不同硬度鞋底对人体步行能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:行走是人们生活中重复最多的一种整体性运动,目前国际上最时兴的健身运动就是健身走,人一生行走的距离约为地球周长两周半以上,步行1公里,每一只脚要承受600~700次的重力冲击,如果运动激烈,则冲击力就更大。鞋如果没有良好的减震系统,来缓解对足的冲击力,就会使双脚感到疲劳不堪负重,还会对踝关节、膝关节、腰背以及人体的大脑造成冲击伤害。关于步态,科学工作者们已经做了大量的研究,网上有关步态的文章就有几千篇,而有关运动鞋也有大量的研究,但是,针对不同硬度鞋底的鞋在人体步行能力上的研究还未见报道。因此,对人体穿不同硬度鞋底的鞋行走进行生物力学分析,用可靠的力学参数和科学的评价方法来衡量各种鞋的鞋底功能特性就尤为重要。
     实验方法:(1)不同硬度鞋底鞋的制备及鞋底的力学性能测评:运用Instron材料试验机参照GB/T 13634-92硫化橡胶或热塑性橡胶压缩、应力松弛的测定来进行实验。挑选出3种不同硬度的鞋底,测量鞋底的弹性模量、应力松弛,找出能够进行步态实验的不同硬度鞋底,并制作成鞋,鞋重量均为103克。(2)实验仪器:1、运用Vicon红外摄像系统,对受试者的静态和动态数据进行捕捉,找出穿不同硬度鞋底的鞋影响人体长时间步行能力的主要运动学参数。2、运用Novel-Pedar与Zebris足底测量系统,对受试者的足底压力指标进行测量,找出穿不同硬度鞋底的鞋在人体长时间步行中,影响足底的力、压强、接触面积等主要动力学参数。3、运用Biovision 16通道肌电图机,对胫骨前肌、股外侧肌、腓肠肌和股二头肌进行肌肉电信号的IEMG与MF信号进行采集,找出穿不同硬度鞋底的鞋在人体长时间步行中对上述肌肉的时域和频域指标影响。4、运用Cosmed运动心肺测试系统,通过耗氧量计算出耗能量,定量比较受试者穿同硬度鞋底的鞋引起的人体体能消耗情况。(3)实验步骤与操作过程:1、在受试者特定部位贴上marker球,建立下肢的骨骼模型;在股外侧肌、股二头肌、胫骨前肌、腓肠肌的肌腹上贴上电极测定肌电,并在实验前对肌肉的IEMG进行标准化处理。2、在没有进行测试之前,做足弓高度的标定。3、受试者穿上不同硬度鞋底的鞋,鞋内垫上Pedar鞋垫在跑台上进行速度为7.2km/h的健身快走,按照规定动作持续步行60min。受试者共6名,均参加三天实验,第一天穿软底鞋,第二天穿中等硬底鞋,第三天穿硬底鞋进行实验,每隔5min采集测试数据。4、测试结束后,让受试者裸足测定足弓高度,然后再在测力平板上走一遍,记录数据。5、测试过程每隔5min询问受试者的身体情况,以及穿不同硬度鞋底的鞋对步行能力的影响,建立主观评价表。(4)数据处理:所有数据用SPSS13.0统计软件处理,结果用平均数±标准差表示,进行Independent Sample t检验、双因素方差分析和Pearson相关分析,并以P<0.01作为差异显著性水平。
     结果与分析:(1)穿软底鞋的步态周期比其它鞋的步态周期增加,小腿角度前摆最小,后摆最大;踝关节角度最小,全掌着地期与脚跟离地期踝关节角度均降低,时间-鞋交互影响对软底鞋最明显;内踝与足背高度有明显降低;脚跟相比较其它鞋受力较小,足弓内外侧,跖骨三个区域,在行走过程中脚尖部分受力较为明显。软底鞋足底接触面积最大,外侧力偏大,足弓较早塌陷容易引起内翻。积分肌电值总体高于其它两双鞋,其中腓肠肌的表现尤其明显,肌电活动较大容易疲劳。稳定状态时,穿软底鞋的摄氧量较大,能量较高。(2)穿中等硬底鞋大腿角度前摆最小、后摆最大;膝角度伸膝最大,屈膝最小;踝关节角度最大;穿中等硬度的鞋进入工作状态的时间短,摄氧量、呼吸频率、通气量、心率、能耗都较其它两组低。(3)穿硬底鞋的大腿角度前摆最大、后摆最小;穿硬底鞋的步行时相脚跟离地—脚尖离地的时间减少,摆动期时间相对稳定。穿硬底鞋脚尖高度在加速摆动期升高,摆动末期降低,脚尖高度的时间-鞋交互影响在脚尖离地期与脚跟离地期均降低。穿硬底鞋在加速摆动期,踝角跖屈延迟。穿硬度鞋足底受力最大,脚跟外侧区域,跖骨内侧区域受力明显。足弓外侧,全脚掌外侧区域受力均明显,尤以跖骨区受力尤为明显。硬底鞋足底接触面积最小,对足弓有保护作用。稳定状态时,穿硬底鞋的摄氧量较低,耗能较少。(4)随着鞋底硬度的增加,足底的压力中心从内侧的第一跖骨向外依次移动。足底压力中心轨迹长度与裸足行走时相比,穿中等硬底鞋和硬底鞋行走的轨迹长度都变长,而穿软底鞋行走时的轨迹长度缩短。(5)硬底鞋对步行的影响最大,软底鞋次之,中等硬底鞋最小。
     结论:(1)穿软底鞋能够吸收更多地面带来的冲击力,穿着舒适,长时间行走足弓较早塌陷容易引起内翻,积分肌电值总体高于其它两双鞋,腓肠肌较早疲劳,稳定状态时,穿软底鞋的摄氧量较大,能量较高。在行走路程不是很长的情况下,可以考虑选择穿着。(2)穿中等硬度鞋对人体行走的运动学、动力学影响最小,穿中等硬底鞋给人体的运动负荷刺激最适宜,人体适应能力较强,进入工作状态用时少。易进行长时间运动的穿着。(3)穿硬底鞋对人体行走的运动学、动力学影响最大,走路轻快,足底受冲击力最大,足弓不易塌陷,蹬伸充分比较省力,稳定状态时,穿硬底鞋耗能最少。适合时间不是很长,在要求步行速度较快的情况下,可以考虑选择穿着硬底鞋。
     建议:(1)生产厂家应考虑不同鞋的功能特性选择不同硬度的鞋底来进行鞋的生产加工,必要时在鞋的功能介绍上加上鞋硬度的量化指标。(2)软底主要运用在休闲鞋(一般性散步)的制作上,中等硬底主要运用在竞走鞋的制作上,硬底主要运用在田径鞋的制作上。(3)依据健身目的不同应该有针对性地选择合适的鞋,如果需要减肥的应该选择软底鞋、蹬山运动选择中等硬度鞋防止脚崴伤,竞技比赛类的选择硬底鞋。(4)由于对鞋底的软、中、硬细化还不够,所以还需要进行深入研究。
Objective: Walking is a whole movement that repeat mostly in daily life, At present, the international fashion exercise is walking,The total walking distance of one's whole life is two and a half earth circumference, The feet are shocked by 600 to 700 times gravity while one walk for one kilometer, the impact is bigger in the intense exercise, Both feet would feel exhausted if the shoes without damping system can not alleviate the impact, and so the knees, waists, back and brain bear the damage of impact. Scientis have a lot of research about gait, there are thousands of articles and a lot of researches on shoes in the internet.However, the research on the shoes with different hardness soles have not been reported. Therefore, the biomechanics analysis on the walking with different hardness soles shoes is very important, the mechanical parameters and the reliable method to evaluate the characteristics of the shoes sole are so.
     Method: (1) The preparation and the mechanical properties testing for different hardness shoes sole: sole The Instron materials tester be used refer to the determination of GB/T 13634-92 thermoplastic rubber compression and stress relaxation, Select three different kinds of hardness, measuring the modulus of elasticity, the stress relaxation of the soles, to search the different hardness shoes to be used in gait test, and finish the shoes makeing, the weight of the shoe is 103 grams. (2) Experimental apparatus: 1、Vicon infrared imaging system is used to capture the static and dynamic data, and find out the main foot kinematics parameters of the effects that different hardness bottom shoe on the long time walking capability. 2、Use Novel - Pedar and Zebris foot measuring system, the foot pressure index of subjects were measured in different hardness of sole out in human walking shoes for a long time, the influence of the foot, pressure, contact area mainly kinetic parameters. 3、Using Biovision 16 channel emg machine, pretibial muscle, the lateral femoral muscle, gastrocnemius and biceps muscles, whose IEMG signals and the signal with MF, sole of shoes in different hardness in human body for a long time to walk in the time domain and frequency domain of muscle index. 4、Consumed movement by testing system, cardiopulmonary by oxygen consumption, energy consumption is calculated quantitatively , it can compared with hardness of subjects wearing shoes sole caused by human physical consumption. (3) Experimental procedure and operating process: 1、In subjects with marker in certain parts of the lower limbs, establish skeleton model, In of the lateral femoral muscle and biceps muscles and tibialis anterior abdominal muscle, the gastrocnemius muscle are put on the electrode, experiment of muscle normalized before. 2、in no testing before muscle and arches highly calibration. 3、On different subjects of shoes, shoe sole hardness in Pedar pad in running speed on the insoles for 7.2 km/h fitness go, lasting 60 minutes action in accordance with the regulations. Subjects are six days, the first day in experiment, wearing soft bottom shoes;then wearing medium hard bottom shoe the second day;the third day wearing hard bottom shoes, every 5 minutes acquisition test data.4、When the test ends,let arches height with bare feet and then in force on flat, record data.5、Test process every 5 minutes to ask participants, and different body wear shoes on their hardness shoes and walk, and the influencing table subjective. (4)Data processing: all data are analyzed by the SPSS 13.0,The result express with the mean value±standard deviation, carries on the Independent Sample T-test and Double factor ANOVA and Pearson correlation analysis, significant difference (P < 0.05).
     Results: (1) Gait cycle with soft shoes than other shoes, the extension angle of of the leg increases minimum, the flexion angle maximum, Ankle angle is minimum,The period and heel on palm from ankle angles are lower, period of time - shoes for soft shoes interaction influences on the most obvious, medial malleolus with sufficient height are significantly lower back, compared to other heel shoes stress is lesser, arches inside and outside, the metatarsal bone in three areas, walking process more obvious stress on tiptoe part. The contact area of soft bottom shoe soles and lateral force is big enough to cause collapse bow earlier in. Integral whole electric value than the other two pairs of shoes, gastrocnemius muscle of electrical activity, especially large fatigue. Steady state, wear soft bottom shoe the Vo2max, higher energy. (2) Wear moderate hard bottom shoe front leg Angle; set minimum, Knee extensor knees maximum Angle, the minimum, Maximum ankle angles. With shoes of medium hardness in a short time, the Vo2max, breathing, heart rate, respiration, ventilation, energy consumption will be relatively low compared to the other two groups. (3) With the hard bottom shoe front leg angle, placed after the minimum; wearing shoes on hard phase from heel-from the time reduced to tiptoe, swinging period of time are relatively stable. Wear high heels on tiptoe hardware acceleration swing, swing late period of time, the height of tiptoe toe shoe - from interaction in the period from period to heel. Wear shoes in accelerating hard swinging Angle, ankle plantar flexion delay. Wear shoes sole largest stress, hardness of lateral calcaneal metatarsal area, the area is obvious. The whole foot arch, lateral area were significantly, especially in the metatarsal bone particularly stress area. Hard bottom shoe sole contact area for arches, have protective effect. Steady state, wearing hard bottom shoe of low oxygen, less energy. (4) With the increase of hardness, foot soles the pressure from the center of the metatarsal bone in order to move. Foot pressure center path length, compared with bare feet when wear medium hard shoes and walk the path of hard merchant, and longer length is wear soft bottom of merchant track length. (5) The influence of hard bottom shoe on walking performance is biggest, and then the soft bottom shoe, the moderate soft bottom shoes is least.
     Conclusions: (1)The soft bottom shoes can absorb more impact from ground, and to be wear comfortablely,but its iEMG value is higher than the other two kinds of shoes. Its gastrocnemius get fatigued earlierly. Oxygen uptake and energy expenditure is bigger as wearing soft bottom shoes at steady state.It may be selected to wear.(2) The kinematics and dynamics influence to human body is smallest when walking with moderate hardness bottom shoes, and the exercise load stimulation is most suitable.The human body is more easily to adapt it with less time into the work state,and then easy to be wear when ones catrry on a long time exercise.(3) The kinematics and dynamics influence to human body is biggest, One can walk vividly with it, but the planta suffers the greatest impact when walking with hard bottom shoes. Instep is not easy to collapse, to stretch easily. Energy expenditure is least but the suitable time is not long as wearing hard bottom shoes at steady state. It may be select to wear when need walking fastly.
     Suggestions:(1)The Manufacturer should choose different hardness sole to produce and process shoes considering the functional characteristics of different shoes,and may add introduction of quantitative index about the sole hardness necessarily.(2)Soft bottom is mainly be utilized in leisure shoes manufacture,moderate bottom is mainly be utilized in race walking shoes manufacture, hard bottom is mainly be utilized in track and field shoes manufacture.Should choose suitable shoes aim directly according to the fitness aim.(3)Soft bottom shoes should be choosed in losing weight,moderate bottom shoes should be choosed in mountaineering to prevent foot sprain injury, hard bottom shoes should be choosed in athletics. (4)further study is demanded because of the refinement to soft、moderate and hard sole hardness
引文
[1]孙飙,以身体活动为核心的学校“健康管理”模式研究[J].南京体育学院学报(社会科学版),2007,21(4):13-16.
    [2]赵彦.我国学校实施学生健康管理新战略的研究[J].南京体育学院学报(社会科学版),2007,21(4):13-16.
    [3]赵吉凤,刘永斌.脊髓不完全损伤患者的步态分析[J].中国康复医学杂志,1999,11(1):31-32.
    [4]赵芳,周兴龙.中老年人步态指标与衰老关系的研究[J].体育科学,1998,18(6):78-81.
    [5]伍勰,陆爱云.健康老年人常速行走的步态分析[J].中国康复医学杂志,1996,11(1):19-21.
    [6]铃木键二.步行能力己生物力学的要因[M].临床研究,1993,5: 414-454.
    [7]耿春亚,马军.关于正常青年人步态竖直方向力的检测与统计分析[J].航天医学与医学工程,2003,16(05):364-367.
    [8]励建安,孟殿怀.步态分析的临床应用[J].中华物理医学与康复杂志,2006,28(07):500-503.
    [9]汤荣光.正常人足底静态和动态压力分布的测定[J].中国生物医学工程学报,1994,13(2):175-177.
    [10]赵芳,周兴龙.老年人站立及行走稳定性的生物力学研究[J].北京体育大学学报,2003,4(02):188-191.
    [11]吴剑,李建设.人体行走时步态的生物力学研究进展[J].中国运动医学杂志, 2002,21(03):305-307.
    [12]伍勰,陆爱云,庞军.健康老年人常速行走的步态分析[J].上海体育学院学报,2000,5(02):52-55.
    [13]钱竞光,宋雅伟等.步行动作的生物力学原理及其步态分析.南京体育学院学报(自然科学版),2006,5(04):1-7.
    [14]施宝兴,魏文仪.逆向动力学计算方法及提高计算精度的探讨[J].南京体育学院学报(自然科学版),2003,2(2):6-12.
    [15]维·温特,刘志诚等译.人体运动生物力学[M].北京:人民体育出版社,1990.
    [16]戴克戎,汤荣光.平地常速行走时的步态观察[J].中国生物医学工程学报,1982,11(1):18-21.
    [17]高新友,郝剑,唐章文.体育运动对人体气体代谢机能影响的实验研究[J].体育世界,2007,2:36-37.
    [18]孙锐,杨晓光,朴建华.气体代谢法及其典型设备K4b2在能量代谢测量中的应用[M].中国食品卫生杂志,2005,17(5):445-448.
    [19]许光旭,等.偏瘫不对称步态的生物力学研究[J].中国康复医学杂志,1995,10(3):97-98.
    [20]周有礼,等.妊娠妇女步态的动力学分析[J].医用生物力学,2001,16(2):65-69.
    [21]U Rattanaprasert,C Akamanon,R Smith. Comparison of kinematic gait par-ameters of elderly that women with young Thai women[J]. Clinical Biome-chanics,1999,2(4):12-16.
    [22]王显智.测力跑步机(Gaitway)系统之介绍[J].大专体育,1990:52.
    [23]张潇,卢世璧.人体足底压力的测量与分析[J].医用生物力学,1994,9(02):108-115.
    [24]胥少丁.IGI-3型步态测试系统的研制[J].生物力学,1991,6:79.
    [25]王军,等.动态足底压应力测试分析及骨科临床应用[J].医用生物力学,1997,12(3):170-174.
    [26]韦启航,等.人体步态分析系统-足底压力测量系统的研制[J].中国生物医学工程学报,2000,1(19):32-40.
    [27]袁刚,等.足底压力分布测量系统及临床应用[J].中国康复,2003,18(01):22-25.
    [28]戴克戎,等.S9-1型步态分析系统的研制和平地行走时足-地接触能力的三维分析[J].生物力学,1986,5(1):24.
    [29]Perttunen Jarmo R,et al.Asymmetry of gait after free flap re-construction ofsevere tibial fractures with extensive soft-tissue damage[J].Scand J Plast Re-constrace Hand Surg,2000,34:237-243.
    [30]Meyring S,et al.Dynamic plantar pressure distribution meansurements in hemiparetic patients [J]. Clinical Biomechanics,1997,12(1):60-65.
    [31]Alice Nieuwboer,et al.Plantar force distribution in park gait:a comparison between patients and age-matched control subjects[J].Scand J Rehab Med, 1999,32:185-192.
    [32]Julie E,et al.Simultaneous measurement of plantar pressure and shear forces in diabetic individuals[J].Gait and Posture,2002,15:101-107.
    [33]Gravante G,et al.Comparison of ground forces between obeseand control young adults during quiet standing on a platform[J].Clinical Biomechanics , 2003,18:780-782.
    [34]Antonella Caselli,et al.The forefoot-to-rearfoot plantar pressure ratio is incr-eased in severe diabetic neuropathy and can predict foot ration[J]. Diabetes Care ,2002,25:1066-1071.
    [35]Dowling AM,et al.Does obesity influence foot structure and plantar pressurepatterns in prepubescent children [J].Interna-tional Journal of Obesity ,2001,25:845-852.
    [36]Giacomozzi C,et al.A piezo-dynamo metric platform to charac-terise shear forces in the diabetic neuropathic foot[Z].
    [37]张伟,等.拇外翻病人的静、动态前足底压力测定[J].武警医学院学报,10(2):128-130.
    [38]张伟,等.单侧先天性髋关节脱位病人的动态足地压力测定初步分析[J].医用生物力学,1998,13(4):45-47.
    [39]李长有,等.足底板对类风湿关节炎患者足底压的影响[J].中国医科大学学报,2000,29(1):67-69.
    [40]吴汶阑.膝下截肢患者动态站立平衡分析[R].辅英科技大学补助专题研究计划成果报告,1992.
    [41]Miyazaki S. Quantification of gait abnormalities on the basis of continuous indices and visual rating[Z]. Medical & Biological En-gineering & Compu-tering,1984.
    [42]吴剑,李建设.青年女性着高跟鞋平地行走时步态的生物力学研究[J].体育科研,2003,24(3):9-11.
    [43]朱晓兰.老年人步态特征的分析及其评价系统的初步建立[D].北京:北京体育大学学报,2006,02:201-203.
    [44]汤荣光.正常人足底静态和动态压力分布的测定[J].中国生物医学工程学报,1994,13(2):175-177.
    [45]Eleftherios Kellis.Plantar pressure distribution during barefoot standing,walki-ng and landing in preschool boys[J].Gait and Pos-ture 2001,14:92-97.
    [46]Matthew A Nurse, Benno M Nigg. The effect of changes in foot sensation-on plantar pressure and muscle activity [J]. Clinical Biomechanics, 2001,16:719-727.
    [47]Brizuela G. Biomechanical design of football boots: effect ofstuds on perfo-rmance and injury. [EB/OL].Prevention.http://www.ilfb.tuwien.ac.at.
    [48] Mueller MJ,et al.Effect of six types of footwear on pear plantar pressuresin patients with diabetes and transmetatarsal amputation[C]. Fifth Emed User Meeting Proceedings,1996.
    [49]Shorten M. Application of plantar pressure distribution data to athletic footwear design[C]. Emed Scientific Meeting Conference Proceedings,1991.
    [50]Yamada W. The effectiveness of shoewear and insoles materials in reducingplantar pressures in diabetics-a pilot study[C]. Emed Scientific Meeting Pr-oceedings,1992,6:71-72.
    [51]Nyska M. The effect of the shoe on foot pressures[C]. Emed Scientific M-eeting Proceedings,1992. 6:53-55.
    [52]McPoil T. Effects of insole material on force and plantar pres-sures duringwalking [J]. Journal of the American Podiatric Medi-cal Association,1992, 82(8):412-416.
    [53]Mikko Virmavirta,Paavo V Komi.Plantar pressure during jumping take-off[J].Journal of Applied Biomechanics,2000,16:320-326.
    [54]Eric Eils,Corinna Kupelwieser.Pressure distribution in inline skating straightswith different.[EB/OL]. http://www.isbs98.uni-konstanz.de.
    [55]向子元.不同步态慢跑鞋足底压力比较分析[J].技术专刊,2001,23(11).
    [56]葛可佑.中国居民膳食营养素参考摄入量[M].北京:中国轻工业出版社,2001,01:48-50.
    [57] Michael V, Fabio C, Carlo F.Changes in the excitability of soleus muscle short latency stretch reflexes during human hopping after 4 weeks of hopping training [J]. Eur J Appl Physiol,1998,78: 522-532.
    [58]卢祖能,曾庆杏等.实用肌电图学[M].人民卫生出版社,2000.169-172.
    [59]王健.表面肌电图信号分析及其应用的研究进展[J].体育科学,2000.04.36-39.
    [60]聂金雷,张勇.运动性疲劳的肌电图特征[J].天津体院学报,2000.15(20),48-52.
    [61]Petrofsky J. S,R. M Glaser,C A Philips,A. R.ind,and C.Williams. Evaluation of the amplitude and requency components of the surface EMG as an index of muscle fargue.Ergonomics 2000,25:213-223.
    [62]Viitasalo,J. T.and P.V.Komi,Signal characteristics duing fatigue. Eur[J].Appl Physic Occup Physiol,1998,37:111-121.
    [63]葛可佑,主编.中国居民膳食营养素参考摄入量[M].北京:中国轻工业出版社,2000.
    [64]葛可佑,主编.中国营养学科全书[M].北京:人民卫生出版社,2004.
    [65]Expert Consultation(1985): Energy and protein requirements[Z]. WHO Technical Report Series 724 Geneva: world health organization.
    [66]Durnin JVGA. Energy requirements: general principals[J].European Journal of Clinical Nutrition,1996,50(Suppl.1).
    [67]lack A E,Coward W A,Cole T J,et al. Human energy expenditure in affluent societies: analysis of 574 doubly-labelled water measurements [J]. Eur J Clin Nutr,1996,50: 72-92.
    [68]Schoeller D A,Van Santen E. Measurement of energy expenditure in humans by doubly labelled watermethod[J].Am J Physical,1982,53:955-959.
    [69]Blaxter K. Energy metabolism in animals and man,Cambridge: Cambridge University Press[Z].1989.
    [70]Segal K R. Comparison of indirect calorimetric measurements of resting energy expenditure with a ventilated hood,face mask and mouthpiece[J]. Am J Clin Nutr,1987,45:1420-1423.
    [71]Durnin JVGA. Energy requirements: general principles[J].European Journal of Clinical Nutrition,1996,50.
    [72]作者不详.运动鞋安上了“弹簧”[EB/OL].http://www.hzxjhs.com/jiaoshi/jiaoyanzuweb/wuli/news/2003-03.htm,2003,3.
    [73]作者不详.北京正之本,人体力学研究所.[EB/OL].http://www.zhengben.com.cn/gywm.asp.
    [74]作者不详.“双密度”打破技术垄断李宁篮球鞋新品上市[EB/OL].http://sport.sina.com.cn/basketball/,2004,09,21.
    [75]赵钊.“李宁弓”-全新的运动鞋减震理念一切皆有可能[N].李宁特约报道,2006,9.
    [76]珂文.RSscan创造中国运动鞋科技研发新时代[EB/OL].http://trend.sports.cn/brand/china/list3.htm.2004,10,13.
    [77]Wit B D,Clereq D D,Aerts P.Biomechanical analysis of the stance phase during barefoot and shod running[J].Biomech,2000,33:269.
    [78]Miliron M J,Cavanagh P R.Sagittal plane kinematics of the lower extremityduring distance running[J]. Biomechanics of Distance Running (ed.P.R.Cava-nagh),1990,65-105.
    [79]Hennig E M,Milani T L.In-shoe pressure distribution for running in various types of foot-wear [J]. Journal of applied Biomechanics, 1995.11:229-310.
    [80]Clark T E,Frederick E C,Hamill C L.The effects of shoe design parameterson rearfoot control in running[J]. Medicine and Science in Sports and Exer-cise,1998,15:376-381.
    [81]陈晓祖,媛媛.军用鞋靴足底压力的舒适性测试分析[J].中国个体防护装备,2006,1(01):8-11.
    [82]郭军.递增负荷气体代谢的变化及对运动能力的影响[J].体育科学,1996 ,16(3):58-61.
    [83]刘洵.评价有氧工作能力指标的探讨[J].天津体育学院学报,1995,10(2):18-20.
    [84]Kaneko M1Mechanics and Energetics in Running with Special Reference toEfficiency[J].Biomechanics,1990,23(suppl1):57-63.
    [85]Prampero P E.The energy cost of human locomotion on land and in water[J].Int Sports Med,1986,7(2):55-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700