秸秆腐解对土壤供锌能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Zn作为动植物所必需的微量元素,通过植物进入食物链后,直接或间接的通过动物进入人类的膳食中,从而影响人体的营养平衡及身体健康。陕西关中地区土壤属于潜在性缺Zn土壤,该土壤中Zn供给不足、土壤的供Zn能力低下,农作物和畜产品的产量和品质都受到较大的影响。解决潜在性缺Zn土壤供Zn不足问题最有效的途径即提高土壤有效Zn含量,提高土壤的供Zn能力,进而提高农作物籽粒Zn含量,保障人体健康。陕西关中地区以小麦-玉米一年两熟轮作制度为主要的种植模式。该种植模式下每年产生大量的小麦和玉米秸秆,这些秸秆大部分没有被有效利用,造成大量的资源浪费。目前,有机肥的投入在逐渐减少,秸秆还田日益受到重视,秸秆可能代替有机肥成为进入土壤的主要有机物料。秸秆还田不仅解决资源浪费问题,同时对于保护生态环境也具有重要意义。众所周知,秸秆中富含微量元素,Zn就是其中之一,Zn和其他微量元素可随秸秆还田而归还到土壤中,增加土壤中的Zn和其他微量元素含量。
     本研究采用两个室内模拟秸秆(小麦秸秆和玉米秸秆)还田培养实验,通过测定土壤全Zn、有效Zn、微生物量Zn、各形态Zn含量等指标,研究了秸秆还田降解对本身所含Zn的释放、对土壤原有Zn和外源施入Zn形态转化以及对土壤微生物量Zn含量的影响,为大田推广提供理论依据。本研究得到以下主要结果:
     (1)为探讨秸秆在土壤中腐解对其本身所含Zn的释放及其对土壤原有Zn、外源施入Zn形态转化以及对微生物量Zn(Mic-Zn)含量的影响,进行了为期42 d的小麦秸秆腐解室内培养试验。结果表明,秸秆在土壤中腐解时CO_2-C累积释放量和土壤微生物量碳(Mic-C)随着秸秆添加量的增加而显著增加,而秸秆自身Zn含量高低以及外源施Zn对其均无明显影响。土壤中无论是否添加秸秆,施入外源Zn均明显增加了土壤Mic-Zn和土壤有效Zn(DTPA-Zn)含量,土壤交换态Zn(Ex-Zn)和松结有机态Zn(Wbo-Zn)含量也明显增加;与低Zn秸秆相比,高Zn秸秆在土壤中腐解可明显增加土壤Mic-Zn和DTPA-Zn含量,提高土壤Ex-Zn和Wbo-Zn比例。而且,秸秆腐解本身释放的Zn主要转化为有效性较高的Ex-Zn。
     (2)通过室内模拟培养实验,探讨了玉米秸秆腐解对自身Zn释放、土壤原有Zn和外源施入Zn形态转化及其对土壤Mic-Zn含量的影响。结果表明,为期42 d的室内培养,秸秆在土壤中腐解时,CO_2-C累积释放量随着秸秆添加量的增加平均增加了38.69%,而秸秆自身Zn含量高低以及外源施Zn对其无明显影响;土壤Mic-C含量随秸秆添加量的增加而增加,与秸秆自身Zn含量高低以及外源施Zn与否无关。土壤中无论是否添加秸秆,施入外源Zn时,土壤Mic-Zn和土壤DTPA-Zn含量分别较对照增加228.42%和131.51%,土壤Ex-Zn和Wbo-Zn含量也明显增加;与低Zn秸秆相比,高Zn秸秆在土壤中腐解时,土壤DTPA-Zn含量增加了25.06%,土壤Ex-Zn和Wbo-Zn含量也有所增加。而且,秸秆在石英砂中腐解,即秸秆腐解本身释放的Zn主要转化为有效性较高的Ex-Zn。
     (3)为探讨秸秆腐解对土壤供Zn能力的影响,将小麦和玉米秸秆添加到土壤中,在相同的条件下分别进行了为期42 d天的室内培养。结果表明,小麦和玉米秸秆在土壤中腐解,其CO_2-C累积释放量和土壤Mic-C、N均随着秸秆添加量的增加而增加,秸秆自身Zn含量高低和外源施Zn对其无明显影响。相同培养条件下,土壤环境加速了小麦秸秆的腐解,培养介质对玉米秸秆腐解无明显影响。土壤施Zn时土壤Mic-Zn和DTPA-Zn含量均明显增加,高Zn含量的小麦和玉米秸秆在土壤中腐解也较为明显增加了二者的含量,土壤中添加秸秆并配施Zn肥较仅添加秸秆明显提高土壤Mic-Zn和DTPA-Zn的含量。小麦和玉米秸秆添加到土壤或石英砂中均明显增加了Ex-Zn的含量,两种秸秆在土壤中腐解,土壤全Zn和各形态Zn含量均不同程度增加,Wbo-Zn则明显增加。
     总之,秸秆腐解过程中,CO_2-C累积释放量和土壤Mic-C、N含量随着秸秆添加量的增加而增加,秸秆Zn含量和外源施Zn对其无明显影响;土壤施Zn和高Zn秸秆腐解明显增加土壤Mic-Zn、全Zn、DTPA-Zn以及各形态Zn的含量,秸秆腐解明显提高土壤有效Zn含量,提高对有效Zn贡献较大的有机态Zn的含量,因此提高了土壤的供Zn能力。
Zn is an essential micronutrient for plant and animal, it enters into the food chain through plant, and it enters the diets of human being directly or through animal indirectly, so the balance of nutrition and the health of human being are affected by zinc. Soil in central Shaanxi area is potentially Zn-deficiency, yield and quality of field crop and animal products are affected because of under supplying of soil zinc and low zinc supply capacity of soil. The most effective approach to solve zinc deficiency in soil is to increase the content of soil available Zn and soil Zn supply capacity.Wheat-maize rotation system is the main cropping pattern in central Shaanxi area. There is quite a lot of wheat and maize straw produced every year, and most of them are not effective used, which caused waste of resources. Nowadays, organic fertilizer input into soil is gradually decreased and straw return back to soil is gradually concerned, straw will be the main organic fertilizer put into soil. It is of great significance for straw returning to soil that it not only solves the resources waste problem, but also protects eco-environment. As we all know, straw contains substantial quantity of secondary and micro-nutrients, such as Zn. These nutrients can return back to soil as the crop straw return to field, and the soil fertility is increased.
     Two incubation experiments were carried out separately, and through the determination of soil total Zn, available Zn, Zn fractions etc. to study the effects of straw (wheat or maize straw) decomposition on Zn released from straw, the changes of forms of Zn fractions and the content of soil microbial biomass Zn (Mic-Zn). The primary results are as follows:
     (1) It is of vital significance to evaluate the contribution of straw returning to farmland to keep Zn nutrient balance in soils. In order to study the effects of straw decomposition on Zn released from straw, the changes of forms of Zn fractions and the content of soil microbial biomass Zn (Mic-Zn), an incubation experiment was carried out in dynamic microcosms for 42 days. The results showed that, the cumulative amount of CO_2-C evolution and the content of soil microbial biomass C (Mic-C) were significantly increased as the straw added to soil increased, but they were unrelated to Zn concentration in straw and whether Zn fertilization was conducted or not. Whether the straw was added in soil or not, the contents of soil Mic-Zn, DTPA-Zn, exchange Zn (Ex-Zn) and loosely organic bound Zn (Wbo-Zn) were significantly increased when Zn fertilizer was added, and these four Zn fractions were also increased to some extent when high Zn concentration straw added to soil compared to low Zn concentration straw.
     (2) An incubation experiment was carried out in dynamic microcosms for 42 days to study the effects of straw decomposition on Zn released from straw, the changes of forms of Zn fractions and the content of soil Mic-Zn. The results showed that, the cumulative amount of CO_2-C evolution was significantly increased by 38.69% on average as the straw added to soil increased, the content of soil Mic-C was also increased, but they were unrelated to Zn concentration in straw and whether Zn fertilization was conducted or not. Whether the straw was added in soil or not, the contents of soil Mic-Zn and DTPA-Zn were increased by 228.42% and 131.51% when Zn fertilizer was added compared to the control, Ex-Zn and Wbo-Zn were also significantly increased. The contents of soil DTPA-Zn was increased by 25.06% when high Zn concentration straw added to soil compared to low Zn concentration straw. The contents of soil Ex-Zn and Wbo-Zn were also increased to some extent.
     (3) Two incubation experiments were carried out separately under the same conditions in dynamic microcosms for 42 days to study the effects of straw decomposition on soil Zn supply capacity. The results showed that, the amount of CO_2 evolution was significantly increased as the wheat or maize straw added to soil increased, the content of soil Mic-C and soil microbial biomass N(Mic-N) were also increased, but they were unrelated to Zn concentration in straw and whether Zn fertilization was conducted or not. Wheat straw decomposition was accelerated in soil, while maize straw decomposition was unrelated to the incubation medium. Whether the straw was added in soil or not, the contents of soil Mic-Zn and DTPA-Zn were increased when Zn fertilizer was added, and the content of both were also increased when high Zn concentration straw added to soil. The content of Ex-Zn was increased whether the straw decomposited in soil or in quartz sand, and the content of soil total Zn and other fractions of Zn were significantly increased when straw was added in soil, especially the Wbo-Zn.
     In conclusion, the cumulative amount of CO_2-C evolution and soil Mic-C and Mic-N were increased as the straw added to soil increased, and they were unrelated to Zn concentration in straw and whether Zn fertilization was conducted or not; Whether the straw was added to soil or not, the contents of soil Mic-Zn, soil total Zn, DTPA-Zn and the fractions of Zn were increased when Zn fertilizer was added. The content of DTPA-Zn was significantly increased because of straw decomposition, and so did soil Wbo-Zn, therefore soil Zn supply capacity was increased.
引文
陈安磊,谢小立,王凯荣,高超. 2008.长期有机物循环利用对红壤稻田土壤供磷能力的影响. 植物营养与肥料学报, 14(5): 874-879
    陈铭,尹崇生. 1992.施用锌锰肥对冬小麦体内营养元素浓度的效应.中国农业科学,25(4): 60-69
    陈尚洪,朱钟麟,刘定辉等. 2008.秸秆还田和免耕对土壤养分及碳库管理指数的影响研究.植物营养与肥料学报, 14(4): 806-809
    陈兴丽,周建斌,刘建亮等. 2009.不同施肥处理对玉米秸秆碳氮比及其矿化特性的影响.应用生态学报, 20(2): 314-319
    崔纪超,毛艳玲,杨智杰等. 2008.土壤微生物生物量磷研究进展.亚热带资源与环境学报, 3(4): 80-89
    戴志刚,鲁剑巍,李小坤等. 2010.不同作物还田秸秆的养分释放特征试验.农业工程学报, 26(6): 272-276
    高俊杰,于新英. 1998.施锌对油菜生长产量和品质的影响.北方园艺, 122: 16-17
    高明,车福才,魏朝富等. 2000.长期施用有机肥对紫色水稻土铁锰铜锌形态的影响.植物营养与肥料学报, 6(1): 11-17
    郭胜利,余存祖,戴鸣钧. 1996.有机肥对石灰性土壤中锌、锰生物有效性的影响.华北农学报, 11(4): 63-68
    韩凤祥,胡霭堂,秦怀英,史瑞和. 1990.我国某些旱地土壤中锌的形态及其有效性.土壤, 6: 302-306
    韩凤祥,胡霭堂,秦怀英等. 1992.酸性、中性与石灰性土壤中外源可溶性锌的形态及活性.中国环境科学, 12(2): 108-112
    韩文炎,徐充文,伍炳华. 1994.铜与锌对茶树生育特性及生理代谢的影响Ⅱ.锌对茶树的生长和生理效应.茶叶科学, 14(1): 23-29
    郝明德,魏孝荣,党廷辉. 2003.旱地长期施用锌肥对小麦吸锌及产量的影响.生态环境, 12(1): 46-48
    郝明德,魏孝荣,党廷辉. 2003.旱地小麦长期施用锌肥的增产作用及土壤效应.植物营养与肥料学报, 9(3): 377-380
    侯志研,杜桂娟,孙占祥等. 2004.玉米秸秆还田培肥效果的研究.杂粮作物, 24(3): 166-167
    蒋廷惠,胡霭堂. 1989.土壤锌的形态和分级方法.土壤通报, 20(2): 86-89
    蒋廷惠,胡霭堂,秦怀英. 1990.锌在不同土壤中的形态分配.土壤肥料, 6: 30-32
    蒋廷惠,胡霭堂,秦怀英. 1993.土壤中锌的形态分布及其影响因素.土壤学报, 30(3): 260-266
    江晓东,迟淑筠,王芸等. 2009.少免耕对小麦/玉米农田玉米还田秸秆腐解的影响.农业工程学报, 25(10): 247-251
    金发会,李世清,卢红玲,李生秀. 2007.石灰性土壤微生物量碳、氮与土壤颗粒组成和氮矿化势的关系.应用生态学报, 18(12): 2739-2746
    劳秀荣,吴子一,高燕春. 2002.长期秸秆还田改土培肥效应的研究.农业工程学报, 18(2): 49-52
    劳秀荣,孙伟红,王真. 2003.秸秆还田与化肥配合施用对土壤肥力的影响.土壤学报, 40(4): 619-623
    李本银,汪鹏,吴晓晨,李忠佩,周东美. 2009.长期肥料试验对土壤和水稻微量元素及重金属含量的影响.土壤学报, 46(2): 281-288
    李春花,褚天铎,杨清等. 1997.灌溉水中HCO3-对菜豆吸收利用土壤有效养分的影响.植物营养与肥料学报, 3(4): 329-333
    李贵桐,张宝贵,李保国. 2003.秸秆预处理对土壤微生物量及呼吸活性的影响.应用生态学报, 14(12): 2225-2228
    李华. 1997.施锌对马铃薯产量和品质的影响.山西农业大学学报, 17(3): 270-272
    李娟,赵秉强,李秀英, So Hwat Bing. 2009.长期不同施肥条件下土壤微生物量及土壤酶活性的季节变化特征.植物营养与肥料学报, 15(5): 1093-1099
    李玉双,孙丽娜,孙铁珩,王洪. 2006.北方常见农作物根际土壤中铅、锌的形态转化及其植物有效性.生态环境, 15(4): 743-746
    林荣新. 1985.有机肥防治油菜缺硼效果的研究.浙江农业科学, 2: 88-91
    林玉锁,薛家骅. 1987.锌在石灰性土壤中的吸附.土壤学报, 24(2): 135-141
    刘福来. 1998.土壤—植物系统中锌的研究概况.土壤学报, (5):10-14
    刘合满,张兴昌,苏少华. 2008.黄土高原主要土壤锌有效性及其影响因素.农业环境科学学报, 27(3): 898-902
    刘荣乐,金继运,吴荣贵等. 2000.我国北方土壤-作物系统内钾素循环特征及秸秆还田与施钾肥的影响.植物营养与肥料学报, 6(2): 123-132
    刘巽浩,高旺盛,朱文珊. 2001.秸秆还田的机理与技术模式.北京:中国农业出版社: 3-5
    刘铮. 1994.我国土壤中锌含量的分布规律.中国农业科学, 27(1): 30-37
    刘铮,吴兆明主编. 1980.中国科学院微量元素学术交流会会刊.北京:科学出版社
    陆景陵. 1994.植物营养(上).北京农业大学出版社
    陆景陵主编. 2003.植物营养学(上册).中国农业大学出版社: 151-154
    陆欣春,田霄鸿,杨习文等. 2010.氮锌配施对石灰性土壤锌形态及肥效的影响.土壤学报, 47(6): 1202-1213
    吕彪,秦嘉海,赵芸晨. 2005.麦秸覆盖对盐渍土肥力及作物产量的影响.土壤, 37(l): 52-55
    马义兵,夏荣基. 1988.土壤微量元素研究Ⅰ石灰性中锌的分组方法研究.北京农业大学学报, 14(2): 149-155
    莫争,王春霞,陈琴等. 2002.重金属Cu, Pb, Zn, Cr, Cd在土壤中的形态分布和转化.农业环境保护, 21(1): 10-17
    南雄雄,田霄鸿,张琳等. 2010.小麦和玉米秸秆腐解特点及对土壤中碳、氮含量的影响.植物营养与肥料学报, 16(3): 626-633
    牛灵安. 1998.曲周试区秸秆还田配施氮磷肥的效应研究.土壤肥料, 6: 32-35
    裴雪霞,党建友,王姣爱. 2002.钾、锌、锰配施对冬小麦产量及品质的影响.麦类作物学报, 22(2): 60-64
    钱金红,谢振翅. 1994.碳酸盐对土壤锌解吸影响的研究.土壤通报, 31(1): 105-108
    任军,袁震林,张椒芬. 1993.锌肥有效施用条件研究.土壤肥料,2:40-42
    孙刚,田霄鸿,曹翠玲,刘迎春,李生秀. 2006.不同pH和供Zn条件下HCO3-对冬小麦幼苗生长和锌营养的影响.土壤通报, 37(4): 716-719
    孙桂芳,杨光穗. 2002.土壤-植物系统中锌的研究进展.华南热带农业大学学报, 8(2): 22-30
    孙伟红,劳秀荣,董玉良等. 2004.小麦一玉米轮作体系中秸秆还田对产量及土壤钾素肥力的影响.作物杂志, 4: 14-16
    田霄鸿,李生秀,宋书琴. 2002.碳酸氢根和铵态氮共同对菜豆生长及养分吸收的影响.园艺学报, 29(4): 337-342
    田霄鸿,张茜,李生秀. 2005.生长介质中CaCO3质量分数及水分状况与HCO3-的关系.生态环境, 14(2): 230-233
    汪洪,刘新保,褚天铎等. 2003.锌肥对作物产量、子粒锌及土壤有效锌含量的后效.土壤肥料, 1: 3-6, 9
    汪金舫,刘月娟,李本银. 2006.秸秆还田对沙姜黑土理化性质与锰、锌、铜有效性的影响.中国生态农业学报, 14(3): 49-51
    汪金平,何园球,柯建国等. 2004.南方双季稻田秸秆厢沟腐熟还田免耕土壤生态效应研究.南京农业大学学报, 27(2): 21-24
    王旭东,陈鲜妮,王彩霞等. 2009.农田不同肥力条件下玉米秸秆腐解效果.农业工程学报, 25(10): 252-257
    魏世强,陈荣,刘东. 1990.四川主要土壤锌形态和含量的研究.西南农业大学学报, 12(6): 600-603
    魏孝荣,郝明德,张春霞. 2005.黄土高原地区连续施锌条件下土壤锌的形态及有效性.中国农业科学, 38(7): 1386-1393
    魏孝荣,郝明德,张春霞,田梅霞. 2003.长期施锌条件下土壤-植物系统营养元素的分布特征. 西北植物学报, 23(8): 1438-1441
    文启孝. 1989.我国土壤有机质和有机肥料研究现状.土壤学报, 26(3): 255-261
    王朝辉,刘学军,巨晓棠,张福锁. 2002.北方冬小麦/夏玉米轮作体系土壤氨挥发的原位测定. 生态学报, 22(3): 359-365
    谢建治,刘树庆,李博文等. 2004.锌处理对白菜营养品质的影响.园艺学报, 31(5): 668-669
    刑光熹,朱建国. 2002.土壤微量元素和稀土元素化学.北京:科学出版社
    徐晓燕,杨肖娥,杨玉爱. 2000.水稻品种对石灰性土壤缺Zn耐性机理的研究.土壤学报, 37(3): 396-401
    徐晓燕,杨肖娥,杨玉爱. 2001a.重碳酸氢根对水稻根区重要有机酸分布的影响与水稻品种耐缺锌关系的研究.作物学报, 27(3): 387-391
    徐晓燕,杨肖娥,杨玉爱. 2001b. HCO3-对不同水稻品种Zn吸收运输的影响.应用与环境生物学报, 7(6): 532-535
    杨利华,郭丽敏,傅万鑫. 2003.施锌对玉米氮磷钾肥料利用率、产量及籽粒品质的影响.中国生态农业学报, 11(2): 41-43
    杨丽娟,李天来,刘妤等. 2005.长期施用有机肥和化肥对菜田土壤锌有效性的影响.土壤通报, 36(3): 395-397
    杨丽娟,李天来,付时丰等. 2006.长期施肥对菜田土壤微量元素有效性的影响.植物营养与肥料学报, 12(4): 549-553.
    杨玉爱. 1996.我国有机肥料研究与展望.土壤学报, 33(4): 414-422
    于建光,常志州,黄红英,叶小梅,马艳,钱玉婷. 2010.秸秆腐熟剂对土壤微生物及养分的影响. 农业环境科学学报, 29(3): 563-570
    袁可能. 1983.植物营养元素的土壤化学.北京:科学出版社
    曾庆芳. 1996.石灰性土壤棉花的施锌效果研究.中国棉花, 23(11): 21-22
    曾昭华. 2001.农业生态与土壤环境中锌元素的关系.吉林地质, 20(3): 58-63
    张宝文. 2008.保护性耕作:保障粮食安全和生态文明的重要措施-在2008中国保护性耕作论坛上的讲话.农机市场, 5: 16
    张成娥,王栓全. 2000.作物秸秆腐解过程中土壤微生物量的研究.水土保持学报, 14(3): 96-99
    张静,温晓霞,廖允成,刘阳. 2010.不同玉米秸秆还田量对土壤肥力及冬小麦产量的影响.植物营养与肥料学报, 16(3): 612-619
    张薇,王子芳,王辉等. 2007.土壤水分和植物残体对紫色水稻土有机碳矿化的影响.植物营养与肥料学报, 13(6): 1013-1019
    张振江. 1998.长期麦秆直接还田对作物产量与土壤肥力的影响.土壤通报, 29(4): 154-155
    郑昭佩,刘作新,魏义长等. 2002.水肥管理对半干旱丘陵区土壤有机质含量的影响.水土保持学报, 16(4): 102-104
    周波. 2003.秸秆还田对土壤肥力及酥梨产量的影响.安徽农学通报, 9(5): 62-63
    朱克庄,王学贵. 1991.陕西省缺锌土壤的分布及锌肥的应用.西北农业大学学报, 19(2): 49-53
    Abiven S, Recons S. 2007. Mineralization of crop residues on the soil surface or incorporated in the soil under controlled conditions.Biology and Fertility of Soils, 43: 849-852
    Alina K P and Honry K P. 1996. Trace elements in soil and plants. London: CRC Press Alloway B. J. 2004. Znic in soil and crop nutrition. IZA Publications. International Znic Association, Brussels, 1-166.
    Alloway B. J. 2009. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health, 31: 537-548
    Anthony Whitbread, Graeme Blair, Yothin Konboon et al. 2003. Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agriculture, Ecosystems and Environment, 100: 251-263
    Atanu Basak, Mandal L N, Haldar M. 1982. Interaction of phosphorus and molybdenum and the availability of zinc, copper, manganese, molybdenum and phosphorus in waterlogged rice soil. Plant and Soil, 68: 271-278.
    Avnimelech Y. 1986. Organic residues in modern agriculture. in: eds. Y Chen and Y Avnimeleched. The Role of organic Matter in Modern Agriculture. Martinus Nijhoff, Dordrecht, 1-10
    Basta N T, Tabatabai M A. 1992. Effect of croping systems on adsortiong of metals by soils:Ⅰ. Single-metal adsorption. Soil Sci, 153(2): 108-114
    Boawn L C. 1974. Residual availability of fertilizer zinc. Soil Sci.Soc.Am.Proc., 38: 800-803
    Cakmak I, Sari N, Marschner H, Kalayci M, Yilmaz A, Eker S, Gülüt K Y. 1996. Dry Matter Production and Distribution of Zinc in Bread and Durum Wheat Genotypes Differing in Zinc Efficiency. Plant Soil, 180: 173-181
    Cakmark I, Yilmaz A, Kalayci M et al. 1996. Zinc deficiency as a critical problem in wheat production in central anatolia. Plant and Soil, 180: 165-172
    Cakmak I, Ekiz H, Yilmaz A et al. 1997. Differential responses of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils. Plant and Soil, 188(1): 1-10
    Cakmak I, Torun B, Erenoglu B, oztürk L, Marschner H, Kalayci M, Ekiz H, Yilmaz A. 1998.
    Morphological and physiological differences in response of cereals to zinc deficiency. Euphytica, 100: 349-357.
    Cakmak I, Kalayci M, Ekiz H, Braun H J, Kilinc Y, Yilmaz A. 1999. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crops Research, 60: 175-188
    Cakmak I. 2002. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant and Soil, 247: 3-24
    Cakmak I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302: 1-17
    Cayton M T C, Reyes E D, Neue H U. 1985. Effect of zinc fertilization on the mineral nutrition of rice differing in tolerance to zinc deficiency. Plant and Soil, 319-327
    Cayuela M L, Sinicco T, Mondini C. 2009. Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil. Applied Soil Ecology, 41: 118-127
    Curtin D, Smillie G W. 1983. Soil solution composition as affected by liming and incubation. Soil Sci SocAm J, 47(4): 701-707
    Filgueiras A V, Lavilla I, Bendicho C. 2002. Chemical sequential extraction for metal partitioning in environmental solid samples. Environ. Monit., 4: 823-857
    Follett R H, Lindsay W L. 1971. Progile distribution of zinc,iron,manganese and copper in Colorado soils. Colorado Agric. Exp., 10: 125-131
    Follett R H, Lindsay W L. 1975. Profile distribution of zinc,iron,manganese and copper in Colorado soils. Colorado Agric. ExP. Sta. Tech. Bull., 110
    Forno D A, Yoshida S, Asher C J. 1975. Zinc deficiency in rice.Ⅱ.Studies on two varieties differing in susceptibility to zinc deficiency. Plant and Soil, 42: 551-563
    Gabrielle B, Mary B, Roche R, Smith P, Gosse G. 2002. Simulation of carbon and nitrogen dynamics in arable soils: a comparison of approaches. Europ. J. Agronomy, 18: 107-120
    Gerriste R G, Van Driel W. 1984. The relationship between adsorption of trace metals, organic matter and pH in temperate soils. J Environ Qual, 13:.197-204
    Gleyzes C., Tellier S., Astruc M. 2002. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal. Chem., 21: 451-467
    Gregorich E G, Carter M R, Angers D A et al. 1994. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci., 74: 367-385
    Gregorich E G, Janzen H H. 1995. Storage of soil carbon in the light fraction and macroorganic. In Carter M R and Stewart B A(eds.) Structure and Organic Matter Storage in Agriculture Soils. Advances in Soil Science., 167-190
    Gregorich E G, Carter M R, Doran J W et al. 1997. Biological attributers of soil quality. Gregorich E G, Carter M R (eds.). Soil quality for crop production and ecosystem health. The Netherlands: Elsevier, Amsterdam., 81-113
    Hadas A, Kautsky L, Goke M, Kara E E. 2004. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulations of carbon and nitrogen turnover. SoilsBiology & Biochemistry, 36: 255-266
    Hajiboland R,Yang X E, R?mheld V. 2003. Effects of bicarbonate and high pH on growth of Zn-efficiency and Zn-inefficient genotypes of rice, wheat and rye. Plant and Soil, 250: 349-357
    Harter R D, 1995. Naidu R. Role of metal-organic complexation in metal sorption by soils. Adv Agron, 55: 219-263
    Himes E L, Barber S A. 1957. Chelating ability of soil organic matter. Soil Science Society of America Proceedings. 21: 368-373
    Hodgson, J F et al. 1996. Micronutriemt cation Complexing in soil solution from calcarous soil. Sci. Am. Proc, 30: 723-725
    Jenkinson D S. 1988. Determination of microbial biomass carbon and nitrogen in soil. Wilson J R. Advances in nitrogen cycling in agricultural ecosystems. Wallingford, England: CAB International, 368-386
    John M K. 1975. In Proc intl conf on Heavy metals in the Environ, Tronto: Ontario, Canada, 365-377 Kandeler E, Tscherko D, Spiegel H. 1999. Long-term monitoring of a microbial biomass, N
    mineralization and enzyme activities of a Chernozem under different tillage management. Biol. Fert. Soils, 28: 343-351
    Kiekens L. 1995. Zinc. in Alloway B J Heavy Metals in Soils(2nd edition). Blackie Academic and Professional, London, 284-305
    Subramanian K S, Tenshia V, Jayalakshmi K, Ramachandran V. 2009. Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization. Applied Soil Ecology, 43: 32-39
    Lindsay W L. 1979. Chemical equilibria in soils. New York: JohnWiley, Sons: 211-220
    Malic R S, Karwasra S P S, Khera A P. 1992. Effect of chloride and bicarbonate on sulphur uptake and dry matter yield of Raya. Annals of Arid Zone, 31(3): 195-197
    Marschner H. 1993. Zinc uptake from siols. In: Robson A D(Ed.), Zinc in soils and Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands. 59-77
    Monaghan R, Barraclough D. 1995. Contributions to gross N mineralization from 15N labeled soil macro-organic matter fractions during laboratory incubation. Soil Biol Biochem., 27: 1623-1628
    Nikolic M, R?mheld V. 2002. Does high bicarbonate supply to roots change availability of iron in the leaf apoplast? Plant and Soil, 241: 67-74
    Nsabimana D, Haynes R J, Wallis F M. 2004. Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Appl. Soil Ecol., 26(2): 81-92
    Obrador A, Alvarez J M, Lopez-Valdivia L M, Gonzalez D, Novill J, Rico M I. 2007. Relationships of soil properties with Mn and Zn distribution in acidic soils and their uptake by a barley crop. Geoderma, 137: 432-443
    Pankhurst C E. 1994. Biological indicators of soil health and sustainable productivity. Greenland D J, Szabolcs I. Soil resilience and sustainable land use. Wallingford, U K: CAB International : 331-351
    Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I. 2008. Grain zinc, iron and protein concentrations and zinc-deficiency in wild emmer wheat under contrasting irrigation regimes. Plant and soil, DOI 10. 1007/s11104-007-9417-z: (online)
    Potthoff M, Dyckmans J, Flessa H, Muhs A, Beese F, Joergensen R G. 2005. Dynamics of maize (Zea mays L.) leaf straw mineralization as affected by the presence of soil and the availability of nitrogen. Soil Biology & Biochemistry, 37: 1259-1266
    Reicosky D C, Reeves D W, Prior S A et a1. 1999. Effects of residue management and controlled traffic on carbon dioxide and water loss. Soil & Tillage Research, 52: 153-165
    Rengel Z, Graham R D. 1996. Uptake of zinc from Chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency. Exp Bot., 47: 217-226.
    Rengel Z, Batten G D, Crowley D E. 1999. Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research, 60: 27-40
    Singh Shivay Y, Kumar D, Prasad R. 2008. Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice-wheat cropping system. Nutr Cycl Agroecosyst. 81: 229-234
    Spedding T A, Hamel C, Mehuys G, Madramootoo C A. 2004. Soil microbial dynamics in maize growing soil under different tillage and residue management systems. Soil Biol. Biochem., 36(3): 499-512
    Srivastava P C, Dobermann A, Ghosh D. 2000. Assessment of zinc availability to rice in Mollisols of North India. Commun. Soil. Sci. Plant Anal., 31(15&16): 2457-2471
    Sven Marhan, Dmitry Demin, Martin Erbs, Yakov Kuzyakov, Andreas Fangmeier, Ellen Kandeler. 2008. Soil organic matter mineralization and residue decomposition of spring wheat grown under elevated CO2 atmosphere. Agriculture, Ecosystems and Environment, 123: 63-68
    Tessier A, P G C Campbell and M Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem..51: 844-851
    Tran Q T, Tan P S. 2001. Effects of straw management, tillage practices on soil fertility and grain yield of rice. Omonrice, 9: 74-78
    Treeby M, Marschner H, R?mheld V. 1989. Mobilization of Iron and other Micronutrients from a Calcareous Soil by Plant-Borne, Microbial, and Synthetic Metal Chelators. Plant Soil, 114, 217-226
    Undsay W L. 1972. Zinc in soils and plant nutrition. Ady. Agron. 24: 147-181
    Xiao-E. Yang, Wen-Rong Chen, Ying Feng. 2007. Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ Geochem Health, 29: 413-428
    Yadvinder-Singh, Bijay-Singh, Ladha J K, Khind, C S et al. 2004. Effects of residue decomposition on productivity and soil fertility in rice-wheat rotation. Soil Science Society of America Journal, 68(3): 854-864
    Yang X, R?mheld V, Marschner H. 1993. Effect of bicarbonate and root zone temperature on the uptake of Zn, Fe, Mn and Cu by different rice cultivars (Oryza sativa L.) grown in calcareous soil. Plant and Soil, 155/156: 441-445
    Yang X, R?mheld V, Marschner H. 1994a. Application of chelator-buffered nutrient solution technique in studies on zinc nutrition in rice plant (Oryza sativa L.). Plant and Soil, 163: 83-94
    Yang X, R?mheld V, Marschner H. 1994b. Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.). Plant and Soil, 164: 1-7
    Yuan G, Lvkulich L m. 1997. Sorption behavior of copper, zinc, and cadmium in response to simulated changes in soil properties. Commun Soil Sci Plant Ana, 28: 571-587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700