大鼠胚胎前脑神经干细胞培养及植入脑挫伤灶的形态学观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑挫伤(cerebral contusion)常常引起神经细胞大量死亡和严重的神经功能障碍。一般说来,中枢神经系统缺乏再生能力。研究认为治疗脑挫伤的关键是:移植外源性细胞来补充或替代损失的神经细胞;促进残存的神经细胞存活及轴突生长;重建功能性突触。神经干细胞(neural stem cells, NSCs)可以在受体中枢神经系统内补充或替代损失的细胞;参与神经结构的重建;改善损伤局部的微环境;促进神经再生。因此,NSCs移植治疗脑挫伤具有良好的应用前景。在本研究中,我们探讨体外分离大鼠胚胎前脑NSCs的方法,原代和传代培养方法和NSCs的鉴定;观察NSCs培养特性、分化机理及诱导条件,进一步探讨将NSCs植入大鼠脑挫伤灶周边区成活、迁移和分化情况。
     1.大鼠胚胎前脑神经干细胞体外培养分化的研究
     实验于2008年11月至2009年10月在河北北方学院实验中心完成。清洁级,E 16d的Wistar孕鼠(由中国医学科学院实验动物研究所提供)在无菌条件下取其胚胎,分离出前脑,制备单细胞悬液,以1×106·ml-1和1×108·ml-1分别接种于含N2的DMEM/F12培养瓶中,加入终浓度为20ng·ml-1表皮细胞生长因子(epidermal growth factor, EGF)和10ng·ml-1碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)刺激其克隆生长。诱导分化实验分为悬浮培养实验和爬片培养实验。a悬浮培养实验分为三组:体积分数10%胎牛血清(fetal bovine serum,FBS) +20ng·ml-1 EGF +10ng·ml-1 bFGF,10%FBS,20%FBS,在上述诱导条件下刺激其分化。b爬片培养实验分为三组:多聚赖氨酸铺板组、明胶铺板组和无铺板组,采用体积分数为20% FBS刺激分化。研究采用免疫细胞化学和间接免疫细胞荧光染色法检测NSCs巢蛋白(nestin)、胶质纤维酸性蛋白(glial fibrillary acid protein, GFAP)、神经元特异性烯醇化酶(neuron-specific enolase, NSE)和微管相关蛋白2(microtubule-associated protein 2, MAP-2)。结果成功从胎鼠前脑分离出神经干细胞,巢蛋白表达阳性。a悬浮培养实验在不同诱导条件下,20%FBS组促分化作用略强于10% FBS组(P>0.05)。10% FBS组促分化作用强于10%FBS +20ng·ml-1 EGF +10ng·ml-1 bFGF组(P<0.05)。NSCs分化为神经元及神经胶质细胞。b爬片培养实验中,多聚赖氨酸铺板组和明胶铺板组贴壁后分化为神经元及神经胶质细胞的能力强于无铺板组(P<0.01)。多聚赖氨酸铺板组略强于明胶铺板组(P>0.05)。神经谱系标记物中的GFAP,NSE和MAP-2免疫细胞化学及间接免疫细胞荧光染色均阳性。结论:大鼠胚胎前脑NSCs可以通过体外培养获得,且具有增殖能力和多向分化潜能。20%血清组NSCs分化显著,10%FBS+EGF +bFGF组NSCs分化不显著。多聚赖氨酸和明胶作为细胞贴壁支持物可以提高分化细胞数量,而且多为星形胶质细胞。
     2.神经干细胞在大鼠脑挫伤灶周边区成活和迁移
     本研究利用体外无血清培养技术,加EGF和bFGF刺激大鼠胚胎源性前脑NSCs克隆增殖。传1代后,NSCs在培养过程中加入终浓度为6μg·ml-1 5-溴脱氧尿嘧啶核苷(5-bromodeoxyuridine, BrdU)。标记BrdU的NSCs,用免疫细胞化学和间接免疫细胞荧光染色检测其增殖能力。研究采用改进的Fenney’s自由落体脑挫伤模型,于致伤1d后,将NSCs用立体定位法移植到鼠脑挫伤灶边缘皮层内,免疫组化及免疫荧光双染法观察移植后1,7,14,21d NSCs在挫伤灶周边成活,迁移和分化情况。结果,移植后1,7,14,21d,损伤灶BrdU阳性细胞数目逐渐减少;BrdU阳性细胞在损伤灶周边散在分布,并向损伤皮层下迁移。损伤后灶区GFAP表达上调,并在时间上具有一定规律性。结论:本研究结果显示,大鼠胚胎前脑获得的NSCs在异体移植后,能够在受体大鼠脑损伤灶周边区存活和迁移;形态学上,其显示出与脑组织整合的特点。
The death of a large quantities of cells and the serious neuraldysfunction syndrome are usually caused by the cerebral contusion.Generally speaking, the central nervous system lacks the ability ofregeneration. The study concludes that the key to treatment of braincontusion is to transplant the exogenous cells for supplying or replacingloss of the nerve cells inorder to promote the survival of the nerve cells andthe growth of axons and reconstruct the functional synapse. Thetransplantation of neural stem cells (NSCs) has good application prospectsto treat brain contusion. In this study, we investigated the methods ofisolating the NSCs of the fetal rats forebrain in vitro, the methods inprimary and subculture cultivation and the identification of the NSCs. TheNSCs characteristics, the mechanisms of differentiation and the conditionsof induction were observed. Furthermove, we explored survival, migrationand differentiation of NSCs transplanted into rat cerebral contusion focus.
     Part One: A study of cultivation and differentiation of fetal ratsforebrain NSCs in vitro
     The experiment was completed at Experimental Center of Hebei NorthUniversity from November 2008 to October 2009. Cleanliness level,embryonic 16d and pregnant Wistar rats were provided by the AnimalLaboratory of the Medical Sciences Institute of the Chinese Academy.Under aseptic conditions, we obtained fetal rats. NSCs were isolated fromfetal rats forebrain to prepare single cell suspension. The cell density of 1×106·ml-1 and 1×108·ml-1 was inoculated in culture bottle containing theDMEM/F12 medium and N2 additives, with a final concentration of20ng·ml-1 epidermal growth factor (EGF) and 10ng·ml-1 basic fibroblastgrowth factor (bFGF) to stimulate clonal growth. The inducingdifferentiation experiment included two parts. A. The suspensioncultivation test was divided into three groups: the volume fraction of 10%fetal bovine serum (FBS) +20ng·ml-1 EGF +10ng·ml-1 bFGF, 10%FBS,20%FBS. In these conditions, NSCs were induced differentiation. B. Theadherent cultivation test was divided into three groups: deckingpoly-L-lysine group, decking gelatin group and non-decking group. NSCswere stimulated differentiation with the volume fraction of 20% FBS.Nestin, glial fibrillary acid protein (GFAP), neuron-specific enolase (NSE)and microtubule-associated protein 2 (MAP-2) were detected withimmunocytochemistry and indirect immunofluorescence staining. As aresult, NSCs were successfully isolated from fetal rats forebrain, and thenand showed nestin-positive antigen. In inducing conditions of thesuspension cultivation test, the promoting differentiation effect of 20% FBSgroup was slightly stronger than 10% FBS group (P>0.05); the promotingdifferentiation effect of 10% FBS group was stronger than 10% FBS+20ng·ml-1 EGF +10ng·ml-1 bFGF group (P<0.05). NSCs weredifferentiated into neurons and glial cells. In the adherent cultivation test,the anchorage-dependent ability of decking poly-L-lysine group anddecking gelatin group to differentiate into neurons and glial cells wasstronger than not-decking group (P<0.01). Decking poly-L-lysine groupwas a little stronger than decking gelatin group (P>0.05). GFAP, NSE andMAP-2 were detected positive by immunocytochemistry and indirectimmunofluorescence staining.
     Conclusion:NSCs were rich in the fetal rats forebrain, and they couldbe obtained in vitro cultivation. They had the proliferative capacity and theproficiency of multi-differentiation. At the same time, the effect of promoting differentiation was very strong in 20% FBS group. It was notsignificant in 10% FBS + EGF + bFGF group. In the inductingdifferentiation of NSCs, the poly-L-lysine and the gelatin, as the supportivematerial of adherent cultivation, played a role in raising the quantity of celldifferentiation, and NSCs were mostly differentiated into astrocytes.
     Part Two: The survival, migration and differentiation of NSCs aroundthe rat cerebral contusion focus region.
     The study used the serum-free cultivation technology, plus EGF andbFGF, to stimulate the growth and the proliferation of embryo-derivedNSCs. They were cultivated two passage in vitro, marked by 6μg·ml-15-bromodeoxyuridine (BrdU) and detected by immunocytochemistry andindirect immunofluorescence staining, to confirm the ability ofproliferation. Then we produced an improved model Fenney's free-fallcerebral contusion by Wistar rats. After transplanted 1d, NSCs weretransplanted into the edge of the rat cerebral contusion focus cortex bystereotactic localization. Transplanted NSCs were detected byimmunohistochemical and immunofluorescence double staining method,and the survival, migration and differentiation of them had been observedaround the rat cerebral contusion focus region in the post-transplant 1d, 7d,14d, 21d. Results: The number of BrdU-positive cells around the ratcerebral contusion focus region reduced gradually. BrdU-positive cellsscattered around the cerebral contusion focus and migrated to thesubcortical region. Besides, GFAP-positive cells increased with someregularity around cerebral contusion focus region after injury.
     Conclusion: The results of this study suggest that forebrain NSCs afterallogenic transplantation can survive and migrate around the rat's cerebralcontusion focus region, and they shows the characteristics ofmorphological integration with the brain.
引文
1 Reynolds BA, Weiss S. Generation of neurons and astrocytes fromisolated cells of the adult mammalian central nervous system[J].Science, 1992, 255(5052): 1707-1710.
    2 Garavaglia A, Moiana A, Camnasio S, et al. Adaptation of NS cellsgrowth and differentiation to high-throughput screening-compatibleplates[J]. BMC Neurosci, 2010, 11: 7. doi: 10.1186/1471-2202-11-7.
    3 Zhang XQ, Zhang SC. Differentiation of neural precursors anddopaminergic neurons from human embryonic stem cells[J]. MethodsMol Biol, 2010, 584: 355-366. doi: 10.1007/978-1-60761-369-5.
    4 Hwang DH, Kim BG, Kim EJ, et al. Transplantation of human neuralstem cells transduced with Olig2 transcription factor improveslocomotor recovery and enhances myelination in the white matter of ratspinal cord following contusive injury[J]. BMC Neurosci, 2009, 10:117.doi: 10.1186/1471-2202-10-117.
    5 Bacigaluppi M, Pluchino S, Martino G, et al. Neural stem/precursorcells for the treatment of ischemic stroke[J]. J Neurol Sci, 2008,265(1-2): 73-77.
    6 Takagi N. Pathology and strategies for the treatment of ischemic braininjury[J].Yakugaku Zasshi, 2009, 129(10): 1215-1219.
    7 Nakayama D, Matsuyama T, Ishibashi-Ueda H, et al. Injury-inducedneural stem/ progenitor cells in post-stroke human cerebral cortex[J].Eur J Neurosci, 2010, 31(1): 90-98.
    8 Kuhb HG, Winkler J, Kempermann G, et al. Epidermal growth factorand fibroblast growth factor-2 have different effects on neuralprogenitors in the adult rat brain[J]. J Neurosci, 1997, 17: 5820-5829.
    9 Nieman BJ, Shyu JY, Rodriguez JJ, et al. In vivo MRI of neural cellmigration dynamics in the mouse brain[J]. Neuroimage, 2010, 50(2):456-464.
    10 Pollard SM, Conti L, Sun Y, et al. Adherent neural stem (NS) cells fromfetal and adult forebrain[J]. Cereb Cortex, 2006,16(1):i112-i120.doi:10.1093/cercor/bhj167.
    11 Svendsen CN, Fawcett JW, Bentlage C. Increased survival of rat EGFgenerated CNS precursor cells or cells using B27 supplementedmedium[J]. Exp Brain Res, 1995, 102(3): 407-414.
    12 Yang LY, Wang CY, Zheng JK, et al. Long-term culture anddifferentiation of human glioma stem cells[J]. Sichuan Da Xue XueBaoYi Xue Ban, 2006, 37(1): 141-144.
    13 Kilpatrick TJ, Bartlett PF. Cloned multipotential precursors from themouse cerebrum require FGF-2, whereas glial restricted precursors arestimulated with either FGF-2 or EGF[J]. Neurosci, 1995, 15(5 Pt 1):3653-3661.
    14 Ciccolini F, Svendsen CN. Fibroblast growth factor 2 (FGF-2)promotes acquisition of epidermal growth factor(EGF) responsivenessin mouse striatal precursor cells: identification of neural precursorsresponding to both EGF and FGF-2[J]. Neurosci, 1998, 18(19):7869-7880.
    15 Ciccolini F. Identification of two distinct types of multipotent neuralprecursors that appear sequentially during CNS development[J]. MolCell Neurosci, 2001, 17(5): 895.
    16 Dang L, Tropepe V. Neural induction and neural stem celldevelopment[J]. Regen Med, 2006, 1(5): 635-652.
    17 Coura GS, Garcez RC, de Aguiar CB, et al. Human periodontalligament: a niche of neural crest stem cells[J]. J Periodontal Res, 2008,43(5): 531-536.
    18 Kuleshova LL, Tan FC, Magalh?es R, et al. Effective cryopreservationof neural stem or progenitor cells without serum or proteins byvitrification[J]. Cell Transplant, 2009, 18(2): 135-144.
    19 Kirschenbaum B, Nedergoard M, Preuss A, et a1. In vitro neuronalproduction and differentiation by precursor cells deriver from the adulthuman forebrain[J]. Cereb Cortex, 1994, 4(6): 576-589.
    20 Radtke C, Schmitz B, Spies M, et a1. Peripheral glial celldifferentiation from neurospheres derived from adipose mesenchymalstemcells[J]. Int J Dev Neurosci, 2009, 27(8): 817-823.
    21 Cui YF, Hargus G, Xu JC, et a1. Embryonic stem cell-derived L1overexpressing neural aggregates enhance recovery in Parkinsonianmice[J]. Brain. 2010, 133(Pt 1): 189-204.
    22 Lobo MV, Alonso FJ, Redondo C, et al. Cellular characterization ofepidermal growth factor-expanded free-floating neurospheres[J]. JHistochemCytochem, 2003, 51(1): 89-103.
    23 Seki T. Microenvironmental elements supporting adult hippocampalneurogenesis [J].Anat Sci Int, 2003, 78(2): 69-78.
    24 Seidenbecher CI, Smalla KH, Fischer N, et al. Brevican isoformsassociate with neural membranes[J]. J Neurochem, 2002, 83(3):738-746.
    25 Garzón-Muvdi T, Qui?ones-Hinojosa A. Neural stem cell niches andhoming: recruitment and integration into functional tissues[J]. ILAR J,2009, 51(1): 3-23.
    26 Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express anew class of intermediate filament protein[J]. Cell, 1990, 60(4):585-595.
    27 Delarasse C, Gonnord P, Galante M, et al. Neural progenitor cell deathis induced by extracellular ATP via ligation of P2X7 receptor[J]. JNeurochem, 2009, 109(3): 846-857.
    28 Aschuer M, Sonnewald U, Tan KH. A strocyte modulation ofneurotoxic injury[J]. Brain Patho, 2002, 12(4): 475-481.
    29 Swanson RA, Ying W, Kauppinen TM. A strocyte influences onischemic neuronal death[J]. Curr Mol Med, 2004, 4(2): 193-205.
    30 Koob AO, Paulino AD, Masliah E. GFAP reactivity, apolipoprotein Eredistribution and cholesterol reduction in human astrocytes treatedwith alpha-synuclein[J]. Neurosci Lett, 2010, 469(1): 11-14.
    31 Nagai M, Re DB, Nagata T, et al. A strocytes expressing ALS-linkedmutated SOD 1 releases factors selectively toxic to motor neurons[J].Nat Neurosci, 2007, 10(5): 625-622.
    32 Giaume C, Kirchhoff F, Matute C, et al. Glia the fulcrun of braindiseases[J]. Cell Death Differ, 2007, 14(7): 1324-1335.
    33 Tejina E, Zhao BQ, Tsuji K, et al. A strocytic induction of matrixmetallop roteinase-9 and edema in brain hemorrhage[J]. J Cereb BloodFlow Metah, 2007, 27(3): 460-468.
    34 Maragakis NJ, Rothstein JD. Mechanisms of Disease astrocytes inneurodegenerative disease[J]. Nat Clin Pract Neurol, 2006, 2(12):679-681.
    35 Arnold LJ Jr, Dagan A, Gutheil J, et al. Antineoplastic activity ofpoly(L-lysine) with some ascites tumor cells[J]. Proc Natl Acad SciUSA, 1979, 76(7): 3246-3250.
    1 Jaffee MS, Meyer KS. Abrief overview of traumatic brain injury (TBI)and post-traumatic stress disorder (PTSD) within the Department ofDefense[J]. Clin Neuropsychol, 2009, 23(8): 1291-1298.
    2 Hoffman SW, Harrison C. The interaction between psychological healthand traumatic brain injury: a neuroscience perspective[J]. ClinNeuropsychol, 2009, 23(8): 1400-1415.
    3 Bacigaluppi M, Pluchino S, Martino G, et al. Neural stem/precursorcells for the treatment of ischemic stroke[J]. J Neurol Sci, 2008,265(1-2): 73-77.
    4 Takagi N. Pathology and strategies for the treatment of ischemic braininjury[J].Yakugaku Zasshi, 2009, 129(10): 1215-1219.
    5 Bo AH, Xue GP, Zhang H, et al. Quick response of genes and c-jun andc-fos after brain injury in rats[J]. J Chin J Clini Rehabi, 2004, 8(25):5438-5439.
    6 Seidenbecher CI, Smalla KH, Fischer N, et al. Brevican isoformsassociate with neural membranes[J]. J Neurochem, 2002, 83(3):738-746.
    7 Feeney DM, Boyeson MG, Linn RT, et al. Responses to cortical injury:I. Me thodology and local effects of contusions in the rat[J]. Brain Res,1981, 211(1): 67-67.
    8王清华,徐如祥,李良平.大鼠不同程度脑损伤模型的建立[J].创伤外科杂志, 2000, 2(1): 41-44,22.
    9吴旭,王保捷,张国华,等.大鼠脑损伤分级自由落体打击模型的建立[J].中国法医学杂志, 2005, 20(1): 1-3.
    10 Wallenquist U, Br?nnvall K, Clausen F, et al. Grafted neuralprogenitors migrate and form neurons after experimental traumaticbrain injury[J]. Restor Neurol Neurosci, 2009, 27(4): 323-334.
    11 Mine Y, Hayashi T, Yamada M, et al. Environmental cue-dependentdopaminergic neuronal differentiation and functional effect of graftedneuroepithelial stem cells in parkinsonian brain[J]. Neurosurgery, 2009,65(4): 741-753; discussion 753.
    12 Demeter K, Herberth B, Duda E, et al. Fate of cloned embryonicneuroectodermal cells implanted into the adult, newborn and embryonicforebrain[J]. Exp Neurol, 2004, 188(2): 254-267.
    13 Prajerova I, Honsa P, Chvatal A, et al. Neural Stem/Progenitor CellsDerived from the Embryonic Dorsal Telencephalon of D6/GFP MiceDifferentiate Primarily into Neurons After Transplantation into aCortical Lesion[J]. E Cell Mol Neurobiol, 2010, 30(2): 199-218.
    14 Seminate C, Polentes J, Ellman D, et al. The postischemic environmentdifferentially impacts teratoma or tumor formation after transplantationof human embryonic stem cell-derived neural progenitors[J]. Stroke,2010, 41(1): 153-159.
    15 Hicks AU, Hewlett K, Windle V, et al. Enriched environment enhancestransplanted subventricular zone stem cell migration and functionalrecovery after stroke[J]. Euroscience, 2007, 146(1): 31-40.
    16 Komitova M, Mattsson B, Johansson BB, et al. Enriched environmentincreases neural stem/progenitor cell proliferation and neurogenesis inthe subventricular zone of stroke-lesioned adult rats[J]. Stroke, 2005,36(6): 1278-1282.
    17 Stein DG. SW Hoffman. Concepts of CNS plasticity in the context ofbrain damage and repair[J]. J Head Trauma Rehabi1, 2003, 18(4):317-341.
    18 Praag HV, Schinder AF, Christie BR, et a1. Functional neurogenesis inthe adult hippocampus[J]. Nature, 2002, 415(6875): 1030-1034.
    19 Auerbach JM, Eiden MV, McKay RD. Transplanted CNS stem cellsform functional synapses in vivo[J]. Eur J Neurosci, 2000, 12(5):1696-1704.
    20 Ridet JL, Malhotra SK, Privat A, et al. Reactive astrocytes: cellular andmolecular cuesto biological function[J].TINS, 1997, 20(12): 570-577.
    21莫永炎,陈援,周玫.星形神经胶质细胞条件培养液对活性氧致的神经元毒的保护作用[J].细胞生物学杂志, 2000, 22(1): 39-42.
    22 Cornet A, Bettelli E, Oukka M, et al. Role of astrocytes in antigenpresentation and naive T2 cell activation[J]. J Neuroimmunol, 2000,106(1): 69-77.
    23 Raivich G, Bohatschek M, Kloss CU, et al. Neuroglial activationrepertoire in the injured brain: graded response, molecular mechanismsand cues to physiological function[J]. Brain Res Rev, 1999, 30(1):77-105.
    24 Bovolenta P, Wandosell F, Nieto GM, et al. CNS glial scar tissue: asource of molecules which inhibit central neurite out growth[J]. ProBrain Res, 1992, 94: 367-379.
    25蔡文琴.大鼠中枢神经系统大胶质细胞对神经元轴突生长影响的离体实验观察[J].第三军医大学学报, 1999, 21(9): 630-636.
    26 Sugawara T, Lewen A, Noshita N, et al. Efects of global ischemiaduration on neuronal, astroglial, oligdendroglial, and microglialreactions in the vulnerable hippocamoal CA1 subregion in rats[J].Neurotrauma, 2002, 19(1): 85-94.
    27 Okimura Y, Tanno H, Fududa K, et al. Reactive astrocytes in acutestage after experimental brain injury: relationship to extavasatedplasama protein and expression of heat shock protein [J]. Neurotrauma,1996, 13(7): 385-393.
    28 Cancilla PA, Bready J, Berliner J, et al. Expression of mRNA for glialfibrillary acidic protein after experimental cerebral injury. JNeuropathol Exp Neurol, 1992, 51(5): 560-565.
    29 Goldman SA, Luskin MB. Strategies utilized by migrating neurons ofthe postnatal vertebrate forebrain[J]. Trends Neurosci, 1998, 21(3):107-114.
    30 Lois C, Alvarez-Buylla A. Long-distance neuronal migration in theadult mammalian brain[J]. Science, 1994, 264(5162): 1145-1148.
    31 Fricker RA, Lundberg C, Dunnett SB. Neural transplantation: restoringcomplex circuitry in the striatum[J]. Restor Neurol Neurosci, 2001,19(1-2): 119-138.
    32 Jacobs WB, Fehlings MC. The molecular basis of neuralregeneration[J]. Neurosurgery, 2003, 53 (4): 943-948.
    33 Chen Y, Swanson RA. Astrocytes and brain injury[J]. J Cereb BloodFlow Metab, 2003, 23(2): 137-149.
    34 Hicks AU, Lappalainen RS, Narkilahti S, et al. Transplantation ofhuman embryonic stem cell-derived neural precursor cells and enrichedenvironment after cortical stroke in rats: cell survival and functionalrecovery[J]. Eur J Neurosci, 2009, 29(3): 562-574.
    35 Darsalia V, Kallur T, Kokaia Z. Survival, migration and neuronaldifferentiation of human fetal striatal and cortical neural stem cellsgrafted in stroke-damaged rat striatum[J]. Eur J Neurosci, 2007, 26(3):605-614.
    36 Pluchino S, Gritti A, Blezer E, et al. Human neural stem cellsameliorate autoimmune encephalomyelitis in non-human primates[J].Ann Neurol, 2009, 66(3): 343-354.
    37 Hara K, Yasuhara T, Maki M, et al. Neural progenitor NT2N cell linesfrom teratocarcinoma for transplantation therapy in stroke[J]. ProgNeurobiol, 2008, 85(3): 318-334.
    1 Mc KR. Stem cells in the central nervous system[J]. Science, 1997, 276(5309): 66-71.
    2 Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsivestriatal embryonic progenitor cell produces neurons and astrocytes[J].Neurosci, 1992, 12(11): 4565-4574.
    3 Svendsen CN, Smith AG. New prospects for human stem-cell therapyin the nervous system[J].Trends Neurosci, 1999, 22(8): 357-364.
    4 Gage FH. Neurogenesis in the adult brain [J]. Neurosci 2002, 22(3):612-613.
    5 Gritti A, Bonfanti L, Doetsch F, et al. Multipotent neural stem cellsreside into the rostral extension and olfactory bulb of adult rodents [J].Neurosci, 2002, 22(2): 437-445.
    6 Reynolds, Weiss S. Generation of neurons and astrocytes from isolatedcells of the adult mammalian central nervous system [J]. Science, 1992,255(5052): 1707-1710.
    7 Virginie Sottile, Meng Li, Paul J. Scotting Stem cell marker expressionin the Bergmann glia population of the adult mouse brain[J]. Brain Res,2006, 1099(1): 8-17.
    8计菁,罗敏,冯霞.大鼠胚胎视网膜中神经干细胞的体外培养与鉴定[J].眼科新进展, 2008, 28(6): 429-431.
    9 Maslov AY, Barone TA, Plunkett RJ, et al. Neural stem cell detection,characterization, and age-related changes in the subventricular zone ofmice [J]. Neurosci, 2004, 24(7): 1726-1733.
    10周盛轩,诸葛启钏,叶盛,等.神经干细胞在胚胎脑皮质发育过程中的变化[J].医学研究杂志, 2008, 37(5): 19-22.
    11 AbramovaN, Charniga C, Goderie SK, et al. Stage-specific changes ingene expression in acutely isolated mouse CNS progenitor cells[J]. DevBiol, 2005, 283(2): 269-281.
    12 Panchision DM, McKayRD. The control of neural stem cells bymorphogenic signals [J]. Curr Opin Genet Dev, 2002, 12(4): 478-487.
    13 Qian X, Shen Q, Goderie SK, et al. Timing of CNS cell generation: aprogrammed sequence of neuron and glial cell production fromisolatedmurine cortical stemcells[J]. Neuron, 2000, 28(1): 69-80.
    14王晋丽,王春芳,李鹏飞,等. TrkA在不同发育阶段大鼠脑源性神经干细胞中表达的变化[J].中国组织化学与细胞化学杂志, 2008,17(3): 252-255.
    15 Ross SE, Greenberg ME, Stiles CD. Basic Helix-Loop-Helix factors incortical development [J]. Neuron, 2003, 39 (1): 13-25.
    16 Vescovi AL, Snyder EY. Establishment and properties of neural stemcell clones: plasticity in vitro and in vivo [J]. Brain Pathol, 1999, 9(3):569-598.
    17 Duggal N, Iskander S, Hammond RR. Nestin expression in corticaldysplasia [J]. Neurosurg, 2001, 95(3): 459-465.
    18郑佳坤,杨立业,惠国桢.人类神经干细胞的长期培养和传代[J].中山医科大学学报, 2002, 23(6): 430-432, 454.
    19 Kaneko Y, Sakakibara S, Imai T, et al. Musashi:An evolutionallyconserved marker for CNS progenitor cells including neural stemcells[J]. Dev Neurosci, 2000, 22(1-2): 139.
    20张建平,段晓燕,周泽渊,等.颌突外胚间充质干细胞(EMSCs)的体外分离及鉴定[J].中国生物工程杂志, 2005, 25(5): 26-31.
    21 Riaz SS, Theofilopoulos S, Jauniaux E, et al. The differentiationpotential of human fetal neuronal progenitor cells in vitro [J].Developmental Brain Research, 2004, 153(1): 39-51.
    22 Yi SH, Jo AY, Park CH, et al. Mash1 and Neurogenin 2 EnhanceSurvival and Differentiation of Neural Precursor Cells AfterTransplantation to Rat Brains via Distinct Modes of Action[J].MolecularTherapy, 2008, 16(11): 1873–1882.
    23 Roybon L, Deierborg T, Brundin P, et al. Involvement of Ngn2,Tbr andNeuroD proteins during postnatal olfactory bulb neurogenesis[J]. Eur JNeurosci, 2009, 29(2): 231-243.
    24 Gao F, Zhang Q, Zheng MH, et al. Transcription factor RBP-J-mediatedsignaling represses the differentiation of neural stem cells intointermediate neural progenitors[E]. Molecular and CellularNeuroscience, 2009, 40(4): 442-450.
    25 Kusumoto K, Parton A, Barnes D. Mitogen limitation and bonemorphogenetic protein-4 promote neurogenesis in SFME cells, anEGF-dependent neural stem cell line[J]. In Vitro Cellular &Developmental Biology-Animal, 2009, 45(1-2): 55-61.
    26 Hermanson O, Jepsen K, Rosenfeld MG. N-CoR controls differentiationof neural stem cells into astrocytes [J]. Nature. 2002, 419(6910):934-939.
    27 Zweifel LS, Kuruvilla R, Ginty DD. Functions and mechanisms ofretrograde neurotrophin signaling[J]. Nat Rev Neurosci, 2005, 6(8):615-625.
    28王晓明,陈东. TrkA在胚胎期Wistar大鼠端脑内的表达[J].吉林大学学报(医学版), 2007, 33(1): 81-83.
    29张丽,杨子超,郑吉祥,等. BRCA-1基因调控大鼠神经干细胞增殖的实验研究[J].中风与神经疾病杂志, 2008, 25(1): 7-11.
    30 Lin T, Islam O, Heese K. ABC transporters, neural stem cells andneurogenesis– a different perspective [J]. Cell Research, 2006, 16(11):857–871.
    31 Park CH, Kang JS, Yoon EH, et al. Proneural bHLH neurogenin 2differentially regulates Nurr1-induced dopamine neuron differentiationin rat and mouse neural precursor cells in vitro[J]. FEBS Letters, 2008,582(5): 537-542.
    32王磊,金国华,秦建兵,等.穹窿海马伞切割大鼠海马内Brn-4mRNA的表达变化[J].解剖学报, 2006, 37(4): 387-390.
    33 Tian ML, HuWZ, Jin GH, et al. Effects of Brn-4 antibody on thedifferentiation of neural stem cells into neurons in the rat hippocampus[J]. Chinese Journal of Neuroanatomy, 2008, 24(1): 85-88.
    34 Lim DA, Huang YC, Alvarez-Buylla A. The adult neural stem cellniche: lessons for future neural cell replacement strategies [J].Neurosurg Clin NAm, 2007, 18(1): 81-92.
    35秦雅鑫,宋琦,殷樱,等.电磁场在转录水平对胚胎干细胞源性神经前体细胞凋亡相关基因的影响[J].第四军医大学学报, 2008,29(10): 876-579.
    36白洁,栾佐,周丛乐,等.高压氧对移植的外源性人神经干细胞体内神经元分化的影响[J].中国当代儿科杂志, 2008, 10(2): 195-198.
    37 Moses D, Teper Y, Gantois I, et al. Murine embryonic EGF-responsiveventral mesencephalic neurospheres display distinct regionalspecification and promote survival of dopaminergic neurons [J]. ExpNeurol, 2006, 199(1): 209-221.
    38 Wang ZY, Tong Li, Ji LLi, et al. Optimal concentration of brain-derivedneurotrophic factors for rat hippocampus neural stem celldifferentiation into neurons in the medium containing epidermal growthfactors [J]. Journal of Clinical Rehabilitative Tissue EngineeringResearch, 2008, 12(16): 3171-3174.
    39 Grtti A, Vescovi AL. Galli R.Adult neural stem cells: plasticity anddevelopmental potential[J]. Physiol Paris, 2002, 96(1-2): 81-90.
    40 Ciccolini F. Idenfication of two distint types of multipotent neuralprecursors that appear sequentially during CNS development[J]. MolCell Neurosci, 2001, 17(5): 895-907.
    41 Yeoh JS, de Haan G. Fibroblast growth factors as regulators of stem cellself-renewal and aging [J]. MechAgeing Dev, 2007, 128(1): 17-24.
    42 Ting SL, Li J, Heng SC, et al. Enhancement of Survival, Proliferationand Differentiation into Neurons of Neural Progenitor Cells Isolatedfrom Rats Hippocampus by Brain Derived Neurotrophic Factor [J].Chinese Journal of Cell Biology, 2008, 30(3): 387-391.
    43 Wright LS, Li J, Caldwell MA, et al. Gene expression in human neuralstem cells: effects of leukemia inhibitory factor [J]. Neurochem, 2003,86(1): 179-195.
    44王振宇,朱志,佟雷,等.表皮生长因子对脑源性神经生长因子诱导体外培养大鼠脑海马神经干细胞向神经元分化的影响[J].中国组织工程研究与临床康复, 2008, 12(12): 2317-2320.
    45丁继固,丁文杰,李光,等.胶质源性神经营养因子体外诱导小鼠胚胎中脑神经干细胞分化的研究[J].中国康复医学杂志, 2008,23(4): 341-343.
    46 Yu Y, Gu S, Huang H, et al. Combination of bFGF,heparin and laminininduce the generation of dopaminergic neurons from rat neural stemcells both in vitro and in vivo[J]. Neurol Sci, 2007, 255(1-2): 81-86.
    47 Calza L, Giuliani A, Fernandez M, et al. Neural stem cells andcholinergic neurons:regulation by immunolesion and treatment withmitogens,retinoic acid,and nerve growth factor [J]. Proc Natl Acad SciUSA, 2003, 100(12): 7325-7330.
    48 Wang TT, Jing AH, Luo XY, et al. Neural stem cells:isolation anddifferentiation into cholinergic neurons[J]. Neuroreport, 2006, 17(13):1433-1436.
    49金国华,张新化,田美玲,等.穹窿海马伞切割侧海马提取液对神经干细胞分化为神经元的促进作用[J].解剖学报, 2004, 35(2):137-141.
    50金国华,陈蓉,田美玲,等.海马中56 kD蛋白诱导人神经干细胞向神经元分化的作用[J].神经解剖学杂志, 2006, 22(4): 389-393.
    51张蕾,金国华,田美玲,等.切割海马伞大鼠海马中65 kD和83 kD差异蛋白诱导神经干细胞迁移和向神经元分化的作用[J].解剖学杂志, 2006, 29(6): 677-681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700