红树林北缘区不同起源秋茄林重金属污染特征与生态风险比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树林生态系统处于海洋与陆地的动态交界面,因而在结构与功能上具有既不同于陆地生态系统,也不同于海洋生态系统的特性。福鼎市是我国目前红树林天然分布的最北界,其优势群落为秋茄红树林,在我国红树林生态学研究中有着特殊的意义。有鉴于此,本文选择福鼎不同秋茄红树林湿地类型(前岐镇安仁村腰屿秋茄天然林和点头镇点头村秋茄人工林)作为调查对象,分别对不同秋茄红树林湿地土壤和植株体内的重金属(Zn、Pb、Cd、Cu)等污染指标进行详细监测,并在此基础上,通过对秋茄天然林与人工林的重金属吸收、积与循环特征、重金属的富集特征、重金属的空间分布特征、重金属污染特征与生态危害的风险评价及其生态环境公共服务功能等方面进行比较研究,探讨重金属在不同起源秋茄群落沉积物中积、循环、富集规律,结果表明:
     (1)秋茄天然林植物各器官中Zn、Pb、Cd元素平均含量分别为19.21、28.40、1.30(mg·kg~(-1));而在秋茄人工林植物各器官中Zn、Pb、Cd元素平均含量分别为15.06、17.65、1.12(mg·kg~(-1)),前者分别是后者的1.28、1.61、1.16倍,说明秋茄天然林对重金属元素Zn、Pb、Cd的吸收能力大于秋茄人工林。
     (2)秋茄天然林林地土壤Zn、Pb、Cd、Cu元素含量平均含量分别为49.84、84.67、2.55、20.14(mg·kg~(-1));林地表层土壤(0~30cm)Zn、Pb、Cd、Cu元素储量分别为3353.32、14070.65、540.708、2901.36(mg·m~(-2)),整个秋茄天然林林地重金属元素储量呈Pb>Zn>Cu>Cd的变化规律。秋茄人工林林地土壤Zn、Pb、Cd、Cu元素平均含量分别为68.15、127.87、3.61、36.66(mg·kg~(-1)),林地表层土壤(0~30cm)Zn、Pb、Cd、Cu元素储量分别为10778.33、15714.07、719.93、5289.77 (mg·m~(-2))。整个秋茄人工林林地重金属元素储量呈Pb>Zn>Cu>Cd的变化规律。
     (3)秋茄天然林红树林植物对土壤表层重金属Zn、Pb、Cd、Cu元素的富集系数,平均值分别为0.767、0.284、0.339、1.464;对植物体不同部位而言,Zn元素的富集系数在0.348~1.860;Pb在0.074~1.134;Cd在0.190~1.015;Cu在0.508~4.722,这表明秋茄天然林不同部位对各元素的富集能力具有一定的差异。秋茄植株对土壤不同重金属元素具有不同的吸收富集能力,大体的规律为:Cu>Zn>Cd>Pb。秋茄人工林红树林植物对土壤表层重金属Zn、Pb、Cd、Cu元素的富集系数,平均值分别为0.166、0.133、0.234、1.127,对植物体不同部位而言,Zn元素的富集系数在0.049~0.557;Pb在0.038~0.439;Cd在0.111~0.515;Cu在0.313~1.272;秋茄植株对土壤不同重金属元素具有不同的吸收富集能力,大体的规律为:Cu>Cd>Zn>Pb。
     (4)秋茄天然林群落Zn、Pb、Cd、Cu元素的现存累积量,分别为304.33、400.48、21.78、396.86 mg·m~(-2),其中地上部分现存累积量分别为179.30、250.78、14.96、327.40 mg·m~(-2),分别占总量的58.9%、62.6%、68.7%、82.5%;地下部分的现存累积量分别为125.03、149.7、6.82、69.46 mg·m~(-2),分别占总量的41.1%、37.4%、31.3%、17.5%。秋茄人工林群落Zn、Pb、Cd、Cu元素的现存累积量,分别为63.73、107.88、10.55、251.30 mg·m~(-2),其中地上部分现存累积量分别为36.72、64.14、8.58、179.57 mg·m~(-2),分别占总量的57.6%、59.5%、81.3%、71.5%;地下部分的现存累积量分别为27.01、43.74、1.97、71.73 mg·m~(-2),分别占总量的42.4%、40.5%、18.7%、28.5%。
     (5)重金属在不同湿地沉积物中的水平分布的比较来看,不管是秋茄天然林还是人工林,Zn、Pb含量较高,Cd、Cu含量则相对较低;从垂岸分布比较来看,秋茄人工林湿地沉积物中重金属元素Zn、Pb、Cd、Cu含量明显高于人工林,重金属Pb、Cd、Cu元素含量大体呈现一致的分布规律,即林外到林缘表层沉积物重金属含量逐渐增加,而林缘到林内呈现逐渐下降的趋势;重金属在不同湿地沉积物中垂直分布比较来看,林内2个位置沉积物(林内15m和林内50m)柱状样中,重金属Zn、Pb、Cd、Cu元素含量大体上呈现随着沉积物深度的增加而明显减小的规律,而在林外光滩沉积物(林外100m)柱样中变化则相对较小。
     (6)重金属在不同湿地沉积物中的垂直分布相关性比较方面:重金属元素在林内(林内15m、林内50m)与土壤沉积物理化性状的相关性明显要高于林外光滩(林外100m),一些性质相似的重金属如Zn、Pb等元素的共沉降性质可能会受到红树林茂密的根系以及其丰富的底栖生物和有机质的影响而被削弱。
     (7)不同林地间重金属生态危害的风险评价:湿地沉积物中重金属含量均具有一定的区域特征,点头镇点头村红树林重金属的平均含量高于其它四个点;以现代工业化前正常颗粒沉积物中重金属含量的最高背景值为参比值,重金属的富集顺序为Cd>Pb>Cu>Zn,污染水平顺序为Cd>Pb>Cu>Zn;以红树林周边环境土壤的平均值为参比值,重金属的富集顺序为Pb>Cd>Cu>Zn,污染水平顺序为Cd>Pb>Cu>Zn.各采样点危害程度顺序为:点头镇点头村>点头镇马洋村>前岐镇安仁村>店下镇选城村>前岐镇安仁村腰屿。
     (8)福鼎秋茄红树林湿地沉积物吸附Zn共计13,871,760g,其中秋茄天然林吸附Zn达1,507,800g,秋茄人工林吸附Zn达12,363,960g,运用替代法则福鼎市秋茄红树林通过兑吸收土壤中重金属含量实现的生态功能价值为513.3万元,其中秋茄天然林吸附价值总量为55.8万元,人工林吸附价值总量为457.5万元。
     (9)福鼎市秋茄红树林湿地生态系统服务功能总价值为16,589,234元,其中生产有机功能、防风消浪护堤功能、维持生物多样性功能、净化污染物功能、生态旅游功能、科研教育功能这6项功能价值分别为1031,959元、7950,000元、6,000,000元、635,075元、644,000元和328,200元,各项生态服务功能价值量大小顺序为:消浪护堤功能(47.9%)>生物多样性功能(36.2%)>生产有机功能(6.2%)>生态旅游功能(3.9%)>污染物净化功能(3.8%)>科研教育功能(2.0%)。
Mangrove ecosystem located at the dynamic interface between ocean and land,its features was neither the terrestrial ecosystem nor the marine ecosystem on the structures and function.Fuding city with the special significance of mangrove ecological studies was located on the northern tip of Fujian,which was the mono-dominant community of Kandelia candel mangrove.In this paper,studied on distribution of Zn、Pb、Cd and Cu in Kandelia cande1 mangrove community of Fuding were investigated between the natural forest and the monoculture plantations(The investigation places were situated at Qianqi Town Anren Village and Diantou Town Diantou Village).Base on this,with the case comparative analysis with respect to the traits of transportation,accumulation and circulation of heavy metals、the enriched characteristics、the spatial distribution of heavy metals、the pollution character and the potential ecological risk assessment and the eco-environment service function assessment by comparing the natural forest with the monoculture plantations,this paper discussed transportation,accumulation and circulation of heavy metals in sediments which had different origins of Kandelia candel mangrove community.The results showed that:
     (1)The respective element average contents in different parts of the Kandelia cande1 natural forest plant were 19.21、28.40、1.30(mg·kg~(-1))of Zn、Pb and Cd;While their contents in different parts of the Kandelia cande1 monoculture plantations were 15.06、17.65、1.12 mgkg~(-1) of Zn、Pb and Cd (mg·kg~(-1)),being as much 1.28 times、1.61 times and 1.16 times as that from the natural forest to the monoculture plantations.
     (2)The pool amounts of Zn、Pb、Cd and Cu elements in the the Kandelia cande1 natural forest plant l(0~30cm depth) were 49.84、84.67、2.55、20.14 mg·kg~(-1) and storages were 3353.32、14070.65、540.708、2901.36 (mg·m~(-2) )whose variation were in the order of Pb>Zn>Cu>Cd;What’s more,The pool amounts of Zn、Pb、Cd and Cu elements in the monoculture plantations (0~30cm depth) were 68.15、127.87、3.61、36.66 mg·kg~(-1) and storages were 10778.33、15714.07、719.93、5289.77 (mg·m~(-2) )whose variation were in the order of Pb>Zn>Cu>Cd.
     (3)In the the Kandelia cande1 natural forest,the accumulation indexes of plant to soil were 0.767、0.284、0.339、1.464 of Zn、Pb、Cd and Cu.To different parts of the Kandelia cande1 plant,their indexes ranged from 0.348~1.860、0.074~1.134、0.190~1.015 and 0.508~4.722 of Zn、Pb、Cd and Cu.Furthermore,the accumulating ability of plant to soil heavy metal were in the order of Cu>Zn>Cd>Pb: On the other hand,the accumulation indexes of plant to soil were 0.166、0.133、0.234、1.127 of Zn、Pb、Cd and Cu in the the Kandelia cande1 monoculture plantations.To different parts of the Kandelia cande1 plant,their indexes ranged from 0.049~0.557、0.038~0.439、0.111~0.515 and 0.313~1.272 of Zn、Pb、Cd and Cu.Furthermore,the accumulating ability of plant to soil heavy metal were in the order of Cu>Cd>Zn>Pb.
     (4)The storages in the community of the the Kandelia cande1 natural forest were 304.33、400.48、21.78、396.86 mg·m~(-2),besides the storages of the aerial portion were 179.30、250.78、14.96、327.40 mg·m~(-2)that occupied respectively 58.9%、62.6%、68.7%、82.5% of total amount,while the storages of the underground part were 125.03、149.7、6.82、69.46 (mg·m~(-2))that occupied respectively 41.1%、37.4%、31.3%、17.5% of total amount;What’s more,The storages in the community of the monoculture plantations were 63.73、107.88、10.55、251.30mg·m~(-2), besides the storages of the aerial portion were36.72、64.14、8.58、179.57 (mg·m~(-2))that occupied respectively 57.6%、59.5%、81.3%、71.5% of total amount,while the storages of the underground part were 27.01、43.74、1.97、71.73 (mg·m~(-2))that occupied respectively 42.4%、40.5%、18.7%、28.5% of total amount.
     (5)Based on the studies on horizontal distribution of Zn、Pb、Cd and Cu between the the Kandelia cande1 natural forest and the monoculture plantations , some conclusions were obtained.High contents of Zn and Pb were found in the sediments, while the contents of Cd and Cu were relatively lower.With regard to Cross-section distribution of heavy metals,the concentrations of Pb,Cd and Cu increased across the tidal flat to the mangrove forest edge,while decreased across the forest edge to inside.In addition that Vertical profiles of Zn、Pb、Cd、Cu heavy metals,their average contents decreased with the increasing of soil depth at the 15m inside-forest and the 50m inside-forest sites while the result was different at 100m outside-forest site.
     (6)On correlation coefficient of various heavy metal and soil character between the the Kandelia cande1 natural forest and the monoculture plantations,the correlation was higher from the 15m inside-forest and the 50m inside-forest to 100m outside-forest site.
     (7)Studied on pollution characteristic and ecological risk assessment of heavy metals,Concentrations,distribution and accumulation of heavy metals in the sediments were investigated.When the highest values for heavy metals concentrations in sediments before the modern industrialization of the world were taken as references , the accumulating order for these heavy metals was:Cd>Pb>Cu>Zn and the order of pollution level was:Cd>Pb>Cu>Zn.When the environmental background values of mangrove worked as references,the accumulating order was: Pb>Cd>Cu>Zn,and the order of pollution level was:Cd>Pb>Cu>Zn.
     (8)In the Kandelia candel mangrove forest of Fuding,Zn was absorbed 13871760g, on the one hand,it was 1507800g of the the Kandelia cande1 natural forest;on the other hand,it was 12,363,960g of the monoculture plantations.Employing the replacing and shadow engineering methods,the function value of mangrove soil on absorbing heavy metals was evaluated ,which indicated that the value of the natural mangrove soil to absorb heavy metals in Fuding mangrove ecosystem was about 5.133 million yuan.
     (9)The total value of the mangrove wetland ecosystem services in the Kandelia candel mangrove forest of Fuding was 16,589,234 yuan RMB per year.based on the economical background of the region in 2009.Among them the value of production of goods was1,031,959 yuan RMB per year,the value of protection against floods was 7950,000 yuan RMB per year,the value of biodiversity was 6,000,000 yuan RMB per year,the value of purification was 635,075 yuan RMB per year,the value of ecotourism was 644,000 yuan RMB per year,the value of the educational research functions was 328,200 yuan RMB per year.
引文
[1]程皓,陈桂珠,叶志鸿.红树林重金属污染生态学研究进展[J].生态学报,2009,(7):3893~3900.
    [2]林鹏.中国红树林研究进展[J].厦门大学学报(自然科学版),2001,40(2):592~603.
    [3] Gee JM et al.Do mangrove diversity and leaf litter decay promote meiofaunal diversity[J].Journal of Experimental Marine Biology and Ecology,1997,218(1):13~33.
    [4]陶思明.红树林生态系统服务功能及其保护[J].海洋环境科学,1999,18(10):439~441.
    [5]林鹏.中国红树林生态系统[M].北京:科学出版社.1997.
    [6]张乔民,隋淑珍.中国红树林湿地资源及其保护[J].自然资源学报,2001,16(1):28~36.
    [7]陆志强.红树林污染生态学研究进展[J].海洋科学,2002,26(7):26~29.
    [8]张乔民,陈永福.海南三亚红树凋落物产量与季节变化研究[J].生态学报, 2003,23(10):1977~1983.
    [9] Defew L H,Mair J M, Guzman H M. An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay[J]. PacificPanama. Marine Pollution Bulletin, 2005,50: 547~552.
    [10]陈长平,高亚辉,林鹏.福建省福鼎市后屿湾红树林区水体浮游植物群落动态研究[J].厦门大学学报(自然科学版),2005,44(1):118~122.
    [11]林鹏.广西红海榄群落的生物量和生产力[J].厦门大学学报(自然科学版),1992,31(2):199~202.
    [12] Duke NC.Dispersant use and b bioremediation strategy as alternate means of reducing impacts of large oil spills on mangrove:The Gladstone field trials[J].Marine Pollution Bulletin,2000,41(7-12):403~412.
    [13]王宏镔,束文圣,蓝崇钰。重金属污染生态学研究现状与展望[J].生态学报,2005,25 (3):596~605.
    [14] Skilleter GA . Effects of habitat modification in mangroves on the structure of mollusk and crab assemblages[J].Journal of Experimental Marine Biology and Ecology,2000,244(1):107~129.
    [15] Davis JH.The ecology and geologie role of mangrove[M].Florida:Washington Publication,1940.
    [16] Macnae WA.A general account of the fauna and flora of mangrove swamps and forest in Indo west pacific region[J].Adv Mar Bive,1968,73(6):270~276.
    [17] Tomlinson PB.The botany of mangroves[M].Cambridge:Cambrige Univ Press,1999.
    [18] Duke NC et al.Large-scale damage to mangrove forests following two large oil spills in Panama[J].Biotropica,1997,29(1):2~14.
    [19] Ashworth JM.Hong Kong Flora and Fauna:Computing Conservation[J].Hong Kong:World Wide Fund for Nature Hong Kong,1993,54(4):306~313.
    [20] Tam NFY.Mappingand characterization of mangrove plant communities in Hong Kong[J].Hydrobiologia,1997,352:25~37.
    [21] Ikejima K.Juvenile an small fishes in a mangrove estuary in Trang province[J],Thailand:seasonal and habitat differences.Estuarine,Coastal and Shelf Science,2003,56(3-4):447~457.
    [22] Clark MW.Redox stratification and heavy metal partitioning in Avicennia—dominated mangrove sediments:a geochemical model[J].Chemical Geologhy,1998,149(3-4):147~171.
    [23] Das AB.Genetic erosion of wetland biodiversity in Bhitarkanika forest of Orissa[J],India.Biologia,1999,54(4):415~422.
    [24]温远光,刘世荣,元昌安.广西英罗港红树要植物种群的分布[J].生态学报,2002,22(7):1160~1165.
    [25]缪绅裕.广东湛江红树林保护区植物群落生态研究[J].广州师范学报(自然科学版),2005,21(3):65~69.
    [26]何斌源,范航清,莫竹承.广西英罗港红树林区鱼类多样性研究[J].热带海洋学报,2001,20(4):74~79
    [27]李元跃,吴文林.福建漳江口红树林湿地自然保护区的生物多样性及其保护[J].生态科学,2004,23(2):134~136.
    [28]李海生,陈桂珠.海南岛红树植物海桑遗传多样性的ISSR分析[J].生态学报,2004,24(8):1656~1662
    [29]郑逢中,林鹏,卢昌义等.福建九龙江口秋茄红树林凋落物年际动态及其能量流的研究[J].生态学报,1998,18(2):113~118.
    [30]林鹏.海南岛河港海莲红树林凋落物动态的研究[J].植物生态学与地植物学学报,1990,14(1):69~74.
    [31]张银龙.九龙江河口秋茄林及白骨壤红树林土壤特性研究[J].河南农业大学学报,1998,32(4):325~330
    [32]林初夏.深圳福田自然保护区红树林土壤的化学特征[J].生态科学,2004,23(2):118~123
    [33]郑文教.九龙江口秋茄红树林镉铬镍元素的积及动态[J].环境科学学报,1996,16(2):232~237.
    [34]王文卿.红树林生态系统重金属污染的研究[J].海洋科学,1999,21(3):45~48.
    [35]章金鸿.重金属Cu、Pb、Zn、Cd在深圳福田红树林中的迁移、积和循环[J].海洋与湖沼,1996,27(4):386~393.
    [36]辛琨,赵广孺,孙娟等.红树林土壤吸咐重金属生态功能价值估算[J].生态学杂志,2005,24(2):206~208.
    [37]汤养麟.泉州湾河口湿地自然保护区红树林保护研究[J].林业勘查设计,2004,(2):32~35.
    [38]梁士楚.广西红树植物群落特征的初步研究[J].广西科学,2000,7(3):210~216.
    [39]林益明.福建红树资源的现状与保护[J].生态经济,1999,3:16~19.
    [40]林益明,林鹏.红树林单宁的研究进展[J].海洋科学,2005,29(3):59~63.
    [41]梁士楚.红树植物木榄种群植冠层结构的分形特征[J].海洋通报,2002,21(5):26~31.
    [42]于祥.基于神经网络的红树林景观特性遥感提取技术研究[J]。海洋环境科学,2007,26(6):26~42.
    [43]李伟.遥感技术在红树林湿地研究中的应用述评[J].林业调查规划,2008,33(5):22~27.
    [44] Ray A K, Tripathy S C, Patra S.Assessment of Godavari estuarine mangrove ecosystem through trace metal studies[J].EnvironmentInternational,2006,12(2):219~223.
    [45] MachadoW,MoscatelliM, Rezende LG,etal.Mercury,zinc,and copper accumulation in mangrove sediments surrounding a large land fill insoutheast Brazil[J].Environmental Pollution,2002,120(3):455~461.
    [46] Yim M W,Tam N F Y.Effects of wastewater-borne heavymetal on mangrove plants and soilmicrobial activities[J].Marine Pollution Bulletin,1999,69(1):179~186.
    [47] Thomas C, Eong O J.Effects of the heavy metals Zn and Pb on R.mucronata and A.alba seedlings. In: Soepadmo E, Rao A M,MacIntosh MD.Proceedings of the Asian Symposium on Mangroves and Environment[J].Malaysia:ISME,1984,23(3):568~574.
    [48] Zhang F Q, Wang Y S, Yin J P. Research advances on the resistance ofmangrove plants to heavy metalpollution[J].Acta Botanica Yunnanica,2005,27(3):225~231.
    [49] Silva C A R E, Silva A P D, Oliveira S R D. Concentration, stock and transport rate of heavy metals in a trop ical red mangrove[J],Natal,Brazil.Marine Chemistry,2006,99(3):2~11.
    [50] Tam N F Y,Wang Y S.Accumulation and distribution of heavymetals in a simulated mangrove system treated with sewage[J].Hydrobiologia,1997,35(2):67~75.
    [51]林光辉,林鹏.红树植物秋茄热值及其变化的研究.生态学报,1991,11(1):44~48.
    [52]王宏镔等.重金属污染生态学研究现状与展望[J].生态学报,2005, 25(3):596~605.
    [53]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [54] Tam N F Y, etal.Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps[J].EnvironmentalPollution, 2000,110: 195~205.
    [55] JJG76-1991.电极式盐度计[M],北京:中国计量出版社,1991.
    [56]张晓息.黄河三角洲湿地生态服务功能价值评估[D].山东,山东师范大学.2003.
    [57]陈鹏.厦门湿地生态系统服务功能价值评[J].湿地科学,2006,4(2):102~109.
    [58]郑文教,林鹏.深圳福田白骨壤群落Cr、Ni、Mn的积及分布[J].应用生态学报,1996,7(2): 139~144.
    [59] Alberts J J,PriceM T,KaniaM. Metal concentration in tissues of Sprtina alterniora and sediments of Geogia SaltMarshes[J].Estuarine Coastal and Shelf Science, 1990, 30: 47~58.
    [60] MacFarlane G R,Koller C E, Blomberg S P. Accumulation and partitioning of heavy metals in mangroves[J]:A synthesis of field2based studies.Chemosphere,2000,69(3):1454~1464.
    [61]郑逢中,林鹏,郑文教等.秋茄对镉的吸收、积及净化作用的研究[J].植物生态学与地植物学学报, 1992,16(3):220~226.
    [62] Milenkovie N,Damijanovie M,Ristic M.Study of heavy metal pollution in sediments from the iron gate(Danube River),serbia andmontenegro[J].Polish Journal of Environmental Studies,2005,14(6):781~787.
    [63]王宏镔.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):596~605.
    [64]郑逢中,林鹏,郑文教.红树植物秋茄对镉耐性的研究[J].生态学报,1994,14(14):408~414.
    [65]郑文教,连玉武,郑逢中等.广西英罗港红海榄林重金属元素的积及动态[J].植物生态学报, 1996 , 20 (1):20~27.
    [66]郑文教,郑逢中.福建九龙江口秋茄林铜铅锌锰元素的积及动态[J].植物学报,1996,38 (3):227~233.
    [67]林鹏,卢昌义,林光辉等.九龙江口红树林研究I.秋茄群落的生物量和生产力[J].厦门大学学报, 1985, 24(1): 508~514.
    [68]温远光.广西英罗港5种红树植物群落的生物量和生产力[J].广西科学,1999,6(2):142~147.
    [69]陈振楼.上海滨岸潮滩沉积物重金属元素的空间分布与积[J].地理学报,2000,55(6):641~651.
    [70] Tam NFY . Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps[J]. EnvironmentalPollution,2000,110:195~205.
    [71]袁旭音,刘红樱.苏北沿海沉积物的化学组成和重金属特征[J].资源调查与环境,2003,24(3):204~210.
    [72]刘芳文,颜文,王文质等.珠江口沉积物重金属污染及其潜在生态危害评价[J].海洋环境科学,2002,21(3):34~38.
    [73]许世远,陶静,陈振楼等.上海潮滩沉积物重金属的动力学积特征[J].海洋与湖沼,1997,28 (5):509~515.
    [74] Alongi D M,et al.Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang estuary, China[J]. Estuarine, Coastal and Shelf Science, 2005,63(1): 605~618.
    [75]王国平,刘景双.二百方子沼泽湿地沉积物重金属分布特征研究[J].环境科学,1996, 94(3):283~291.
    [76] Praveena SM,Ahmed A,RadojevicM. Heavy metals in mangrove surface sediment ofMengkabong lagoon, Sabah: multivariate and geoaccumulation index approaches[J].International Journal of Environmental Research, 2008,2(2):139~148.
    [77] Essien J P, Benson N U, Antai S P. Seasonal dynamics of physicochemical properties and heavymetal burdens in mangrove sediments and surfacewater of the brackish QuaIboeestuary, Nigeria[J]. Toxicological and Environmental Chemistry,2008, 90(2):259~273.
    [78] Mackey A P, Hodgkinson M C. Concentrations and spatial distribution of trace metals in mangrove sediments from Brisbane River, Australia[J].Environmental Pollution, 1995,90(2): 181~186.
    [79]钱嫦萍,陈振楼.潮滩沉积物重金属生物地球化学研究进展[J].环境科学研究,2002,15(5):49~51
    [80] ShriadahM M A. Heavy metals in mangrove sediments of the United Arab Emirates shoreline (Arabian Gulf)[J].Water,Air, and Soil Pollution,1999,116(2): 523~534.
    [81] Kruitwagen G, Pratap H B, CovaciA et al. Status of pollution in mangrove ecosystems along coast of Tanzania[J].Marine Pollution Bulletin,2008,56(5):1022~1031.
    [82] Tam N F Y,Wong Y S.Spatial variation of heavymetals in surface sediments of Hong Kong mangrove swamps[J].Environmental Pollution,2000,11(2):195~205.
    [83] MariniM E J,J iménezM F S,Osuna F P.Trance metals accumulation patterns in a mangrove lagoon ecosystem,Mazatlán Harbor, southeast gulfof California[J].Journal of Environmental Science and Health, 2008,43 (9):995~1005.
    [84]宋萍,封磊,洪伟等.闽江河口湿地土壤植物系统Zn、Cd的分布特征[J].福建林学院学报,2009,29(1):17~22.
    [85]高会旺,张英娟.大气污染物向海洋的输入及其生态环境效应[J].地球科学进展,2002,17(3) :326~330.
    [86]陈小勇,曾宝强,陈利华.香港汀角红树植物、沉积物及双壳类动物重金属含量[J].中国环境科学,2003,23(5):480~484.
    [87]缪绅裕,陈桂珠.模拟秋茄湿地系统中镍、铜的分布积与迁移[J].环境科学学报,1999,19(5):545~549.
    [88]王增焕,林钦,李纯厚等.珠江口表层沉积物铜铅锌镉的分布与评价[J].环境科学研究,2004,17(4):5~9.
    [89] SimeonovV,StratisJA,SamaraC,etal.Assessment of the surfacewater qualityin Northern Greece[J].WaterRes,2003,37(17):4119~4124.
    [90]朱颖,吴纯德.淇澳岛红树林生态系统中重金属含量相关性[J].环境科学与技术,2009,32(11):45~49.
    [91]贾振邦,邓宝山,王清平等.应用沉积学原理评价太子河支流主要重金属污染及潜在生态危害[J].环境科学,1991,12(3):79~84
    [92] LarsHakanson.Anecological risk index for aquatic pollution control:a sedimentological approach[J].Water Res,1980,14(2):975~1000.
    [93] Daily G. Natures Service: Societal Dependence on Natural Ecosystem [M]. Washington DC: Island Press,1997.
    [94]龚子同,张效朴.中国的红树林与酸性硫酸盐土[J].土壤学报, 1994. 31(1):86~93.
    [95]欧阳志云,王如松,赵景柱.生态系统服务功能及其生态经济价值评价[J].应用生态学报,1999,10(5):635~640
    [96] Costanza R d Arge R,de groot R,etal.The value of the world ecosystem service and natural capital[J].Nature, 1997,38(7):253~260.
    [97]张运,尹少华,储蓉.湿地生态系统经济价值评价的探讨[J].湖南林业科技,2007,34(3):17~20.
    [98]王文抑,王瑙.中国红树林[M].北京,科学出版社, 1997,1~186.
    [99]韩维栋,高秀梅,卢昌义.红树林生态系统及其生态价值[J].福建林业科技,2006,3(2):9~13.
    [100]傅娇艳,丁振华.湿地生态系统服务功能和价值评价研究进展[J].应用生态学报,2007, 18(3):681~686.
    [101]李庆芳,章家恩,刘金茶.红树林生态系统服务功能研究综述[J].生态科学, 2006, 25(5):472~475.
    [102]陈鹏.厦门湿地生态系统服务功能价值评[J].湿地科学,2006,4(2):102~109.
    [103]林鹏.福建漳江口红树林湿地自然保护区综合科学考察报告[M].厦门大学出版社,2001.
    [104]彭友贵,陈桂珠,夏北成等.广州南沙地区湿地生态系统的服务功能与保护[J].湿地科学,2004,12(2):81~87.
    [105]李晓文,肖笃宁,胡远满.辽东湾滨海湿地景观规划预案分析与评价[J].生态学报,2002,22(2):224~232.
    [106]吴炳方,黄进良,沈良标.湿地的防洪功能分析评价—以东洞庭湖为例[J].地理研究,2000,19(2):189~193.
    [107] Sasekumar A.Mangrove Fisheries and Connections[M].ASEAN-Australia Marine ScienceProject,1993.
    [108]陈桂珠.研究保护和开发利用红树林生态系统[J].生态科学,1991,(1):116~119.
    [109]辛琨,肖笃宁.盘锦地区湿地生态系统服务功能价值估算[J].生态学报,2002,22(8):1345~1349.
    [110]中国环境与发展国际合作委员会.中国自然资源定价研究[M].北京:中国环境科学出版社,1997.
    [111]李建勇.红树林湿地生态系统服务功能与可持续利用研究—以湛江红树林国家自然保护区为例[J].2004, 3(1):116~119.
    [112] Willis K G,Benson J F.Recreational values of forests[J].Forestry,1989,62(2):93~109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700