用户名: 密码: 验证码:
基于遥感与GIS技术的北疆牧区积雪监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北疆地区是我国三大积雪分布中心之一,也是新疆主要的畜牧业基地。由于区内地形复杂,海拔高、气候寒冷潮湿,冬、春季雪灾频繁,大批牲畜因雪灾而死亡,积雪灾害成为主要的自然灾害之一,严重影响着草地畜牧业的可持续发展。而遥感技术是监测积雪覆盖范围的最有效的方法。本论文的设计就是利用遥感与地理信息系统技术,利用MODIS和AMSR-E资料,分析北疆地区积雪覆盖范围和积雪深度的时空变化特征,建立北疆地区雪灾监测与预警基础数据库,对准确监测北疆地区积雪时空动态变化状况,评价牧区雪灾受灾程度,快速提供救援对策,减少灾区经济损失,具有重要的科学意义和实际应用价值。
     本论文以北疆为研究区,利用气象台站记录的雪情数据和云量数据,验证了每日积雪产品MOD10Al和每8日积雪合成产品MOD10A2的分类精度;利用MOD10Al产品开发出用户自定义积雪覆盖范围合成新算法及产品,并对新产品进行了精度验证;研发出基于MODIS每日雪被数据MOD10Al和AMSR-E/Aqua每日雪水当量产品AE_DySno新的合成积雪产品MOD-AE1,并验证了其精度;建立了北疆地区基于AMSR-E亮温数据的雪深反演模型,并对模型的精度进行了评价;利用用户自定义旬积雪合成产品,分析了北疆地区积雪覆盖范围的时空动态变化、积雪覆盖范围与海拔以及气温的关系以及不同积雪覆盖面积的天数,研究积雪覆盖面积的变化特征,更好地解释了北疆地区积雪分布的规律。研究结果表明:
     1)在晴空的状态下,MOD10Al积雪产品的分类精度达到94.6%,总精度为95.5%。说明MODIS积雪制图算法具有很高的积雪分类精度,但受到云的严重制约;积雪深度和土地覆盖类型是影响积雪分类精度的两个重要因素,其中雪深是最重要的因子。MOD10A2产品可较好地消除云层对地表积雪分类精度的影响,平均积雪识别率达87.5%,可较好地反映地表积雪的分布状况。虽然8日积雪合成产品可以有效地去除大部分云的污染,但是仍然无法去除研究区所有的云像元。
     2) MOD10A2产品基本上可以满足从事冰雪及相关学科的较大空间尺度上的科学研究,但较长的合成时期、固定的合成起算时间和依MOD10Al获取的时间顺序进行合成的方法,不利于对区域积雪灾害事件进行快速有效的实时监测和评价。在本项研究中,以旬为基本合成周期,对90个时相的MOD10Al积雪产品用2~11天分别进行了合成分析,发现合成时间越长,合成图像的积雪识别精度越高,如以旬为时间段,合成图像的精度介于70~100%,平均精度可达87.2%;在旬内8日合成图像的精度也介于70~100%,平均精度为80.6%。
     3)基于MOD10Al和AE_DySno的新合成算法充分结合了MOD10Al有较高空间分辨率和AE_DySno数据具有全天候成像的优点,能够有效地改进每日积雪范围监测的精度。合成图像MOD-AE1的总一致性为76.1%,积雪分类精度达75.4%。同AE_DySno产品相比较,合成图像的积雪多测误差略有增加,漏测误差则减少约8%,平均总精度和积雪分类精度分别提高6.6%和8.8%。温度和雪深是影响积雪覆盖率变化的主导因素。不同时期的每日合成图像MOD-AE1可以用于分析季节性积雪的不同特征,合成图像适合北疆牧区雪灾期间每日雪被动态监测的需要。
     4)雪深反演模型受气温、融雪、降雨、湿雪、深霜层等因素的严重影响。对大于2.5 cm的积雪深度与AMSR-E亮温数据的相关性分析表明,积雪深度与垂直极化18GHz和36GHz波段的亮温差之间具有很强的线性相关性,相关系数达0.65,雪深回归模型公式为SD=0.49(Tb18V-Tb36V)+8.72。
     5)积雪面积的增减随气温的变化而变化,气温降低,积雪覆盖面积开始增加,气温升高,积雪面积开始减少,气温与积雪面积之间存在着很强的相关性,但是当气温低于零下15摄氏度时,由于此时积雪几乎覆盖了研究区,此时气温的降低对雪盖面积的增加贡献较少。
In general, the northern Xinjiang is one of three major snow distribution regions, andis also an important pastoral area in China. Massive snow accumulation frequently causesdisasters such as frost-bite and death of a large number of grazing animals, and destroytraffic and telecommunication devices. Therefore, monitoring snow-covered extentprecisely plays a significant role in the dynamic studies and preventing of snow disastersin pastoral areas.
     In this Ph.D. dissertation, an great effort was made to systematically study theMODIS snow mapping algorithm, the MODIS snow cover composite products, the snowdepth model based on passive microwave remote sensing data AMSR-E, and the temporaland spatial variation of snow cover area and snow depth in Northern Xinjiang.
     The main results may be concluded as follows:
     1) The snow mapping agreement between MODIS daily snow maps and surfaceobservations is high at 94.6% over the four snow seasons under clear sky conditions. Theomission errors mainly determined by snow depth and land cover types, especially whensnow depth is less than 3 cm, the MODIS snow cover mapping algorithm intends tomisclassify thin and patchy snow as land. The cloud agreement is 95.9%, andapproximately 4.1% cloud is misclassified as snow when the sky view at climate stationswas completely covered by clouds.
     2) Basically, MOD10A2 products can satisfy snow and related subject researches on alarge spatial scale. However, the sequential composite approach in terms of the timeseries of receiving MODIS data, with a longer composite period and a given compositestarting date, lacks of flexibilities, which is not advantageous to the efficient and effectivemonitoring and estimates for regional snow-caused disasters. In this study, wecomposited a new 2-11 days composite snow products, and the snow classificationaccuracy is between 70~100%, the average accuracy reach to 87.2%.
     3) A new daily snow cover product was developed through combining MODIS dailysnow cover data and AMSR-E daily snow water equivalent (SWE) data. By takingadvantage of both high spatial resolution of optical data and cloud transparency ofpassive microwave data, the new daily snow cover product greatly complements thedeficiency of MODIS product when cloud cover is present especially for snow coverproduct on a daily basis and effectively improves daily snow detection accuracy. In ourexample, the daily snow agreement of the new product with the in situ measurements at20 stations is 75.4%, which is much higher than the 33.7% of the MODIS daily product in all weather conditions, even a little higher than the 71% of the MODIS 8-day product(cloud cover of~5%). The new snow cover product can better and effectively capturedaily SCA dynamics during the snow seasons, which plays a significant role in reduction,mitigation, and prevention of snow-caused disasters in pastoral areas.
     4) Through regression analysis of horizontal, vertical polarization brightnesstemperature difference of 18 GHz and 36 GHz band and snow depth value, the snowdepth model was established based on the AMSR-E brightness temperature data innorthern Xinjiang. At the same time, the accuracy of the model was evaluated. The resultsindicated that the remote sensing model is impacted seriously by temperature, snowmelt,rain, wet snow and deep frost layers. And there is a good correlation between snow depth(y) over 2.5 cm and the vertical polarization brightness temperature difference of 18GHzand 36GHz. The equation is SD=0.49(Tb18V-Tb36V)+8.72, and the correlationcoefficient is up to 0.65. However, the accuracy of the model is lower when the surface iscovered by fallow or deep snow. Basically, the model can reflect the trend of snow depthvariation in Northern Xinjiang, but it has a low accuracy, and needs to be improved in thefuture.
     5) The air temperature and elevation play important roles in the fractional snow coveredarea and the spatial distribution of snow cover differed greatly in varied areas. It showedmore snow accumulation in the mountainous areas than that in the plain areas, and themountainous areas had a longer snow period than the plain area.
引文
[1] Ault, T.W., Czajkowsky, K.P., Benko, T., Coss, J., Struble, J., Spongberg, A., Templin, M., Gross, C., Validation of the MODIS snow product and cloud mask using student and NWS cooperative station observations in the Lower Great Lakes Region Remote Sensing of Environment, 2006, 105, pp. 341-353.
    [2] 雍世鹏,仝川,雍伟义等.内蒙古锡林郭勒草原雪盖与植被覆盖重叠关系的遥感分析[J].冰川冻土,1994,16(3):238-244.
    [3] 张殿发,张祥华.中国北方草原雪灾的致灾机制探讨[J].自然灾害学报,2002,11(2):80-84.
    [4] 史培军,陈晋.RS与GIS支持下的草地雪灾监测试验研究[J].地理学报,1996,51(4):296-304.
    [5] 周陆生,李海红,王青春.青藏高原东部牧区-暴雪过程及雪灾分布的基本特征 [J].高原气象,2000,19(4):450-458.
    [6] 仝川,雍世鹏,雍伟义,等.温带草原放牧场积雪灾害分级评价的遥感分析[J].内蒙古大学学报,1996,27(4):531-537.
    [7] 周陆生,王青春,李海红,等.青藏高原东部牧区-暴雪过程雪灾灾情实时预评估方法的研究[J].自然灾害学报,2001,10(2):58-65.
    [8] 郝璐,王静爱,满苏尔,等.中国雪灾时空变化及畜牧业脆弱性分析[J].自然灾害学报,2002,11(4):43-48.
    [9] 陈全功.青海省玉树藏族自治州的雪灾及其防御对策[J].草业科学.1996,13(6):60-63.
    [10] 梁天刚,孟延山,吴彩霞.牧区雪灾监测与评价研究进展[J].兰州大学学报(自然科学版),2002,38(Supp.):39-44.
    [11] 刘兴元,梁天刚,郭正刚,等.阿勒泰地区草地畜牧业雪灾遥感监测与评价[J].草业学报,2003,12(6):115-119.
    [12]刘兴元,梁天刚,郭正刚.雪灾对草地畜牧业影响的评价模型及方法研究[J].西北植物学报,2004,24(1):94-99.
    [13] 李培基.中国西部积雪变化特征[J].地理学报,1998,48(6):505-515.
    [14] 中国气象局气候服务与气候司.牧区雪灾的分析研究[C].北京:气象出版社,1998.
    [15] 曾群柱,雍世鹏,顾钟炜.中国雪灾的分类分级和危险度评价方法的研究[C].北京:中国科技出版社,1993.
    [16] 冯学智,曾群柱.西藏那曲雪灾的遥感监测研究[C].中国科学院兰州冰川冻土研究所集刊(第8号),北京:科学出版社,1995.
    [17] 陈峪.2001年我国主要气象灾害综述[J].灾害学,2002,17(3):65-70.
    [18] 刘玉洁,袁秀卿,张红.用气象卫星资料监测积雪[J].环境遥感,1992,7(1):24-31.
    [19] 柏延臣,冯学智.积雪遥感动态研究的现状及展望[J].遥感技术与应用,1997,12(2):59-65.
    [20] 冯学智,陈贤章.雪冰遥感20年的进展与成果[J].冰川冻土,1998,20(3):245-248.
    [21] 王正兴,刘闯,Huete Alfredo,等.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报.2003,23(5):979-987.
    [22] 刘闯,葛成辉.美国对地观测系统(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点与应用[J].遥感信息.2000,(3):45-48.
    [23] 刘闯,陈圣波,Mo Dai,等.EOS-MODIS数据在青藏高原冰雪季节性变化信息自动提取中的应用研究[J].遥感信息.2001,(4):30-31.
    [24] Rutger Dankers, Steven M. De Jong. Monitoring snow-cover dynamics in Northern Fennoscandia with SPOT VEGETATION images[J]. International Journal of Remote Sensing, 2004, 25(15): 2933-2949.
    [25] X. Zhou, H. Xie, J. Hendrickx. Statistical evaluation of MODIS snow cover products with constraints from streamflow and SNOTEL measurement[J]. Remote Sensing of Environment, 2005, 94(2):214-231.
    [26] X.Xiao, Q.Zhang, S.Boies, M. Rawlins, B.Moore Ⅲ. Mapping snow cover in the pan-Arctic zone, using multi-year (1998-2001) images from optical VEGETATION sensor[J]. International Journal of Remote Sensing, 2004, 25(24): 5731-5744.
    [27] Sandrine B., Christine P., Stefano S. Modelling geographic data with multiple representations[J]. International Journal of Geographical Information Science. 2004, 18(4):327-352.
    [28] V.V.Salomonson, I.Appel. Estimating fractional snow cover from MODIS using the normalized difference snow index[J]. Remote Sensing of Environment. 2004, 89:351-360.
    [29] Mas J. F., Monitoring land-cover changes: a comparison of change detection techniques[J], International Journal of Remote Sensing. 1999, 20(l):139-152.
    [30] James L.F., Chaojiao S., Jeffrey P.W., Richard K., et al. Quantifying the uncertainty in passive microwave snow water equivalent observations [J]. Remote Sensing of Environment. 2005, 94:187-203.
    [31] Dagrun Vikhamar, Rune Solberg. Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data[J]. Remote Sensing of Environment.2003.88:309-323.
    [32] Xiao X., Moore B., Qin X., et al. Large-Scale Observation of Alpine Snow and Ice Cover in Asia: Using Multi-temporal VEGETATION Sensor Data[J]. International Journal of Remote Sensing, 2002,23(11):2213-2228.
    [33] Michael F, Baumgartner, Albert Rango. A microcomputer-based alpine snow-cover analysis system (ASCAS)[J]. Photogrammetric Engineering & Remote Sensing, 1995, 61(12): 1475-1486.
    [34] Tait, A., and Armstrong R., Evaluation of SMMR satellite-derived snow depth using ground-based measurements. International Journal of Remote Sensing. 1996, 17(4):657-665.
    [35] Burushottam R.S., Thian Y.G Retrieval of Snow Water Equivalent Using Passive Microwave Brightness Temperature Data. Remote Sensing of Environment.2000, 74:275-286.
    [36] Krishna, A. P. Satellite remote sensing applications for snow cover characterization in the morphogenetic regions of upper Tista river basin, Sikkim Himalaya. International Journal of Remote Sensing. 1996, 17(4):651-656.
    [37]Saraf, A. K., Foster, J. L. and et al., Passive microwave for snow-depth and snowextent estimations in the Himalayan mountains. International Journal of Remote Sensing. 1999, 20(1):83-95.
    [38]Chang, A. T. C., Foster. J. L., and Hall, D. K., Nimbus-7 SMMR derived global snow cover parameters. Annals of Glaciology. 1987, 9:39-44.
    [39]Foster, J. L., Chang, A. T. C., and Hall, D.K. Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algrithem and a snow depth climatology. Remote Sensing of Environment. 1997, 62:132-142.
    [40]Fily M, Dedieu J P, Durand Y. Comparison between the results of a snow metamorphism model and remote sensing derived snow parameters in the Alps[J]. Remote Sensing of Environment, 1999, 68: 254-263.
    [41]崔恒心,张江铃,彭海宏.新疆草地资源合理利用雪灾防治研究培训团赴美考察报告[J].新疆畜牧业,1998,3:40-44.
    [42]鲁安新,冯学智,曾群柱.地理信息系统在牧区雪灾研究中的应用[J].灾害学,1996,11(1):25-29.
    [43]郭铌,杨兰芳,王涓力.黑河流域生态环境气象卫星遥感监测研究 [J].高原气象,2002,21(3):267-273.
    [44]林建,范蕙君.内蒙古雪灾监测方法研究[J].气象,2003,29(1):27-32.
    [45]徐兴奎,田国梁.中国地表积雪动态分布及反照率的变化[J].遥感学报,2000,4(3):178-181.
    [46]魏文寿,秦大河,刘明哲.中国西北地区季节性积雪的性质与结构[J].干旱区地理,2001,24(4):310-313.
    [47]董文杰,韦志刚,范丽军.青藏高原东部牧区雪灾的气候特征分析[J].高原气象,2001,20(4):402-406.
    [48]董安祥,瞿章,尹宪志,等.青藏高原东部雪灾的奇异谱分析.高原气象.2001,20(2):214-219.
    [49]柳艳香,汤懋苍,魏丽,等.青藏高原腹地1985年雪灾成因分析[J].高原气象,2000,19(1):52-58.
    [50]秦海蓉.青南牧区雪灾危害的防御[J].青海草业,2000,9(2):16-18.
    [51]贾建颖,董安详,秦宁生.青藏高原“96.1”雪灾的诊断分析[J].甘肃气象,2001,19(1):18-20.
    [52]王中隆,刘积林,马华民.甘南草地雪灾及其预报[J].山地研究,1996,14(4):267-271.
    [53]童文林.用多组判别发作高原牧区雪灾等级预报[J].四川气象,1999,69(3):23-25.
    [54]王希娟,时兴合,徐亮,等.青南高原雪灾模拟评估与服务对策[J].青海科技,2000,7(1):12-15.
    [55]芦光新.用GM(1.1)模型对青南地区雪灾的预测[J].青海草业,2000,9(3):1-3.
    [56]陈静.图形模式识别方法及其在中期雪灾天气预报中的应用[J].应用气象学报,2002,13(1):109-116.
    [57]康海军,王朝华.青南牧区雪灾危害程度的小区域划分[J].青海农林科技,2000,(1):22-23.
    [58]黄朝迎.我国草原牧区雪灾及危害[J].灾害学,1998,13(4):45-48.
    [59]郝璐,王静爱,史培军,等.草地畜牧业雪灾脆弱性评价-以内蒙古牧区为例[J].自然灾害学报,2003,12(2):51-57.
    [60]王静爱,使培军,王英,等.基于灾害系统论的《中国自然灾害系统地图集》编制[J].自然灾害学报,2003,12(4):1-8.
    [61]何建帮,田国良.中国重大自然灾害监测与评估信息系统的建设与应用[J].自然灾害学报,1996,5(3):1-7.
    [62]王让会,卢新民.干旱区自然灾害监测预警系统的一般模式[J].干旱区资源与环境,2002,16(4):64-67.
    [63]贺俊杰,杨文义,王英舜.利用遥感信息建立草原干旱和雪灾监测服务系统[J].内蒙古气象,2003,1:31-33.
    [64]李博等著.中国北方草地畜牧业动态监测研究(一)[M].北京:中国农业科技出版社.1993.
    [65]新疆维吾尔自治区畜牧厅.新疆草地资源及其利用[M].乌鲁木齐:新疆科技卫生出版社,1993.
    [66]梁天刚,陈全功,卫亚星.新疆阜康县草地资源产量动态监测模型的研究[J].遥感技术与应用.1996,11(1):27-32.
    [67]陈全功,卫亚星,梁天刚.青海省达日县退化草地研究Ⅰ--退化草地遥感调查[J].草业学报.1998,7(2):58-63
    [68]李建龙,蒋平,戴若兰.RS,GPS和GIS集成系统在新疆北部天然草地估产技术中的应用进展[J].生态学报,1998,18(5):504-510.
    [69]李建龙,戴若兰,任继周.遥感技术在新疆阜康县草地估产中的应用研究[J].中国草地.1998,19(1):11-14.
    [70]Li Jianlong, Liang Tiangang, and Chen Quangong. Estimating grassland yields using remote sensing and GIS technologies in China. New Zealand Journal of Agricultural Research.1998, 41(1):31-38.
    [1] Klein, A.G., Barnett, A.C., Validation of daily MODIS snow cover maps of the Upper Rio Grande river basin for the 2000-2001 snow season. Remote Sensing of Environment, 2003, 86, pp. 162-176.
    [2] Ault, T.W., Czajkowsky, K.P., Benko, T., Coss, J., Struble, J., Spongberg, A., Templin, M., Gross, C., Validation of the MODIS snow product and cloud mask using student and NWS cooperative station observations in the Lower Great Lakes Region Remote Sensing of Environment, 2006, 105, pp. 341-353.
    [3] Tekeli, E., Akyurek, Z., Sorman, A.A., Sensoy, A., Sorman, A.U., Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment, 2005, 97, pp. 216-230.
    [4] Shaban, A., Faour, G., Kkawlie, M., Abdallah, C., Remote Sensing application to estimate the volume of water in the form of snow on Mount Lebanon. Hydrological Sciences, 2004, 49, pp. 611-621.
    [5] Shaban, A., De, J.C., Using MODIS images to characterize snow cover on the Lebanese mountains. Geophysical Research Abstracts, 2008, 10, EGU2008-A-11645.
    [6] Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., Bayr, K.J., MODIS snow-cover products. Remote Sensing of Environment, 2002, 83, pp. 181-194.
    [7] Xiao, X., Moore, B., Qin, X., Shen, Z., Boles, S., Large-scale observation of alpine snow and ice cover in Asia, using multi-temporal VEGETATION sensor data. International Journal of Remote Sensing, 2002, 23, pp. 2213-2228.
    [8] Liang, T.G., Wu, C.X., Chen, Q.G., Xu, Z.B., Snow classification and monitoring models in the pastoral areas of the northern Xinjiang. Journal of Glaciology and Geocryology, 2004, 26, pp. 160-165.
    [9] 梁天刚,孟延山,吴彩霞.牧区雪灾监测与评价研究进展[J].兰州大学学报(自然科学版),2002,38(9):392-441.
    [10]Fitzharris, B.B., McAlevey, B.P., Remote sensing of seasonal snow cover in the mountains of New Zealand using satellite imagery. Geocarto International, 1999, 14, pp. 35-44.
    [11]Zhang, J., Han, T., Wang, J., Changes of snow-cover area and snowline altitude in the Qilian mountains, 1997-2004. Journal of Glaciology and Geocryology, 2005, 27, pp. 649-654.
    [12]Dozier, J., Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sensing of Environment, 1989, 28, pp. 9-27.
    [13]Rodell, M., Houser, P.R., Updating a land surface model with MODIS-derived snow cover. Journal of Hydrometeorology, 2004, 5, pp. 1064-1075.
    [14]Xiao, X., Moore, B., Qin, X., Shen, Z., Boles, S., Large-scale observation of alpine snow and ice cover in Asia, using multi-temporal VEGETATION sensor data. International Journal of Remote Sensing, 2002, 23, pp. 2213-2228.
    [15]Xiao, X., Zhang, Q., Boles, S., Rawlins, M., Moore, B., Mapping snow cover in the Pan-Arctic zone using multi-year (1998-2001) images from optical VEGETATION sensor. International Journal of Remote Sensing, 2004, 25, pp. 5731-5744.
    [16]车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368.
    [17]李新,车涛.积雪被动微波遥感研究进展[J].冰川冻土,2007,29(3):487-496.
    [18]史培军,陈晋.RS与GIS支持下的草地雪灾监测试验研究[J].地理学报,1996,51(4):2962-3041.
    [19]陈全功.青海省玉树藏族自治州的雪灾及其防御对策[Jl].草业科学,1996,13(6):602-631.
    [20]王建,陈子丹,李文君,等.中分辨率成像光谱仪图像积雪反射特性的初步分析 研究[J].冰川冻土,2000,22(2):165-170.
    [21]刘玉洁,袁秀卿,张红.用气象卫星资料监测积雪[J].环境学报,1992,7(1):242-251.
    [22]Xu X.K., Tian G.L., The changes of snow reflectance and dynamic dist ribution in China [J]. Journal of Remote Sensing, 2000, 4 (3) :1782-1821.
    [23]Liang, T.G., Huang, X.D., Wu, C.X, Liu, X.Y., Li, W.L., Guo, Z.G., Ren, J.Z., Application of MODIS data on snow cover monitoring in pastoral area: A case study in the Northern Xinjiang, China. Remote Sensing of Environment, 2008, 112, pp. 1514-1526.
    [24]Dagrun, V., Rune S., Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data [J]. Remote Sensing of Environment, 2003, 88:309 - 323.
    [25]Salomonson, V. V., Appel Ⅰ. Estimating fractional snow cover from MODIS using the normalized difference snow index [J] . Remote Sensing of Environment, 2004, 89: 351 - 360.
    [26]Zhou, X., Xie, H., Hendrickx, J., Statistical evaluation of MODIS snow cover product s with constraints from streamflow and SNOTEL measurement [J]. Remote Sensing of Environment, 2005, 94 : 214 - 231.
    [27]Hall, D.K., Riggs, G.A., Accuracy assessment of the MODIS snow products [J]. Hydrological Processes, 2007, 21, 1534-1547.
    [28]Hall, D.K., Sturm, M., Passive microwave remote and In situ measurements of Arctic and Subarctic snow cover in Alaska [J]. Remote Sensing of Environment, 1991, 38: 1161-172.
    [29]Dagrun, V., Rune, S., Subpixel mapping of snow cover in forests by optical remote sensing [J]. Remote sensing of environment, 2002, 84: 69-82.
    [30]Klein, A.G., Hall, D.K., Riggs, G.., A. Improving snow-cover mapping in forests through the use of a canopy reflectance model [J]. Hydrological Processes, 1998, 12:1723-1744.
    [31]Foster, J.L., Chang, A.T.C., Hall, D.K. Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology [J]. Remote Sensing of Environment, 1997, 62:132-142.
    [32]Chang, A.T.C., Rango, A. Algorithm theoretical basis document (ATBD) for the AMSRE snow water equivalent algorithm [R]. NASA Internal Report, Version 3.0, 1999.
    [33]Grody, N.C., Basist, A.N. Global identification of snow cover using SSM/I measurement [J]. IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(1): 237-249.
    [34]Armstrong, R., Rango, A. Snow depth and grain size relationships with relevance for passive microwave studies [J]. Annals of Glaciology, 1993, 17: 171-176.
    [35]Chang, A.T.C. Microwave emission form snow and glacier ice [J]. Journal of Glaciology, 1976, 16(24): 23-27.
    [36]Hall, D.K., Chang, A.T.C., Foster, J.L. Detection of the depth-hoar layer in the snow-pack of the arctic coastal plain of Alaska, U.S.A., using satellite data [J]. Journal of Glaciology, 1986, 32(110): 87-94.
    [1] Xiao X, Zhang Q, Boles S, et al. Mapping Snow Cover in the Pan-Arctic Zone Using Multi-year (1998-2001) Images from Optical VEGETATION Sensor[J]. International Journal of Remote Sensing, 2004, 25(24): 5731-5744.
    [2] Rutger D, Steven M, De J. Monitoring Snow-cover Dynamics in Northern Fennoscandia with SPOT VEGETATION Images[J]. International Journal of Remote Sensing, 2004, 25(15): 2933-2949.
    [3] Xiao X, Moore B, Qin X, et al. Large-scale Observation of Alpine Snow and Ice Cover in Asia: Using Multi-temporal VEGETATION Sensor Data[J]. International Journal of Remote Sensing, 2002, 23(11):2213-2228.
    [4] 梁天刚,吴彩霞,陈全功,等.北疆牧区积雪图像分类与雪深反演模型的研究[J].冰川冻土,2004,26(2):160-165.
    [5] Maurer E P, Rhoads J D, Dubayah R O, et al. Evaluation of the Snow-covered Area Data Product from MODIS[J]. Hydrological Processes, 2003, 17:59-71.
    [6] Klein A G, Barnett A C. Validation of Daily MODIS Snow Cover Maps of the Upper Rio Grande River Basin for the 2000-2001 Snow Year[J]. Remote Sensing of Environment 2003, 86:162-176.
    [7] Lampkin D J, Yool S R. Monitoring Mountain Snowpack Evolution Using Near-surface Optical and Thermal Properties[J]. Hydrological Process, 2004, 18:3527-3542.
    [8] Simic A, Fernandes R, Brown R, et al. Validation of VEGETATION, MODIS, and GOES+ SSM/I Snow-cover Products over Canada Based on Surface Snow Depth Observations[J]. Hydrological Process, 2004, 18:1089-1104.
    [9] 王正兴,刘闯,HUETE Alfredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23(5):979-986.
    [10]Hall D K, Riggs G A, Salomonson V V, et al. MODIS Snow-cover Products[J]. Remote Sensing of Environment, 2002, 83:181-194.
    [11]Dagrun V, Rune S. Snow-cover Mapping in Forests by Constrained Linear Spectral Unmixing of MODIS Data[J]. Remote Sensing of Environment, 2003, 88:309-323.
    [12]Salomonson V V, Appel I. Estimating Fractional Snow Cover from MODIS Using the Normalized Difference Snow Index[J]. Remote Sensing of Environment, 2004, 89:351-360.
    [13]Zhou X, Xie H, Hendrickx J. Statistical Evaluation of MODIS Snow Cover Products with Constraints from Streamflow and SNOTEL Measurement[J]. Remote Sensing of Environment, 2005, 94:214-231.
    [14]Rodell M, Houser P R. Updating a Land Surface Model with MODIS-derived Snow Cover[J]. Journal of Hydrometeorology, 2004, 5:1064-1075.
    [15]Lee S, Klein A G, Over T M. A comparison of MODIS and NOHRSC snow-cover products for simulating streamflow using the Snowmelt Runoff Model[J]. Hydrological Processes. 2005, 19(15):2951-2972.
    [16]Dery S J, Salomonson V V, Stieglitz M, et al. An approach to using snow areal depletion curves inferred from MODIS and its application to land surface modelling in Alaska[J]. Hydrological Processes, 2005, 19(14):2755-2774.
    [17]刘闯,陈圣波,Mo Dai,等.EOS-MODIS数据在青藏高原冰雪季节性变化信息自动提取中的应用研究[J].遥感信息,2001,4:30-31.
    [18]张杰,韩涛,王建.祁连山区1997-2004年积雪面积和雪线高度变化分析[J].冰川冻土,2005,27(5):649-654.
    [19]延昊.利用MODIS和AMSR-E进行积雪制图的比较分析[J].冰川冻土,2005,27(4):515-519.
    [20]Klein, A. G., & Barnett, A. C. (2003). Validation of daily MODIS snow cover maps of the Upper Rio Grande river basin for the 2000-2001 snow year. Remote Sensing of Environment, 86, 162-176.
    [21]Maurer, E. P., Rhoads, J. D., Dubayah, R. O., et al. (2003). Evaluation of the snow-covered area data product from MODIS. Hydrological Processes, 17, 59-71.
    [22]许鹏,阿里木江,王博,等.新疆草地资源及其利用[M].乌鲁木齐市:新疆科技卫生出版社.1993.
    [23]黄晓东,梁天刚.牧区雪灾遥感监测的研究[J],草业科学,2005,22(12):10-16.
    [24]Xie H J, Zhou X B, Vivoni E, et al. GIS Based NEXRAD Precipitation Database: Automated Approaches for Data Processing and Visualization[J]. Computers and Geoscience, 2005, 31(1):65-76.
    [25]Riggs, G., Hall, D.K., 2002, Reduction of cloud obscuration in the MODIS snow data product. Proceedings of the 59th Eastern Snow Conference, Stowe, VT, USA, 2002.
    [26]Ackerman, S.A., Strabala, K.I., Menzel, P.W.P., Frey, R.A., Moeller, C.C., Gumley, L.E., 1998, Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research, 103, pp. 32141-32157.
    [1] Pulliainen, J. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sensing of Environment, 2006, 101,257-269.
    [2] 梁天刚,高新华,刘兴元.阿勒泰地区雪灾遥感监测模型与评价方法研究[J].应用生态学报.2004a,15(12):2272-2276
    [3] 梁天刚,吴彩霞,陈全功,等.北疆牧区积雪图像分类与雪深反演模型的研究[J].冰川冻土,2004b,26(2):160-165.
    [4] Hall, D. K., Riggs, G. A., Salomonson, V. V., et al. Devolopment of a technique to assess snow-cover mapping accuracy from Space, IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2), 232-238.
    [5] Hall, D. K., Riggs, G. A. Accuracy assessment of the MODIS Snow-cover products. Hydrological Processes, 2007, 21, 1534-1547.
    [6] Xiao, X., Zhang, Q., Boles, S., et al. Mapping snow cover in the Pan-Arctic zone using multi-year (1998-2001) images from optical VEGETATION sensor. International Journal of Remote Sensing, 2004, 25(24), 5731-5744.
    [7] Rutger, D., Steven, M., & De, J. Monitoring snow-cover dynamics in northern Fennoscandia with SPOT VEGETATION images. International Journal of Remote Sensing, 2004, 25(15): 2933-2949.
    [8] 曹云刚,刘闯.从AVHRR到MODIS的雪盖制图研究进展[J].地理与地理信息科学,2005,21(5):15-19.
    [9] Hall D. K., Riggs, G. A., Salomonson, V. V., et al. MODIS snow-cover products. Remote Sensing of Environment, 2002, 83, 181-194.
    [10]Liang, T. G., Huang, X. D., Wu, C. X., et al. An application of MODIS data to snow cover monitoring in a pastoral area: A case study in Northern Xinjiang, China. Remote Sensing of Environment, 2007, doi: 10.1016/j.rse.2007.06.001.
    [11]Simic, A., Fernandes, R., Brown, R., et al. Validation of VEGETATION, MODIS, and GOES+ SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrological Process, 2004, 18, 1089-1104.
    [12]D(?)ry, S. J., Salomonson, V. V., Stieglitz, M., Hall, D. K., & Appel, I. An approach to using snow areal depletion curves inferred from MODIS and its application to land surface modelling in Alaska. Hydrological Processes, 2005, 19, 2755-2774.
    [13]Klein, A. G., & Barnett, A. C. Validation of daily MODIS snow cover maps of the Upper Rio Grande river basin for the 2000-2001 snow year. Remote Sensing of Environment, 2003, 86, 162-176.
    [14]Lee, S., Klein, A. G., & Over, T. M. A comparison of MODIS and NOHRSC snow-cover products for simulating streamflow using the snowmelt runoff model. Hydrological Processes, 2005, 19(15), 2951-2972.
    [15]Maurer, E. P., Rhoads, J. D., Dubayah, R. O., et al. Evaluation of the snow-covered area data product from MODIS. Hydrological Processes, 2003, 17, 59-71.
    [16]Zhou, X., Xie, H., & Hendrickx, J. Statistical evaluation of MODIS snow cover products with constraints from streamflow and SNOTEL measurement. Remote Sensing of Environment, 2005, 94, 214-231.
    [17]Salomonson, V. V., & Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment, 2004, 89, 351-360.
    [18]Gutzler, D., Rosen, R. Interannual variability of wintertime snow cover across the Northern Hemisphere. Journal of Climate, 1992, 5, 1441-1447.
    [19]梁天刚,高新华,黄晓东,张学通.新疆北部MODIS积雪制图算法的分类精度.干旱区研究.2007,24(4):446-452.
    [20]Armstrong, R., & Brodzik, M. Recent Northern Hemisphere snow extent: a comparison of data derived from visible and microwave satellite sensors. Geophysical Research Letters, 2001, 28(19), 3673-3676.
    [21]Brown, R. Northern Hemisphere snow cover variability and change, 1915-1997. Journal of Climate, 2000, 13, 2339-2355.
    [22]Kelly, R. E., Chang, A. T. C., Tsang, L., et al. A prototype AMSR-E global snow area and snow depth algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2), 230-242.
    [23]Derksen, C., Brown, R., Walker, A. Merging conventional (1915-1992) and passive microwave (1978-2002) estimates of snow extent and water equivalent over central North America. Journal of Hydrometeorology, 2004, 5(5), 850-861.
    [24]Derksen, C., Walker, A., Goodison, B. Evaluation of passive microwave snow water equivalent retrievalsacross the boreal forest/tundra transition of western Canada. Remote Sensing of Environment, 2005, 96, 315-327.
    [25]Dressler, K. A., Leavesley, G. H., Bales, R. C., and et al. Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model. Hydrological Processes, 2006, 20, 673-688.
    [26]延昊.利用MODIS和AMSR-E进行积雪制图的比较分析[J].冰川冻土,2005,27(4):515-519.
    [27]Wulder, M. A., Nelson, T. A., Derksen, C., et al. Snow cover variability across central Canada (1978-2002) derived from satellite passive microwave data. Climatic Change, 200,7, 82(1), 113-130.
    [28]许鹏,阿里木江,王博,等.新疆草地资源及其利用[M].乌鲁木齐市:新疆科技卫生出版社.1993.
    [29]Guo, Z. G., Liang, T. G., Liu, X. Y., et al. A new approach to grassland management for the arid Aletai region in Northern China. The Rangeland Journal, 2006, 28, 97-104.
    [30]梁天刚,刘兴元,郭正刚.基于3S技术的牧区雪灾评价方法.草业学报,2006,15(4):122-128.
    [31]Liang, T. G., Liu, X. Y., Wu, C. X., et al. An evaluation approach for snow disasters in the pastoral areas of Northern Xinjiang, PR China. New Zealand Journal of Agricultural Research, 2007, 50, 369-380.
    [32]杨莲梅,杨涛,贾丽红,等.新疆大-暴雪气候特征及其水汽分析(J).冰川冻土,2005,27(3):389-396.
    [33]Xie, H. J., Zhou, X. B., Vivoni, E., et al. GIS based NEXRAD precipitation database, automated approaches for data processing and visualization. Computers and Geoscience, 2005, 31(1), 65-76.
    [34]Wang, X. W., Xie, H. J., Liang, T. G. Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sensing of Environment, 2007, doi: 10.1016/j .rse.2007.05.016.
    [35]Kelly, R. E., Chang, A. T. C., Foster J. L. Updated daily. AMSR-E/Aqua daily L3 global snow water equivalent EASE-Grids V001, November to March 2002-2005. 2007, Boulder, CO, USA: National Snow and Ice Data Center. Digital media.
    [1] Pulliainen, J. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave data and ground-based observations. Remote Sensing of environment, 2006, 101, 257-269.
    [2] 梁天刚,高新华,刘兴元.阿勒泰地区牧区遥感监测模型与评价方法研究[J].应用生态学报.2004,15(12):2272-2276.
    [3] 裴欢.基于MODIS数据的北疆积雪信息提取及其应用研究[D].新疆大学硕士研究生学位论文,2006.
    [4] 梁天刚,刘兴元,郭正刚.基于3S技术的牧区雪灾评价方法[J].草业学报,2006,15(4):122-128.
    [5] 刘兴元,梁天刚,郭正刚,等.阿勒泰地区草地畜牧业雪灾的遥感监测与评价[J].草业学报,2003,12(6):115-120
    [6] 张学通,黄晓东,梁天刚,等.新疆北部地区MODIS积雪遥感数据MODl0A1的精度分析[J].草业学报,2008,17(2):110-117.
    [7] Fitzharris, B.B., McAlevey, B.P., Remote sensing of seasonal snow cover in the mountains of New Zealand using satellite imagery. Geocarto International, 1999, 14, pp. 35-44.
    [8] Zhang, J., Han, T., Wang, J., Changes of snow-cover area and snowline altitude in the Qilian mountains, 1997-2004. Journal of Glaciology and Geocryology, 2005, 27, pp. 649-654.
    [9] Dozier, J., Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sensing of Environment, 1989, 28, pp. 9-27.
    [10]Rutger, D., Steven, M., De, J., Monitoring snow-cover dynamics in northern Fennoscandia with SPOT VEGETATION images. International Journal of Remote Sensing, 2004, 25, pp. 2933-2949.
    [11]Xiao, X., Zhang, Q., Boles, S., Rawlins, M., Moore, B., Mapping snow cover in the Pan-Arctic zone using multi-year (1998-2001) images from optical VEGETATION sensor. International Journal of Remote Sensing, 2004, 25, pp. 5731-5744.
    [12]Hall D. K., Riggs, G. A., Salomonson, V. V., et al. MODIS snow-cover products. Remote Sensing of Environment, 2002, 83, 181-194.
    [13]刘艳.基于MODIS数据的积雪深度反演研究[D].武汉大学硕士学位论文,2005.
    [14]Armstrong, R., & Brodzik, M. Recent Northern Hemisphere snow extent: a comparison of data derived from visible and microwave satellite sensors. Geophysical Research Letters, 2001, 28(19), 3673-3676.
    [15]Brown, R. Northern Hemisphere snow cover variability and change, 1915-1997. Journal of Climate, 2000, 13, 2339-2355.
    [16]Kelly, R. E., Chang, A. T. C., Tsang, L., et al. A prototype AMSR-E global snow area and snow depth algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2), 230-242.
    [17]Derksen, C., Brown, R., Walker, A. Merging conventional (1915-1992) and passive microwave (1978-2002) estimates of snow extent and water equivalent over central North America. Journal of Hydrometeorology, 2004, 5(5), 850-861.
    [18]Derksen, C., Walker, A., Goodison, B. Evaluation of passive microwave snow water equivalent retrievalsacross the boreal forest/tundra transition of western Canada. Remote Sensing of Environment, 2005, 96, 315-327.
    [19]Dressier, K. A., Leavesley, G. H., Bales, R. C., and et al. Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model. Hydrological Processes, 2006, 20, 673-688.
    [20]延昊.利用MODIG和AMSR-E进行积雪制图的比较分析[J].冰川冻土,2005,27(4):515-519.
    [21]Wulder, M. A., Nelson, T. A., Derksen, C., et al. Snow cover variability across central Canada (1978-2002) derived from satellite passive microwave data. Climatic Change, 2007, 82(1), 113-130.
    [22]Foster J L, Chang A T C, Hall D K. Comparison of Snow Mass Estimates from a Prototype Passive Microwave Snow Algorithm, A Revised Algorithm and a Snow Depth Climatology[J]. Remote Sensing of Environment, 1997, 62:132-142.
    [23]Sylvain Biancamaria, Nelly M. Mognard, Aaron Boone, Manuela Grippa and Edward G. Josberger. A satellite snow depth multi-year average derived from SSM/I for the high latitude regions[J].Remote Sensing of Enviroment, 2008, 112(5):2557-2568.
    [24]M. Grippa, N. Mognard, T. Le Toana and E. G. Josberger. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm[J].Remote Sensing of Enviroment, 2004, 9(1-2):30-41.
    [25]曹梅盛,李培基.中国西部积雪微波遥感监测[J].山地研究,1994,12(4):230-234.
    [26]李培基.中国西部积雪变化特征[J].地理学报,1993,48(6):505-515.
    [27]柯长青,李培基.青藏高原积雪分布与变化特征[J].地理学报,1998,53(3):209-215.
    [28]柯长青,李培基.用EOF方法研究青藏高原积雪深度分布与变化[J].冰川冻土,1998,20(1):64-67.
    [29]高峰,李新,Armstrong R.L.,等.被动微波遥感在青藏高原积雪业务监测中的初步应用[J].遥感技术与应用,2003,18(6):360-363.
    [30]车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368.
    [31]车涛,李新.利用被动微波遥感数据反演我国积雪深度及其精度评价[J].遥感技术与应用,2004,19(5):301-306.
    [32]SUN Zhi-wen, SHI Jian-cheng, JIANG ling-mei, et al. Development of Snow Depth and Snow Water Equivalent Algorithm in Western China Using Passive Microwave Remote Sensing Data[J]. ADVANCES IN EARTH SCIENCE, 2006, 21(12):1363-1368.
    [33]李震,曾群柱,孙文新,DEM在西藏那曲雪灾遥感信息提取中的应用[J].自然灾害学报,1996,5(1):48-52.
    [34]Gorokhovich, Y., Voustianiouk, A., Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment, 2006, 104, pp. 409-413.
    [35]Bhang, K. J., Schwartz, F. W., Braun, A., Verification of the Vertical Error in C-Band SRTM DEM Using ICESat and Landsat-7, Otter Tail County, MN. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 36-44.
    [36]柏建,1:25万DEM高度与台站高度的误差分析[J].四川气象,2006,3,35-36.
    [37]Zwally, H. J., Yi, D., Kwok, R., Zhao, Y., ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. Journal of Geophysical Research, 2008, Vol. 113, C02S15, DOI: 10.1029/2007JC004284.
    [38]Fricker, H. A., Borsa, A., Minster, B., Carabajal, C., Quinn, K., Bills, B., Assessment of ICESat performance at the salar de Uyuni, Bolivia. Geophysical Research Letters, 2005, 32, L21S06, DOI: 10.1029/2005GL023423.
    [39]Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Bom Espirito-Santo, Del Bom, Hunter, M. O., and Oliveira, R. de., Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 2005, Vol. 32, L22S02, DOI: 10.1029/2005GL023971.
    [40]Brenner, Anita C., D., John P., and Zwally, H. J., Precision and Accuracy of Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (2): pp. 321-331.
    [41]Martin, C. F., Thomas, R. H., Krabill, W. B., and Manizade, S. S., ICESat range and mounting bias estimation over precisely-surveyed terrain. Geophysical Research Letters, 2005, Vol. 32, L21S07, DOI: 10.1029/2005GL023800.
    [42]Braun, A., Cheng, K., Csatho, B. C., Shum, K., ICESat laser altimetry in the great lakes. ION 60th Annual Meeting, Dayton, OH, Jun, 2004.
    [43]Carabajal, C. C. and Harding, D. J., ICESat validation of SRTM C-band digital elevation models. Geophysical Research Letters, 2005, L22S01, DOI: 10.1029/2005GL023957.
    [44]Surazakov, A. B., Aizen, V. B., Estimating volume change of mountain glaciers using SRTM and Map-based topographic data. IEEE Transaction on Geoscience and Remote Sensing, 2006, 44(10), pp. 2991-2995.
    [45]Walker A E, Goodison B E. Discrimination of a wet snow cover using passive microwave satellite data[J].Ann.Glaciol, 1993, 17:307-311.
    [46]Armstrong R., Rango A. Snow Depth and Grain Size Relationships with Relevance for Passive Microwave Studies [J].Annals of Glaciology, 1993, 17: 171-176.
    [47]Simic, A., Fernandes, R., Brown, R., et al. Validation of VEGETATION, MODIS, and GOES+ SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrological Process, 2004, 18, 1089-1104.
    [48]姜逢清,胡汝骥,杨跃辉.新疆洪灾时间序列突变及其气候原因分析[J].冰川冻土,2004,26:674-680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700