积分型总极值方法理论的发展及其并行算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最优化问题从产生到现在,众多的学者和数学家已经提出和总结了许多的最优化方法。但应该指出,目前大多数的算法求得的都是局部极小点,仅当问题具有某种凸性时,局部极小点才是全局极小点。一般来说求全局极小点是一个相当困难的任务,其中的难点又在于最优性条件的给定。
     我们讨论如下形式的最优化问题:
     设X是拓扑空间,S是X的非空子集,实值函数f:X→R。求全局最优值c~*=(?)f(x) (0.0.1)及其全局最优点集H~*={x∈S|f(x)=c~*} (0.0.2)
     我们对讨论的问题作如下基本假设:
     (A):函数f是下半连续的,集合S是闭集,而且存在一个实数b使得集合H_b={x∈S|f(x)≤b}是非空紧集;
     (R):函数f在S上是上丰满的,即对于所有的c,集合{x∈S|f(x)     (M):(X,Ω,μ)是Q-测度空间,即对于所有的非空开集G,都满足μ(G)> 0,且对于所有的紧集K,都有μ(K)<∞。
     我们推广水平均值和修正方差的概念:
     m:R~1→R~1是给定的连续的严格递增函数。
     假设(A)、(M)、(R)成立,c>c~*=(?)f(x)。函数f在其水平集H_c∩S上的m-均值:
     函数v:R~1→R~1被称作v-函数,如果它满足下面的条件:
     1.v(y)是非负函数而且v(y)=0当且仅当y=0。
     2.v(-y)=v(y)。
     3.当y≥0,函数v连续严格递增
     函数f在其水平集H_c∩S上的v-方差:
     最后给出最优化问题的最优性条件:
     在(A)、(M)、(R)的假设成立之下,点x~*∈S是函数f在集合S上的全局最小点且c~*=f(x~*)是全局最小值当且仅当下面两个条件中的一个成立:
     i)m-均值条件(m-Mean Value Condition):M_1(f,c~*;S)=m(c~*);
     ii)v-方差条件(v-Variance Condition):V_1(f,c~*,S)=0.
     整个论文的结构如下:
     第一章,我们简要回顾了全局最优化问题的提出和发展以及目前国内外关于这个问题的研究工作状况。给出了全局最优解的定义。介绍了郑权教授提出的求解全局最优解的积分总极值法。
     第二章,我们引入了丰满集、丰满函数和Q-测度空间等概念。通过丰满分析,我们知道,在积分型算法中,目标函数f不一定要是连续的。
     第三章,为了能够使积分总极值方法能够更有效地应用在处理最优化问题的情况,我们引进积分总极值中m-均值和v-方差等概念,发展了积分型总极值的最优性条件并给出了算法。
     第四章,对求解有约束的最优化问题。我们借鉴罚函数的概念,利用不连续精确罚函数的概念对积分总极值方法进行了推广。给出了处理有约束最优化问题的积分总极值罚函数最优性条件及其算法。
     第五章,我们给出了变测度积分总极值方法。讨论了在无限维空间中,如何用有限维子空间的全局最优值去逼近无限维空间中的全局最优值。引用了Q-测度收敛和变测度的概念,定义了在此概念下的m-均值和v-方差,并推导出变测度意义下的最优性条件。同时还给出了算法,并验证了其收敛性。
     第六章,给出了变测度的罚函数积分型方法。对于无限维空间中的有约束的问题,我们引入不连续罚函数的方法,使有约束问题化为无约束问题求解。
     第七章,大规模并行计算则成为研究科学与工程技术的一种崭新的手段和方式。在前面的研究中,我们发现积分水平集算法在应用并行计算得以实现时,对求解大规模问题具有独特的优势,为此在这一章中我们在这个方面进行一些研究和探讨。
The problem considered in this dissertation is how to characterize and find the global minimum value and global minimizers of an objective function in R~n and functional space.
     Let X be a topological space and f : X→R a real-valued function. Consider the following minimization problem:c~* = (?) f(ar) (0.0.5)In general, minimizers of (0.0.5) may not exist. Under the assumption
     (A): f is lower semi continuous, X is inf-compact.minimizers of (0.0.5) exist.
     The problem of minimizing a function has been investigated since the seventeenth century with the concepts of derivative and Lagrangian multiplier. The gradient-based approach to optimization is the mainstream of that research. However , the requirement of differentiability restricts its application to many practical problems. Moreover, it can only be utilized to characterize and find a local solution of a general optimization problem.
     In this dissertation, we apply the integral global optimization technique to investigate a minimization problem with discontinuous objective function. Integral global optimization technique is a very powerful yet flexible tool to treat various optimization problems.
     We first recall basic concepts of robust sets, functions and the integral approach to global minimization. With the integral approach to global optimization , several new optimality conditions for global minimization are studied. Using m-mean value condition one can design algorithms for finding unconstrained global minimizers. With u-variance condition, one can set stopping criterion. A class of discontinuous penalty functions is proposed to solve constrained minimization problems with the integral approach to global optimization. Optimality conditions of a penalized minimization problem and a non sequential algorithm is proposed. New optimality conditions of the integral global minimization are applied to characterize global minimum in functional space as a sequence of approximating solutions in finite-dimensional spaces. A variable measure algorithm is used to find such solutions. For a constrained problem, a discontinuous penalty method is proposed to convert it to unconstrained ones. The integral algorithm can be implemented by a properly designed Monte Carlo method. Numerical examples are given to illustrate the effectiveness of the algorithm.
     The integral global minimization algorithm is also implemented on parallel computer, the results show the great advantage of the integral approach.
引文
[1] E. A. Galperin and Q. Zheng, Global Solutions in Optimal Control and Games, NP Research Publ., 1991.
    
    [2] E. A. Galperin, Z. Pan and Q. Zheng, Application of global optimization to implicit solution of partial differential equations, in Nonlinear Evolution Equations and Dynamical Systems, M. Boiti, L. Martina and F. Pempinelli eds., World Scietific, 1992, 409-417.
    
    [3] E. L. Lawler and M. D. Bell, A method for solving discrete optimization problems, Operations Research, 14 (1966), 1098-1112.
    
    [4] Ge R.P., The Theory of Filled Function Methods for Finding Global Minimizers of Nonlinearly Constrained Minimization Problems, J.of Comput.Math., (1987) 5(1), 1-9.
    
    [5] Ge, R.P. and Qin, Y.F.,A Class of Filled Functions for Finding a Global Min-imizer of a Function of Several Variables, Journal of Optimization Theory and Applications, (1987) 54(2), 241-252.
    
    [6] Ge, R.P., A Filled Function Method for Finding a Global Minimizer of a Function of Several Variables, Math. Programming, (1990) 46, 191-204.
    
    [7] Ge, R.P. and Qin, Y.F., The Globally Convexized Filled Functions for Global Optimization , Applied Math, and Computation, (1990) 35, 131-158.
    
    [8] Ge Renpu, Finding More and More Solutions of a System of Nonlinear Equtions, Applied Math, and Computation, (1990)36 , 15-30.
    
    [9] Geoffirion A. M.,Lagrangian Relaxation for Integer Programming, Math. Programming Stud, (1974) 2, 82-114.
    
    [10] Guignard M. and Kim S., Lagrangian Decomposition: A Model Yielding Stronger Lagrangian Relaxation Bounds, Mathematical Programming, (1993) 33, 262-273.
    
    [11] Goh C. J. and Yang X. Q., A Sufficient and Necessary Conditin for Nonconvex Constrained Optimization, Appl. Math. Lett., (1997) 10, 9-12.
    
    [12] Gonzaga C.C. and Castillo R.A., A Nonlinear Programming Algorithm Based on Non-coercive Penalty Functions, Math. Program, Ser. A (2003) 96, 87-101.
    
    [13] H. B. Dickman and M. J. Gilman, Monte Carlo optimization, Journal of Optimization Theory and Applications, 60 (1989), 149-157.
    
    [14] Han S. P., Superlinearly Conergence Variable Metric Algorithms for General Nonlinear Programming Problems, Mathematical Programming, (1976) 11, 263-282.
    
    [15] H. E. Romeijn, R. L. Smith, Simulated annealing for constrained global optimization , J. Global Optim., 5 (1994), 101-126.
    
    [16] Horst R. A New Branch and Bound Approach for Concave Minimization Problems. Lecture Notes in Computer Science, (1976), 41, 330-337.
    
    [17] Horst R. An Algorithm for Nonconvex Programming Problems. Mathematical Programming , (1976), 10, 312-321 .
    
    [18] Horst R. A General Class of Branch-and-Bound Methods in Global Optimization with Some New Approaches for Concave Minimization. Journal of Optimization Theory and Applications, (1986), 51, 271-291.
    
    [19] Horst R. Deterministic Methods in Contrained Global Optimization: Some Recent Advances and New Fields of Application. Naval Research Logistics, (1990), 37, 433-471.
    
    [20] Horst, R., Pardalos, P.M. and Thoai, N.V., Introdution to Global Optimization, Kluwer Academic Publishers, Dordrecht, Netherland (1995).
    
    [21] Horst R., Pardolos P.M.(Eds.)Handbook of Global Optimization. Dordreht, The Netherlands, Kluwer Academic Publishers, 1995
    
    [22] Horst R., Tuy H. Global Optimization (Deterministic Approaches), 3rd ed. berlin, Germany: Springer, 1994.
    
    [23] Huyer W., Neumaier A., A New Exact Penalty Function, SIAM J. OPTIM. (2003) 13(4): 1141-1158.
    
    [24] Hongquan Cui, Changchun Wang,Quan Zheng, Optimality conditions and algorithms for integral global minimization, Computers & Mathematics with Applications , Volume 52, Issues 1-2, July 2006, Pages 55-64.
    
    [25] J. Tang and Q. Zheng, Applied Optics of Thin-Films, Shanghai Press of Science and Technology, 1984. (In Chinese).
    
    [26] J.A.Snyman, L.P.Fatti, A Multi-Start Global Minimization Algorithm with Dynamic Trajectories, Journal of Optimization Theory and Application(July 1987), 54(1), 121-141.
    
    [27] Jean-Pierre Aubin, Optima and Equilibria, Springer- Verlag Berlin Heidelberg, (1993).
    
    [28] Jean-Louis Goffin, krzysztof C.Kiwiel, Convergence of a simple subgradient level method, Math, program. (1999)85:207-211.
    
    [29] Jean-Pierre Aubin, Laurent Najman, The Montagne Russe algorithm global optimization , Math Meth Oper Res (1998)48, 153-168.
    
    [30] Kirkpatrick S., Gelatt C.D., and Vecchi M.P., Optimization by Simulated Annealing , Science, (1983) 220, 671-680.
    
    [31] Karmarkar N., A New Polynomial-time Algorithm for Linear Programming, Combinatorica , (1984) 4, 373-395.
    
    [32] Kleimmichel H. and Schoneleld K., Newton-type Methods for Nonlinearly Constrained Programms, Proceedings of the 20th Jahrestagung "Mathematische Optimierung ", Humboldt-Universitat, Zu Burlin, Seminarberichte, (1988), 53-57.
    
    [33] Kleinmichel H.,Richetr C. and Schonefeld K;, On a Class of Hybrid Methods for Smooth Constrained Optimizatin, JOTA, (1992) 73:3 , 465-499.
    
    [34] Konno H., Thach P.T., Tuy H. Optimization on Low Rank Nonconvex Structures. The Netherlands: Kluwer Academic Dordrecht, 1997.
    
    [35] L. R. Foulds, Optimization Techniques An Introduction, Springer- Verlag New York Inc, (1981).
    
    [36] Levy, A.V. and Montalvo, A., The Tunneling Algorithm for the Global Minimization of Functions, SIAM Journal on Scientific and Statistical Computing, (1985) 6(1), 15-29.
    
    [37] Li D. , Zero Duality Gap in Integer Programming: p-Norm Surrogate Constraint Method, Operations Research Letter, (1999) 25, 89-96.
    
    [38] L.F. Lee, Weight minimization of a speed reducer, an ASME publication, 77-DET-163, 1977.
    
    [39] Lundy M. and Mess A., Convergence of an Annealing Algorithm, Math. Prog. (1986) 34, 111-124.
    
    [40] Manfred Padberg, Classical cuts for mixed integer programming and branch and cut, Math Meth Oper Res, (2001)53, 173-203.
    
    [41] Maratos N. , Exact Penalty Function Algorithm for Finite Dimensional and Control Optimization Problems, Ph.D. Thesis, University of London, UK (1978).
    
    [42] Marco A.DURAN, Ignacio E.GROSSMANN, An Outer-Approximation Algorithm for A Class of Mixed-Integer Nonlinear Programs, Mathematical Programming (1986) 36, 307-339.
    
    [43] Mayne D. Q. and Polak E., A Superlinearly Convergent Algorithm for Constrained Optimization Problems, Math. Programming Study, (1982) 16, 45-61.
    
    [44] Michelon,P.N. and Maculan,N., Lagrangian Decomposition for Integer Nonlinear Programming with Linear Constrains, Mathematical Programming, (1991) 52, 303-313.
    
    [45] Mirjam Dur, Dual bounding procedures lead to convergent Branch-and-Bound algorithms , Math.Program., (2001) ser.A 91:117-125
    
    [46] Ng C.K., Li D. and Zhang L.S., Global Descent Method for Global Optimization, The Chinese University of Hong Kong, Ph. D. thesis, (2003)
    
    [47] Oblow EM.A Stochastic Tunneling Algorithm for Global Optimization, JOGO, (2001) 20,195-212.
    
    [48] Peng J.M. and Yuan Y.X., Optimality Conditions for the Minimization of a Quadratic with Two Quadratic Constraints, SIAM J. Optim. (1997) 7(3), 579-594.
    
    [49] Polyak R., Modified Barrier Functions (theory and mathod), Mathematical Programming , (1992) 54, 177-222.
    
    [50] Powell M. J. D. , The Convergence of Variable Metric Method for Nonlinear Constrained Optimization Calculations, Nonlinear Programming 3, Academic Press, New York, (1978) pp27-63.
    
    [51] Q. Zheng, Robust analysis and global minimization of a class of discontinuous functions (Ⅰ), Acta Mathematicae Applicatae Sinica (English Series), 6:3 (1990), 205-223.
    
    [52] Q. Zheng, Robust Analysis and global optimization of a class of discontinuous functions (Ⅱ), Acta Mathematicae Applicatae Sinica (English Series), 6:4 (1990), 317-337.
    
    [53] Q. Zheng, Optimality conditions of global optimization (Ⅰ), Acta Mathematicae Applicatae Sinica (English Series), 1:2 (1985), 66-78.
    
    [54] Q. Zheng, Optimality conditions of global optimization (Ⅱ), Acta Mathematicae Applicatae Sinica (English Series), 1:3 (1985), 118-132.
    
    [55] Q. Zheng, D. Zhuang, Testing Integral Global Minimization Software: INTGLOB, Journal of Global Optimizaiton, 7 (1995), 421-454.
    
    [56] Q. Zheng, Integral Global Optimization of Robust Discontinuous Functions, Computers and Mathematics with Applications, 21:617 (1991), 17-24.
    
    [57] Q. Zheng and D. Zhuang, Finite dimensional approximation to solutions of minimization problems in function spaces, Optimization, 26 (1992), 33-50.
    
    [58] Q. Zheng, A Method for Solving Travelling Salesman Problem - Integral Global Minimization Approach
    
    [59] Q. Zheng, B. C. Jiang and S. L. Zhuang, A method for finding global extrema, Acta Mathematicae Applicatae Sinica, 2:1 (1978), 161-174. (In Chinese).
    
    [60] Q. Zheng and D. Zhuang, Integral global minimization: algorithms, implementation and numerical tests, Journal of Global Optimization, 7 (1995), 421 - 454.
    
    [61] Q. Zheng, A variable measure method in integral global optimization and its applications , Communication on Applied Mathematics and Computation, 3:2 (1989), 68-73. (In Chinese).
    
    [62] Q. Zheng and L. S. Zhang, Global minimization of constrained problems with discontinuous penalty functions, Computers and Mathematics with Applications, 37 (1999), 41-58.
    
    [63] Regina Hunter Mladineo, Convergence rates of a global optimization algorithm, Math, program. (1992)54, 223-232
    
    [64] Rockafellar R. T., Convex Analysis, Prentice Hall (1970).
    
    [65] R. Polyak, Modified barrier function (theory and methods), Math. Program. (1992)54:177-222.
    
    [66] Reiner Horst, Panos M. Pardalos, Nguyen V. Thoai, Introduction to Global Optimization , Kluwer Academic Publishers (1995).
    
    [67] R. Tu and Q. Zheng, Integral global optimization method in statistical applications , Computers and Mathematics with Applications, 25:10/11 (1993), 9-18.
    
    [68] S. H. Chew and Q. Zheng, Integral Global Optimization, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, 298 (1988).
    
    [69] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization by simulated annealing, Science 220 (1983), 671-680.
    
    [70] S. H. Chew and Q. Zheng, Integral Global Optimization, Lecture Notes in Economics and Mathematical Systems, No. 298, Springer-Verlag, New York, 1988.
    
    [71] Schittkowski K., More Test Examples for Nonlinear Programming Codes, Springer-Verlag (1987).
    
    [72] Shapiro J. F.,A Survey of Lagrangian Techniques for Discrete Optimization, Annals of Discrete Mathematics, (1979) 5, 113-138.
    
    [73] Stephens C.P. and Baritompa W. , Global Optimization Requires Global Information , Journal of Optimization Theory and Applications, (1998) 96(3), 575-588.
    
    [74] Sichong Guan, Shu-Cherng Feng, A Global-filtering algorithm foe linear programming problems with stochastic elemente, Math Meth Oper Res(1998) 48, 287-316.
    
    [75] Strekalovsky A.S., Global Optimality Conditions for Nonconvex Optimization, J.of Global Optimization, (1998) 12, 415-434.
    
    [76] Tuy H., Thieu T.V., Thai N.Q. A Conical Algorithm for Globally Minimizing a Concave Function over a Closed Convex Set. Mathematics of Operations Research, (1985), 10, 498-514.
    
    [77] Tuy H., Khachaturov V., Utkin S. A Class of Exhaustive Cone Splitting Procedures in Conical Algorithms for Concave Minimization. Optimization, (1987), 18, 791-807.
    
    [78] Tuy H., Horst R. Convergence and Restart in Branch - and - Bound Algorithms for Global Optimization Application to Concave Minimization and D.C. Optimization Problems. Mathematical Programming, (1989), 41, 161-183.
    
    [79] Tuy H., Normal Sets, Polyblocks and Monotone Optimization, Vietnam J. Math., (1999)27, 277-300.
    
    [80] Tuy H., Monotone Optimization: Problems and Solution Approaches, SIAM J. Op-tim., (2000) 11(2), 464-494.
    
    [81] Wei Fang, Tianjiao Wu, Jianping Chen, An Algorithm of Global Optimization for Rational Functions with Rational Constraints, Journal of Golbal Optimization (2000)18, 211-218.
    
    [82] White D. J., Weighting Factor Extensions for Finite Multiple Objective Vector Minimization Problems, European Journal of Operations Researchn, (1988) 36, 256-265.
    
    [83] Williams H. P., Duality in Mathematics and Linear and Integer Programming, JOTA, (1996) 90, 257-278.
    
    [84] Wu Z.Y., Bai F.S., Yang X.Q. Zhang L.S.,An Exact Lower Order Penalty Function and its Smoothing in Nonliear Programming, Optimization, (2004) 53(1): 51-68.
    
    [85] X. C. Pan, Q. Zheng, Global Optimum Shape Design, Computers and Mathematics , 37 (1999), 41-58.
    
    [86] Xian liu, Finding Global Minima with a Computable Filled Function, Journal of Global Optimization (2001)19, 151-161.
    
    [87] Xu Z., Huang H.X., Pardalos P.M. etc. (2001), Filled Functions for Unconsreained Global Optimization, Journal of Global Optimization, 20, 49-65.
    
    [88] Yao Y. , Dynamic Tunneling Algorithm for Global Optimization, IEEE Transactions on Systems, Man and Cybernetics, (1989) 19(5), 1222-1230.
    
    [89] Yuan Y., On a Subproblem of Trust Region Algorithm for Constrsined Optimization , Math. Programming, (1990) 47, 53-63.
    
    [90] Zh. He, H. Q. Cui, Q. Zheng, Finite Dimensional Approximation to Global Minima - An Integral Approach, OR Transaction, 9:1 (2005), 21-31.
    
    [91] Zhang L.S., A Sufficient and Necessary Condition for a Globally Exact Penalty Function, Chinese Journal of Contemporary Mathematics, (1997) 18(4), 415-424.
    
    [92] Zhang L.S., Li D., Global Search in Nonliear Integer Programming: Filled Function Approach, International Conference on Optimization Techniques and Applications, Perth,(1998), 446-452.
    
    [93] Zhang L.S., Gao F., and Zhu W.X., Nonlinear Integer Programming and Global Optimization, J. of Computational Mathematic, (1999) 17(2), 179-190.
    
    [94] Zhang Q. and Zhang L.S., Global Minimization of Constrained Problems with Discontinuous Penalty Functions, Computers and Mathematics with Applications, (1999) 37, 41-58.
    
    [95] Zhang L.S., Ng C.K., Li D. and Tian W.W. , A New Filled Function Method for Global Optimization, Journal of Global Optimization, (2004) 28, 17-43.
    
    [96]邬冬华,田蔚文,张连生,一个求总极值的实现算法及其收敛性,运筹学学报, (1999)3(2),82-89.
    
    [97]邬冬华,田蔚文,张连生,黄伟,一种修正的求总极值的积分-水平集方法的实 现算法收敛性,应用数学学报,(2001)24(1),100-110.
    
    [98]吴至友,全局优化的几种确定性方法,上海大学博士论文,(2003).
    
    [99]席少霖,非线性最优化方法,高等教育出版社(1992).
    
    [100]袁亚湘,孙文瑜,最优化理论与方法,科学出版社(2001)。
    
    [101]张连生,L_1精确罚函数和约束总极值问题,高校计算数学学报,(1988)2,141- 148.
    
    [102]赵瑞安,吴方,非线性最优化理论和方法,浙江科学技术出版社,(1992)。
    
    [103]彭国伦,Fortran 95,中国电力出版社,(2002)。
    
    [104]王沫然,MATLAB 6.0与科学计算,电子工业出版社,(2002)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700