacokinetics and brain uptake of biotinylated basic fibbroblast growth factor conjugated to a blood-brain barrier drug delivery system. J Drug Target, 2002, 10:239-245
    [49] Pardridge WM, Buciak JL, Friden P. Selective transport of an anti-transferrin receptor antibidy through the blood-brain-barrier in vivo. J Pharmacol Exp Ther, 1991,259:66-70
    [50] Li H, Qian ZM.Transferrin/transferrin receptor-mediated drug delivery.Med Res Rev. 2002, 22(3): 225-250.
    [51] Wu D, S BW, Pardridge WM. Neuroprotection nonivasive neurotrophin delivery to the brain. Proc Natl Acad Sci USA, 1999, 96:6254-6259
    [52] Zhang Y, Pardridge WM. Conjugation of brain-derived neurotrophicfactor to a brain-blood-barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neutrophin. Brain Res, 2001, 889:49-56
    [53] Xia HB, Anderson B, Mao QW, Davidson BL. Recombinant human adenovirus:targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J Virology, 2000, 74(23):11359-11366
    [54] Shusta E. Vascular Proteomics and Subtractive Antibody Expression Cloning. Mol Cell Proteomics, 2002;1: 75-82.
    
    
    [55] Li H, Sun H, Qian ZM. The role of the transferrin-transferrin-receptor system in drug delivery and targeting. Trends Pharmacol Sci, 2002, 23(5): 206-209.
    [56] Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228:1315-1317
    [57] 杨辉.人血管形成素基因克隆、表达、纯化及其拮抗剂的初步研究.博士研究论文,1999,中国,西安
    [58] 田波,李传昭,孙仑泉,王学.分子进化工程,北京:科学出版社,1999:8-12
    [59] 贾盘兴.噬菌体分子生物学.北京:科学出版社,2000:67-87
    [60] Clackson T, Wells J. In vitro selection from protein and peptide libraries. Trands Biotechnol, 1994, 12: 173
    [61] Perham RN. Engineering a peptide epitope display system on filametous bacteriophage. FEMS Mierobiol Rev, 1995, 17:25-31
    [62] 沈倍奋.分子文库.北京:科学出版社,2001:40-47
    [63] Rodi DJ, Makowski L. Phage-display technology-finding a needle in a vast molecular haystack. Curr Opin Biotechnol, 1999, 10:87-93
    [64] 高学良,钱曼,赵群飞.噬菌体展示技术的发展及应用.生命的化学,2001,21(5):432-434
    [65] 田波,李传昭,孙仑泉,王学.分子进化工程,北京:科学出版社,1999:42-54
    [66] Sidhu SS. Phage display in pharmaceceutical biotechnology. Current Opinion in Biotechnology, 2000, 11:610-616
    [67] Jespers LS, Messens JH, De KA, Eeekhout D, Van DBI, Gansemans YG, Lauwereys MJ, Vlasuk GP, Stanssens PE. Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene Ⅵ. Bio/Technology,
    
    1995, 13:378-382
    [68] Gao C, Mao S, Lo CH, Wirsching P, Lerner RA, Janda KD. Making artificial antibodies: a format for phage display of combinatorial hereodimeric arrays. Proc Natl Acad Sci USA, 1999, 96:6025-6030
    [69] Fuh G, Pisabarro MT, Li Y, Quan C, Lasky LA, Sidhu SS. Analysis of PDZ domain-ligand interaetions using carboxyl-terminal phage display. J Biol Chem, 2000, 275: 21486-21491
    [70] 沈倍奋.分子文库.北京:科学出版社,2001:34
    [71] 陈鸣,府伟灵,俞丽丽,张雪.鼠脂多糖单链噬菌体抗体库的构建.第三军医大学学报,2001,23(4):407-409
    [72] 田学军,董志伟,寿成超.人源噬菌体抗体库VEGF抗体的筛选及活性鉴定.中华医学杂志,2000,80(8):567-570
    [73] Pasqualini R, Koivunen E, Puoslahti E. A peptide isolation from phage display libraries id a structural and fuctional mimic of an RGD-binding site on itergrins. Jcall Biol, 1995, 130:1189-1196
    [74] Wrighton NC, Farrel FX, Chang R. Small peptides as potent mimetics of the protein hormone erythropoietin. Science, 1996, 273:458-463
    [75] Ferrer M, Harrison SC. Peptide ligands to human immunodeficiency virus type 1 gp120 identification from phage display libraries. J Virol, 1999, 73:5795-5820
    [76] Sparks AB, Rider JE, Hoffman NG, Fowlkes DM, Quilliam LA, Kay BK. Distinct ligand preference of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLC γ, Crk and Grb2. Proc Natl Aead Sci USA, 1996, 93:1540-1544
    [77] 李华,朱锡华.噬菌体随机肽库的应用.免疫学杂志,2000,16(5):387-389
    [78] Dennis MS, Eigenbrot C, Skelton NJ, Ultaeh MH,
    
    Santell L, Dwyer MA, O'Connell MP, Lazarus RA. Peptide exosite inhibitors of factorⅦα as anticoagulants. Nature, 2000, 404:465-470
    [79] Isalan M, Chool Y. Engineered zinc finger proteins that respond to DNA modification by HaeII and HhaI methytransferase enzymes. J Mol Biol, 2000, 295:471-477
    [80] Lowman HB, Chen YM, Skelton NJ, Mortensen DL, Tomlinson EE, Sadick MD, Robinson ICAF, Clark RG. Molecular mimica of insulin-like growth factor 1(IGF-1) for inhibiting IGF-1: IGF-binding protein interactions. Biochemistry, 1998, 37:8870-8878
    [81] Pasqulini, E, Organ targeting in vivo using phage display peptide libraries. Nature, 1996,380 (6572): 364-366
    [82] Rajotte D,Arap W, etal.Molecular heterogenerty of the vascular endothelium revealed by in vivo phage display. J Clin Invest,1998,102(2):430-437.
    [83] http://www.ncbi.nlm.nih.gov/BLAST/
    [84] 黄强.胶质瘤.北京:中国科学技术出版社,2000,84
    [85] 陶箭,胡宝玉,童善庆.转铁蛋白受体介导的肿瘤坏死因子α基因转移的抗肿瘤效果,中华微生物和免疫学杂志,2001:21(1):84-86
    [86] 卢圣栋.现代分子生物学实验指南,第二版,北京:中国协和医科大学出版社,1999.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700