用户名: 密码: 验证码:
河南省春季层状云系结构及其降水特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对2002年4月4~5日和2003年3月30日~4月2日河南省两次春季层状云降水个例进行了分析。利用3小时一次的加密探空资料、卫星云图、雷达回波图、天气图、地面雨量、雨滴谱、微波辐射计等资料,分析了降水云系的宏观特征,并利用一维层状云模式研究了降水粒子的时空分布和水质粒形成的微物理特征,由此初步建立了河南省春季层状云降水的概念模型。
     由观测资料分析可知,河南省春季层状云系结构不均匀,云系由若干个云块组成,云块之间有明显的界线,云顶高度在4~8km之间起伏变化,零度层亮带高度约为3.5km,云系存在一定厚度的过冷云层。暖区位势不稳定区位于0℃高度上下,冷区位势不稳定区位于-10~0℃高度之间。水汽含量最大值区位于700hPa附近,700hPa以下水汽通常来自南、东南方向,700hPa以上主要受西南气流影响。暖区700~500hPa之间一般存在上升气流。位势不稳定区所在高度的上方和下方会有风向切变和风速极大值中心,并且风切变或急流中心会早于位势不稳定的出现。暖区有明显的强降水中心,雨强极大值出现在山区迎风坡,降水雨滴谱谱宽较大,有时滴谱呈双峰型分布;冷区降水区常呈带状分布,雨区范围大,雨滴谱较窄,雨滴谱为单峰型。
     一维层状云模式模拟结果表明,暖区以凝华增长的云水为主,云水分布在2~6km高度;雨水在云水形成后产生,分布在1~4km之间,主要通过碰并云水增长;霰在雨水形成后产生,主要通过碰并云水增长,分布在云水区的中下层,霰形成后,雨水主要由霰融化产生。冷区降水云以冰相粒子为主,冰晶由凝华过程产生,分布在6~8km的最高层;雪是降水云中含量最大的粒子,主要分布在2~6km之间,大部分雪通过凝华过程增长,少部分雪由碰并过冷云水生成;霰分布在1~3km之间,霰碰并雪及雪自动转化为霰是霰增长的主要方式,也有少部分霰由碰并过冷云水转化而来;绝大部分雨水由霰、雪融化形成,分布在霰累积区的下方,霰及雪的含量直接影响雨水的产生量。
     通过对降水云系的综合研究,建立了河南省春季层状云降水概念模型:暖
    
    区降水主要通过云水碰并形成,冷区降水机制以冰粒子融化等冷云过程为主;
    暖区700一50OhPa通常有上升气流,冷区上升气流分布在近地面附近:700冲a
    存在风场的辐合,其上下则主要是辐散区;水汽主要集中在7O0hPa高度上,暖
    区水汽来自南、东南方向,冷区水汽以西南输送为主;暖区位势不稳定分布在O
    。C附近,冷区位势不稳定分布在一10一OOc,位势不稳定出现的时间与地面强降
    水、水汽最大累积区出现的时间一致。
Two cases of spring stratus precipitation processes occurred during March 30 to April 2, 2003 and April 4 to 5, 2002 have been analyzed in this paper. The macro characteristics of status cloud systems have been studied by using every 3-hour sounding data, satellite cloud pictures, radar echoes, synoptic charts, surface rainfall, raindrop size distribution and microwave radiometer. The spatial distribution of precipitation particles and the mechanisms of their formation were studied by one-dimension stratus model. Thus, spring stratus precipitation conceptual model was primarily established in Henan Province.
    Analyzed results of macro observed data showed that the configurations of stratus cloud systems were inhomogeneous, and stratus cloud systems consisted of several single clouds. Different clouds were departed by obvious borderline, and the height of cloud top changed between 4 and 8km. The height of 0℃ level occurred at about 3.5km height which was meant that super-cold cloud existed. The temperature of potential instability area was about 0℃ in the warm area and between -10℃ and 0℃ in the cold area. Maximum vapor content existed at 700hPa level, and the vapor came from south or ease-south below 700hPa level and from west-south above 700hPa level. Positive vertical velocity existed between 700hPa and 500hPa. There were wind shear and maximum wind speed occurred above or below the height of potential instability area and one of them happened before potential instability. Heavy rainfall occurred in the warm area, and maximum rainfall lay in the windward slope where the width of raindrop size distribution was b
    roadened and sometimes it was bimodal spectrum. The shape of rain band in cold area was zonal, and the area of rain band was small. The width of raindrop size distribution in the warm area was narrow and its shape was single model.
    Simulating results of one-dimension stratus model showed that the content of cloud water that grew up by deposition process was the largest in the warm area, and
    
    
    cloud water existed between 2km and 6km. In the warm area, the formation of rain water which existed between 1km and 4km was behind of the formation of cloud water, and the development of rainwater was depend on collecting cloud water. The occurrence of graupel that grew up by the means of collecting cloud water was behind of rain formation, and existed in the lower layer of cloud water. In the cold area, ice phase particles were the main particles in the cloud. Ice crystals were formed by means of deposition process and existed at the top position from 6 to 8km. Snow content was highest in the cloud and existed between 2 and 6km. Snow grew up by deposition primarily and by collecting super cold cloud water secondly. Graupel that grew up primarily by collecting ice crystal existed between 1 and 3km. Collecting cloud water and snow auto conversion were the mainly ways of graupel development.
    Through synthetic analysis of stratus cloud systems, stratus precipitation concept model has been primarily established. It was well known that the main process of precipitation formation was collecting cloud water in the warm area and ice phase particles melting in the cold area. Positive vertical velocity existed between 700hPa and 500hPa in the warm area and near surface in the cold area. Wind convergence existed at the height of 700hPa, and divergence existed above and below the height of 700hPa. Maximum vapoT content intensified at 700hPa level. Vapor came from south or east-south in the warm area and from south-west in the cold area. Potential instability existed near 0℃ in the warm area and between -10℃ and 0℃ in the cold area. The occurrence of potential instability was corresponding with maximum rainfall and maximum vapor content.
引文
[1] 李大山,人工影响天气现状与展望,北京,气象出版社,366-390(2002)
    [2] 北方层状云人工降水试验课题组,北方层状云人工降水试验研究主要成果摘要,1991
    [3] 游来光,马培民,胡志晋,北方层状云人工降水试验研究,气象科技,30(增刊),19-56(2002)
    [4] 游来光,北方人工降水资源研究进展,全国云物理和人工影响天气文集,1-11(1989)
    [5] 胡志晋,层状云人工增雨机制、条件和方法的探讨,应用气象学报,12(增刊),10—13(2001)
    [6] 陈万奎,严采蘩,冰相雨胚转化水汽密度差的实验研究,应用气象学报,12(增刊),23-29(2002)
    [7] 陶树旺,刘卫国,李念童等,层状冷云人工增雨可播性实时识别技术研究,应用气象学报,12(增刊),14-22(2001)
    [8] 雷恒池,魏重,沈志来等,微波辐射计探测降雨前水汽和云液水,应用气象学报,12(增刊),73-79(2001)
    [9] 姚展予,王广河,游来光等,寿县地区云中液态水含量的微波遥感,应用气象学报,12(增刊),88-96(2001)
    [10] 朱元竟,GMS-5估计可降水量的研究,应用气象学报,9(1),8-14(1998)
    [11] Zhao Gaoxiang, Analysis of the Ability of Infrared Water Vapor Channel for Moisture Remote Sensing in the Lower Atmosphere, Advances in Atmospheric Sciences, 15(1), 107-112(1998)
    [12] 杨景梅,邱金桓,我国可降水量同地面水汽压关系的经验表达式,大气科学,20(5),620-626(1996)
    [13] 杨景梅,用地面适度产量计算我国整层大气可降水量及有效水汽含量方法研究,大气科学26(1),9-22(2002)
    [14] 汪学林,谷淑芳,于勇等,两次江淮气旋的云雨特征及其人工播云效果的综合分析,应用气象学报,12(增刊),48-57(2001)
    [15] 于达维,何观芳,周勇等,三维对流云催化模式及其外场试用,应用气蒙学报,12(增刊),122-132(2002)
    [16] 曾光平,张长安,李茂仑,人工降水方案统计设计的统计数值模拟方法研究,大气科学,24(1),131-141(2000)
    
    
    [17] 李宏宇,河南地区典型降水云系水资源开发和利用基础研究,博士论文(中国科学院大气物理研究所),2003.7
    [18] Browning,K.A, Radar measurements of air motion near front, Part Ⅱ, Weather, 26, 320-340(1971)
    [19] Carson,R.E., Airflow through midlatitude cyclones and the common cloud pattern, Mon.Weather.Rev., 108, 1498-1509(1980)
    [20] Peter V. Hobbs, The Mesoscale and Microscale Structure and Organization of Cloud and Precipitation in Midlatitude Cyclones.Ⅰ: A Case Study of a Cold Front, J.Atmos.Sci., 37(3), 568-596(1980)
    [21] 内蒙古自治区气象局科技情报中心,中纬度气旋云和降水的中微尺度组织结构(译文集),1985.5
    [22] Paul H. Herzegh, Mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones.Ⅱ: Warm-frontal clouds, J.Atmos.Sci., 37(3), 597-611(1980)
    [23] Peter V. Hobbs, The Mesoscale and Mieroscale Structure and Organization of Cloud and Precipitation in Midlatitude Cyclones.Part V: Structure of narrow cold-frontal rainbands, J.Atmos.Sci., 39(2), 280-295(1982)
    [24] David B. Parsons, The Mesoscale and Microscale Structure and Organization of Cloud and Precipitation in Midlafitude Cyclones.Ⅶ: Formation, development, interaction, and dissipation ofrainbands, J.Atmos.Sci., 40(3), 559-579(1983)
    [25] PENG-YUN Wang, Mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones.Ⅵ: Wavelike rainbands associated with a cold-frontal zone, J.Atmos.Sci., 40(3), 543-558(1983)
    [26] PENG-YUN Wang, Mesoscale and microscale structure and organization of clouds and precipitation in midlafitude cyclones.X: Wavelike rainbands in an occlusion, J.Atmos.Sci., 40(8), 1950-1064(1983)
    [27] Kenneth Sassen, Investigation of a Winter Mountain Storm in Utath. Part Ⅱ: Mesoscale Structure, Supercooled liquid water development, and precipitation process, J.Atmos.Sci., 47(11), 1323-1350(1990)
    [28] 张存,周毓荃,人工影响天气优化技术研究,北京,气象出版社,2000.
    [29] 胡志晋,关于空中水资源和人工增雨潜力的估算问题,人工影响天气,12,
    
    53—55(1999)
    [30] 段英,吴志会,利用地基遥感方法监测大气中汽态、液态水含量分布特征分析,应用气象学报10(1),34-40(1999)
    [31] 廖菲,郊国光,洪延超等,2002年河南春季的一次层状云降水特征的研究,南京气象学院学报,27(2),(2004)(已接收).
    [32] 胡娅敏,沈桐立,廖菲,河南省春季层状云降水的地面雨滴谱特征,南京气象学院学报,27(4),(2004)(已接收).
    [33] Takashi Y, Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions, Journal of The Atmospheric Sciences, 52(23), 4043-4059(1995)
    [34] 伍志方,张春良,张沛源,一次强对流天气的多普勒特征分析,高原气象,20(2),202-207(2001)
    [35] 陈进强,杨连英,多普勒天气雷达在人工影响天气中的应用,气象科技,30(2),127-128,117(2002)
    [36] A.R. Jameson, Fluctuation Properties of Precipitation. Part Ⅱ: Reconsideration of the Mean and Measurement of Raindrop size Distributions, J.Atmos.Sci., 55(2), 283-294(1998)
    [37] 天气月刊编委会,天气月刊—制作单站补充天气预报的方法,科学普及出版社,1958
    [38] 朱乾根,天气学原理和方法(修订本),北京,气象出版社,872-896(1992)
    [39] 王以琳,刘文,王广河,冷云人工催化增雨区的探空判据,气象学报,60(1),116-121(2002)
    [40] 洪延超,积层混合云数值模式研究(Ⅰ)——模式极其微物理过程参数化,气象学报,54(5),542-557(1996)
    [41] 洪延超,肖辉,李宏宇,冰雹云中微物理过程研究,大气科学,26(3),421-432(2002)
    [42] 王以琳,王俊,龚佃利,江淮气旋和冷锋相结合天气过程的宏、微观结构分析,应用气象学报,12(增刊),30-38(2001)
    [43] Henri Sauvageot,Manlandon Koffi, Mulfimodal Raindrop Size Distribution, J. Atmos. Science, 57(15), 2480-2492(2000)
    [44] 周毓荃,刘晓天,周非非,河南干旱年地面雨滴谱特征,应用气象学报,12(增刊),39-47(2001)
    [45] 人工增雨技术研究及示范课题组,国家“十五”科技攻关项目2001BA610A-06“人工增雨技术研究及示范”执行情况验收自评估报告,北京,2003.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700