秸秆还田土壤中高效纤维素分解菌的筛选、鉴定及其生物效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是农业大国,年产各种农作物秸秆约8.0亿t,占世界秸秆总产量的20%~30%,其中绝大部分作为废弃物被丢弃焚烧,不仅浪费了资源,也造成了严重的环境问题。秸秆还田是当今世界上普遍关注的一项培肥地力和增产增效的农艺措施,但还田玉米秸秆存在腐解难的问题,如何加速还田玉米秸秆的腐解是目前研究的热点。本研究采用纤维素-刚果红染色法从河北省山前平原小麦-玉米轮作区且长期秸秆还田的小麦季农田土壤中分离筛选出高效分解纤维素的菌株,在优化其产酶条件、发酵条件和CMC酶活力的基础上,进行了该菌株对玉米秸秆的腐解能力、土壤中固定态磷的释放和小麦生长及其磷营养状况的影响等方面研究。主要研究结果如下:
     1.采用纤维素-刚果红染色法,经形态鉴定初步筛选出具有纤维素分解菌真菌8株,细菌20株;进一步采用水解圈测定,酶活力比较分析,得到高效纤维素分解真菌1株,编号为HB1,经18S rDNA基因序列分析,确定为草酸青霉(Penicillium oxalicum),命名为草酸青霉HB1(P. oxalicum HB1),该菌株现保藏于中国微生物菌种保藏管理委员会普通微生物中心(CGMCC),保藏号为CGMCC NO. 4842;得到高效纤维素分解细菌3株,编号为B1,B2和B3,其中B1、B2为芽孢杆菌,B3为无芽孢杆菌;室内摇瓶试验研究了草酸青霉HB1和3株细菌的生长曲线,并对内切葡聚糖酶(CMC酶)和滤纸酶(FPA酶)活力进行了测定。结果表明,利用CMC-Na培养基,按1%接种量,30℃,180rpm摇瓶培养72h,草酸青霉HB1菌株的CMC酶和FPA酶活力分别达672.8U和774.6U。培养12h时,B1和B3菌CMC酶活力近峰值,分别为31.2U和24.4U;培养18h时,B2菌CMC酶活力达最高,为36.3U。培养12h时,B1菌FPA酶活力达高峰,为34.1U;培养8h时,B2、B3菌FPA酶活力最大,分别为39.2U和163.6U。综合比较发现草酸青霉HB1菌株的CMC酶和FPA酶活力最高,因此对该菌株展开如下系统的研究。
     2.草酸青霉HB1菌株发酵条件的优化
     首先选择氮源、接种量、培养温度、发酵时间、培养基初始pH进行单因子试验,对草酸青霉产酶条件的影响,结果表明该菌最佳产酶条件为3%的牛肉膏蛋白胨为氮源,接种量为5%,培养温度为28℃~35℃,pH=4.0~7.0,培养48h~72h。进一步采用正交设计研究了pH、温度、固液比和培养时间四因素对草酸青霉HB1菌株发酵的影响,综合考虑CMC酶、FPA酶、纤维素酶、半纤维素酶四种酶活力,该菌株最优发酵条件为固液比为1:10,培养时间为48h,培养温度为30℃,pH为6.5。
     在草酸青霉HB1菌株作为纤维素分解菌,以CMC-Na液体培养作基质,研究CMC酶活力的结果表明,该酶反应的最适pH为5.0左右,其pH的稳定性在4.0~5.0范围内,酶反应的最适温度为50℃,其热稳定性在40℃~50℃之间。
     3.草酸青霉HB1对玉米秸秆腐解能力评价
     采用室内摇瓶试验、土样培养试验及小麦盆栽试验对其进行了系统研究。利用玉米秸秆替代CMC-Na的培养基中,按1%接种量,30℃,180rpm摇瓶培养72h,CMC酶和FPA酶活力则分别为282.9U,618.3U,纤维素酶活力为376.1U;利用3%的牛肉膏蛋白胨为氮源,接种量为5%,培养温度为30℃,pH=7.0,培养72h,其CMC酶活力高达888.8U。从腐解秸秆的形态特征发现,草酸青霉HB1处理的秸秆与对照相比形态发生明显改变,在培养10d后,秸秆腐解率达87.3%,为对照的1.90倍;初步说明该菌株具有较强的玉米秸秆腐解能力。在土壤培养试验中,培养30d时,接种草酸青霉HB1的土壤中玉米秸秆的腐解率达83.5%,是对照的1.62倍;在小麦盆栽试验中,培养50d时,接种草酸青霉HB1的土壤中还田秸秆腐解率达70.8%,高于对照15.1%。
    
     4.土壤中接种草酸青霉HB1的解磷作用及其生物效应研究土壤培养试验以及小麦盆栽试验研究还表明,接种草酸青霉HB1有利于土壤固定态磷的释放和提高植物对磷的吸收利用。在土壤培养30d时,处理组和对照组中土壤速效磷含量分别达98.6mg/kg和77.1mg/kg,高出对照27.9%;在培养50d时,小麦植株地上部和地下部,处理组和对照组全磷含量分别为12.6g/kg、7.62g/kg和25.9g/kg、21.1g/kg,分别高出对照65.3%和22.7%,差异显著性分析表明,各处理组与其对照组差异显著;同时有利于植物的生长,在培养30d时,小麦植株生物量增加16.8%。
     本试验所获得的草酸青霉HB1对玉米秸秆腐解的同时在土壤中解磷的特性还未见其他作者报道,具有进一步利用研究的价值。
China is a large agricultural country with the production of crop straw 800 million tons per year, accounting for 20% ~30% of total output in the world. Most of them are burned in the farmland after grain harvest as waste, which not only waste the resources, but also cause the pollution of the environment. Straw returning is a beneficial measure in farmland, which can increase soil fertility and crops production generally.The decomposition of corn stalk returning to soil is very difficult and slow. It has been the hot topic how to accelerate the decomposition of corn stalk in soil around the world. Isolation of cellulose-decomposing bacteria or fungi was conducted using method of cellulose-Congo red stain in soil with straw returning which was collected from wheat-corn rotation farmland in Hebei province, its application of beneficial soil rapidiy available phospprus has a decomposition release and can increase the absorption of plant phosphorus in the soil. On the basis of optimize the fermentation process, the conditions for enzyme production and enzymatic properties. The main results showed as follows:
     1. Eight strains of fungi or 20 strains of bacteria were isolated using method of cellulose-Congo red stain. One fungus and three strains of bacteria were screened with hydrolysis circle determination and enzyme activity analysis.The 18SrDNA gene sequence showed that the fungus strain isolated was identified as Penicillium oxalicum. The isolated strain was named Penicillium oxalicum HB1 (P.oxalicum HB1), preserved in the China General Microbiological Culture Collection Center (CGMCC), preserved No. of CGMCC NO.4842. Moreover, B1 and B2 are strains with Bacillus and B3 is a strain without Bacillus. The growth curve and CMC and FPA enzyme activities were studied further for HB1 and three strains of bacteria. The results showed that the enzymic activities of CMC and FPA of HB1 were 672.8U and 774.6U on the sodium carboxymethyl cellulose (CMC-Na) medium when inoculum size kept at 1% and grew on the condition of 30℃and shaking at 180rpm for 72h. CMC enzyme activities of B1 and B3 are close to the peak at 12h after cultured, up to 31.2U and 24.4U, respectively. CMC enzyme activities of B2 are the highest and reached 36.3U at 18h after cultured. For another enzyme-FPA, the enzyme activities of B1 strain had reached the peak at 12h after cultured and maximum value is 34.1U. However, the FPA enzyme activities of B2 and B3 strains is the highest at 8h after cultured and reached 39.2U and 63.6U, respectively. Comparison Penicillium oxalicum HB1 to 2 strains of bacteria in enzyme activities and growth conditions, CMC and FPA enzymes activities of Penicillium oxalicum HB1 were highest. Therefore, further study was conducted for Penicillium oxalicum HB1.
     2. The study of fermentation optimization and CMC enzyme activities of Penicillium oxalicum HB1
     The results showed that CMC enzyme activities were high when HB1 grew on the medium with 3% N as beef extract peptone, 5% inoculum size, incubation temperature at 28℃~35℃, pH at 4~7 and incubation time for 48h~96h. The further experiment was conducted on the base of this result to explore fermentation optimization.The best combination of pH, temperature, solid-liquid ratio and incubation time was solid-liquid ratio of pH=6.5, 30℃, 1:10 and incubation time of 48h.
     CMC enzyme activity was higheat when HB1 grew in the medium with pH5 and kept at 50℃. In addition, CMC enzyme activity was stable on the conditions of pH4~5 and 40℃~50℃.
     3. The ability evaluate of Penicillium oxalicum HB1 decomposing corn straws
     The incubation experiment illustrated that the enzymic activities of CMC and FPA and the total activity of celluase were 282.9U, 618.3U and 376.1U respectively when HB1 grew on the medium withcorn straw, 1% of inoculum size, shaking at 30℃and 180rpm for 72h. When the HB1 strain was cultured in agar medium with powder of corn stalk together for 10 days, the 87.3% of core stalk was decomposed and 1.90 times higher than that in the control; When the HB1 strain were incubated in soil with corn stalk for 30 days, the decomposition rates were 83.5% and 1.62 times higher than that in the control; Finally, the pot experiment with wheat plants was carried out to investigate the effect of HB1 strain on corn stalk decomposition in the soil for 50 days. The result showed that the straw decomposition rate was 70.8% and 15.1% higher than that in the control.
     4. The functions of HB1 on fixed P release in soil and beneficial effects on plant growth
     When the HB1 strain were incubated in soil with corn stalk for 30 days, the soil available phosphorus (Olsen-P) concentrations were 98.6mg/kg and 77.1mg/kg in HB1 application treatment and control, respectively. When incubation time expanded to 50d, P concentrations in wheat shoots were 12.6g/kg and 7.62g/kg for treatment and control, and P concentration in wheat roots were 25.9g/kg and 21.1g/kg in treatment and control.moreover,There were significant differences in P concentrations between control and HB1 treatment(P<0.05). Meanwhile, the biomass of wheat increased by 16.8% in treatment comparing to the control when plant growth for 30d.
     Penicillium oxalicum HB1 not only accelerates the decomposition of corn stalk in soil, but also enhances the available P released from soil. So it is necessary to do further research on its application in farmland.
引文
[1]费尚芬,鹿宁,刘坤,等.白腐菌纤维素酶高酶活菌株的筛选[J].安徽农业科学, 2006, 34(l): 22-23.
    [2]Holtzapple MT, Cellulosehi, Macrae R, et al. Encyelopedia of food science food teehnology and nutrition[J]. London: Aeademicpress, 1993, 16: 758-767.
    [3]刘巽浩,高旺盛,朱文珊.秸秆还田的机理与技术模式[M].北京:中国农业出版社, 2001, 55-61.
    [4]李慧君,杜双田,孙婷,等.纤维素分解菌的筛选及玉米秸秆降解[J].西北农业学报, 2010, 19(8): 74-79.
    [5]周俊强,邱忠平,韩云平,等.纤维素降解菌的筛选及其产酶特性[J].环境工程学报, 2010, 4(3): 705-708.
    [6]胡代泽.我国农作物秸秆资源利用现状与前景[J].资源开发与市场, 2000, 16(l): 19-20.
    [7]毕于运,寇建平,王道龙.中国秸秆资源综合利用技术[M].中国农业科学技术出版社, 2008, 1-3.
    [8]刘翔,何国庆.利用木质纤维素生产燃料乙醇的微生物代谢工程[J].粮油加工与食品机械, 2003, (8): 67-69.
    [9]王丹,张志华,张潇,等.丝状真菌直接转化纤维素生成酒精的研究[J].山东大学学报(理学版), 2003, 38(l): 110-113.
    [10]余丽清.纤维素酶水解及转化为乙醇的研究进展[J].世界林业研究, 2004, 13(2): 30-34.
    [11]沙文锋,李世江,朱娟.农作物秸秆开发利用技术研究进展[J].金陵科技学院学报, 2005, 21(4): 73-76.
    [12]刘世平,陈后庆,陈文林,等.稻麦两熟制不同耕作方式与秸秆还田对小麦产量和品质的影响[J].麦类作物学报, 2007, 27(5): 859-863.
    [13]Lal R. World crop residues production and implications of its use as a biofuel[J]. Environment International, 2005, 31(3): 575-584.
    [14]王振忠,吴敬民,陈留根,等.稻麦两熟地区秸秆全量直接还田施肥技术的增产培肥效果[J].江苏农业学报, 2003, 19(3): 151-156.
    [15]刘天学,纪秀娥.焚烧秸杆对土壤有机质和微生物的影响研究[J] .土壤, 2003, 35(4): 347-348.
    [16]曹奎荣,朱建兰.秸秆还田与免耕对小麦根际线虫数的影响[J].植物保护, 2006, 32(l): 91-93.
    [17]蒋向,任洪志,贺德先.玉米秸秆还田对土壤理化性状与小麦生长发育和产量的影响研究进展[J].麦类作物学报, 2011, 31(3): 569-574.
    [18]刘丽香,吴承祯,洪伟,等.农作物秸秆综合利用的进展[J].亚热带农业研究, 2006, 2(l): 75-80.
    [19]刘雪,邵红霞.秸秆还田的方法和推广措施探讨[J].河南农业, 2004, (5): 42.
    [20]李素娟,李琳,洪伟,等.保护性耕作对平原冬小麦水分利用的影响[J].华北农业学报, 2007,22(l): 115-120.
    [21]姜佰文,潘俊波,王春宏,等.秸秆腐常温快速腐熟生物技术的研究[J].东北农业大学学报, 2005, 36(4): 439-441.
    [22]李庆康,王振中,顾志权,等.秸秆腐熟剂在秸秆还田中的效果研究[J].土壤与环境, 2001, 10(2): 124-127.
    [23]赵小蓉,林启美,孙焱鑫,等.纤维素分解菌对不同纤维素物质的分解作用[J].微生物杂志, 2000, 20(3): 12-14.
    [24]郝月,杨翔华,郝传德,等.秸秆纤维素分解菌的选育及发酵条件研究[J].粮食与饲料工业, 2006(3): 32-33.
    [25]林志伟,孙冬梅,张红梅,等.黄绿木霉菌产纤维素酶条件优化[J].微生物学通报, 2008, 35(1): 59-62.
    [26]Adsul MG, Bastawde KB, Varma AJ. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production [J]. Bioresource technology, 2007, 98(7): 1467-1473.
    [27]刘韫滔,淑霞,龙传南,等.纤维素降解菌L-06的筛选、鉴定及其产酶条件的分析[J].生物工程学报, 2008, 24(6): 1112-1116.
    [28]李文革,李倩,贺小香.秸秆还田的研究进展[J].湖南农业科学, 2006, (l): 46-48.
    [29]孙颉,胡敏,谢笔钧,等.秸秆还田的效果与方法[J].精细化工, 2000, 17(7): 431-434.
    [30]陈勇.浅谈农作物秸秆的综合利用[J].天津农林科技, 2004 (6): 31-33.
    [31]杨文钰,王兰英.作物秸秆还田的现状与展望[J].四川农业大学学报, 1997, 27(2): 211-216.
    [32]刘巽浩,高旺盛,朱文珊.秸秆还田的机理与技术模式[M].北京:中国农业出版社, 2001.
    [33]赵聚宝,梅旭荣,薛军红,等.秸秆覆盖对旱地作物水分利用效率的影响[J].中国农业科学, 1996, 29(2): 59-66.
    [34]赵勇,李武,周志华,等.秸秆还田后土壤微生物群落结构变化的初步研究[J].农业环境科学学报, 2005, 24(6): 1114-1118.
    [35]刘尧,李力,李俊,等.玉米秸秆高效腐解复合菌系CSS-1的选育及其组分分析[J].中国农业科学, 2010, 43(21): 4437-4446.
    [36]高小朋,杨晗,袁茂林,等.纤维素降解菌的筛选及酶活力测定[J].湖北农业科学, 2011, 50( 15): 3072-3073.
    [37]赵明智,王立英,金元宝,等.土壤中纤维素分解君主的筛选及形态观察[J].广东化工, 2011, 38( 9): 275-276.
    [38]江意义,宗斯,李洋,等.纤维素酶高产菌株的筛选及产酶条件的研究[J].安徽农学通报, 2010, 16( 21): 48-52.
    [39]李焕珍.玉米秸秆直接还田培肥效果研究[J].土壤通报, 1996, (5): 45-50.
    [40]尚梅,任晓东,刘德璋,等.农作物秸秆还田技术应用及推广前景[J].农机化研究, 2000, (2): 93-95.
    [41]黄忠乾,龙章福,彭卫红,等.农作物秸秆资源的综合利用[J].资源开发与市场, 1999, 15(1): 324-34.
    [42]Gonzalez J, Weiner R.Phylogenetic characterization of a marine bacterium strain 2-40 a degrader ofcomplex polysaccharides[J]. International Journal of Systematic Bacteriology, 2000, 8: 831-834.
    [43]汪小兰.有机化学[M].北京:高等教育出版社, 2002.
    [44]高洁,汤列贵.纤维素科学[M].科学出版社, 1996: 24-62.
    [45]陈家楠.纤维素化学的现状与发展趋势[J].纤维素科学与技术, 1995, 3(1): 1-10.
    [46]P AM.Claasen, J Bvan Lier. Utilisation of bilmass for the supply of energy carriers[J].Applied Microbiol Biotechnol, 1999, 52: 741- 755.
    [47]洪洞等.纤维素酶的应用[J].生物学通报, 1997, 32(12): 18-19.
    [48]陈燕勤,毛培宏,曾宪贤.细菌纤维素酶结构和功能的研究[J].北学与生物工程, 2004, 6: 4~6.
    [49]吴显荣,穆小民.纤维素酶分子生物学研究进展及趋向[J].生物工程进展, 1994, 14, 25-28.
    [50]B. Henrissat, M.Claeyssens, P.Tomme, et al. Cellulase families revealed by hydrophobic cluster analysi [J]. Gene, 1989, 81: 83-95.
    [51]P. Beguin. Molecular biology of cellulose degradation[J]. Annual Reviews Microbiology, 1990, 44: 219-248.
    [52]Takamatsu S, KimYP, Komiya T, et al.Chlovalicin, a new cytocidal antibotic produced by Sporothrix sp. FO-4646[J]. J.Antibiot, 1996, 49(7): 635.
    [53]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展[J].自然科学进展, 2003, (19): 21-27.
    [54]夏黎明.可再生纤维素资源酶法降解的研究进展[J].林产化工通讯. 1999. 33(1): 23~28.
    [55]张晓勇,秀霞,向阳.纤维素酶的蛋白质工程[J].纤维素科学与技术, 2006, 14(2): 56-58.
    [56]Wood TM. Maccpaij SI. In Bioconversion of cellulose substance into enemy, chemicals and microbial proteins[M]. T K Ghose Gall, 1978: 111-141.
    [57]白洪志,杨谦,张鲁进.纤维素降解菌简青霉H-11的筛选及酶学特性的研究[J].华北农学报, 2007, 22(3): 160- 162.
    [58]周爱灵,王晓琴,谢宗平.影响革兰氏染色的因素及常见错误结果分析[J].甘肃高师学报, 2000, 5 (5): 36 -37.
    [59]李日强,辛小芸.天然秸秆纤维素分解菌的分离选育[J].上海环境科学, 2002, 21(1): 8-11.
    [60]孟雷,陈冠军,王怡,等.纤维素酶的多型性[J].纤维素科学与技术, 2002, 10(2): 47- 55.
    [61]丘燕临.纤维素酶的研究和应用前景[J].粮食与饲料工业, 2001(8): 30-31.
    [62]张丽青,吴海龙,姜红霞,等.纤维素降解细菌的筛选及其产酶条件的优化[J].环境科学与管理, 2007, 32(10): 110-114.
    [63]Beguin P. Molecular biology of cellulose degradation[J]. Ann Rev Mierobiol, 1990, 44: 219-222.
    [64]牛承岗,曾光明.细菌降解木质纤维素的研究进展[J].环境科学与技术, 2005, 28(2): 104-106.
    [65]吴斌,胡肄珍.产纤维素酶放线菌的研究进展[J].中国酿造. 2008, (1): 5-8.
    [66]阮继生,刘志恒,梁丽糯,等.放线菌研究及应用[M].北京:科学出版社, 1990.
    [67]宋波,羊键.一株降解纤维素的放线菌的筛选及其产酶条件的研究[J],微生物学杂志, 2005, 5(25): 36-39.
    [68]B.Gallo, R.Andreotti, C.Roche,et al.Cellulase production by a new mutant strain of Trichoderma reesei MCG 77[J]. Biotechnology Bioengeneer, 1978, 8: 89-101.
    [69]GlennM, Ghosh A, Ghosh BK. Subeellular fraetionation of a hypercellulolytic mutant Trichoderma reesei Rut-C30: loealization of endoglueanase in microsomal fraction[J]. Appl Environ Microbiol, 1985, 50: 1137-1143.
    [70]Babcock BA, Marette S, Treguer D.Opportunity for profitable invest trnents in cellulosic biofuels[J].Energy Policy, 2011, 39(2): 714-719.
    [71] Kurokawa J, Hemjinda E, AJaiT, et al.Clostridium thermocellum ceellulase CelT, a family endoglueanase without an lg-like domain or family carbohydrate-binding module[J].APPI Microbiol Biotechnol, 2002, 59: 455-461.
    [72]Panagiotou G, Kekos D, MaerisB.J, et al. Produetion of ceellulolytic and xylanolytie enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation[J]. Ind. CroPs and Produets, 2003, 18(1): 37-45.
    [73]BudiS.W., Van T.D., Amould C., et al. Hydrolytic enzyme acticity of Paenibacillus sp.strain B2 and effects the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi[J]. Applied Soil Ecol, 2000, 15(2): 191-199.
    [74]E.Samain, P.Debire, J.P.Touzel. High level production of a cellulase-free xylanase in glucose-limited fed-batch cultures of a thermophilic Bacillus strain[J]. J.Biotechnology, 1997, 58(2): 71-78.
    [75]Wen Zhi you, Liao Wei, Chen Shu lin. Production of cellulose by Trichoderma reesei from dairy manure[J]. Bioresour Teelinol, 2005, 96(4): 491-499.
    [76]Fujii M., Mori J., Homma T., et al. Synergy between an endoglucanase and cellobiohydrolass from Trichoderma koniningii [J]. Chem Eng., 1995, 59(3): 315-319.
    [77]Vanwk J. P. H., Mohulatsi. M. Biodegradation of wastepaper by cellulase from Triehoderma viride [J]. Bioresour Teehnol, 2003, 86(l): 21-23.
    [78]Ulger C., Sglam N. Partitioning of industrial ceellulase in aqueous two-hase systems from Trichoderma viride QM-9414 [J]. Proeess.Biothcem, 2001, 36(11): 1075-1080.
    [79]王沁,赵学慧.黑曲霉(Apspergillus niger)纤维素酶系中内切β-葡聚糖酶性质的研究[J].微生物学报, 1993, 33(6): 439~445.
    [80]Lakshmikant. Cellulose degradation and cellulase activity of five cellulolytic fungi[J]. World Microbiology Biotechnology, 1990, 6(1): 64-66.
    [81]黄勃,于春秀陈晓琳,等.用RAPD技术对拟青霉属菌株进行分类鉴定[J] .菌物学报, 2002, 21(1) : 33-38.
    [82]Pitt JI. A laboratory guide common penicillium speciese[M]. North Ryde: Division of Food Processing, 1988.
    [83]魏桃员,张素琴,邵林广,等.一株纤维素降解细菌的分离及特性研究[J].环境科学与技术, 2002, 27(5): 1-2.
    [84]韩绍印,席宇,翁海波,等.一株高环境适应性纤维素降解菌的筛选及鉴定[J].河南农业科学. 2007, (12): 51-54.
    [85]高凤菊,陈惠,吴琦,等.产纤维素酶芽孢杆菌C-36的分离筛选及其鉴定[J].四川农业大学学报. 2006, 24(2): 175-213.
    [86]伍时华,徐雅飞,黄翠姬.降解纤维素菌株的筛选[J].食品科学, 2006, (8): 50-52.
    [87]朱军莉,韩剑众,励建荣.纤维素分解菌BSX5的分离、鉴定及产酶条件[J].食品与生物技术学报, 2006, 25(3): 15-18.
    [88]刘淑霞,吴海燕,吴海文,等.黑土玉米田土壤纤维素分解真菌物种鉴定及分解能力测定[J].玉米科学, 2008, 16( 3): 112- 116.
    [89]张楠,杨兴明,徐阳春,等.高温纤维素降解菌的筛选和酶活性测定及鉴定[J].南京农业大学学报, 2010, 33( 3): 82- 87.
    [90]胡丹,刘霞.高产纤维素青霉菌的筛选及产酶条件的研究[J].中国食品添加剂, 2007, 02( 1): 80-84.
    [91]张加春,王权飞,余尊祥,等.里氏木霉的纤维素酶产生条件的研究[J].食品与发酵工业, 1999, 26(3): 21~23.
    [92]孙军德,陈楠.秸秆纤维素降解细菌的筛选及其产酶条件的研究[J].沈阳农业大学学报, 2010, 41( 2): 210- 213.
    [93]祝小,王振华,潘康成,等.产纤维素酶芽孢杆菌筛选及发酵条件的初步研究[J].现代农业科技, 2006, (21): 120-121.
    [94]张丽青,吴海龙,姜红霞,等.纤维素降解细菌的筛选及其产酶条件优化[J].环境科学与管理. 2007, 32(10): 110-11.
    [95]顿宝庆,吴薇,王旭静,等. -株高纤维素酶活力纤维素分解菌的分离与鉴定[J].中国农业科技导报, 2008, 10( 1): 113-117.
    [96]付传明,何金祥,黄宁珍,等.秸秆纤维素分解真菌产酶条件优化及高酶活突变株诱变选育[J].西南农业科学, 2010, 24( 3):714-718.
    [97]苏扬,张政,杨齐.纤维素降解真菌A25-2的分离、鉴定及其产纤维素酶的酶学特性[J].基因组学与应用生物学, 2010, 29(3): 427- 433.
    [98]张丽青,吴海龙,姜红霞,等.纤维素降解细菌的筛选及其产酶条件优化[J].环境科学与管理. 2007, 32(10): 110-117.
    [99]刘森林,邢苗,刘刚,等.碱性纤维素酶革兰氏阴性菌株筛选及酶学性质研究[J].微生物学通报, 2005, 32(4): 91-94.
    [100]林英,曹松屹,曹冬煦,等.绿色木霉FUV264产纤维素酶酶学性质研究[J].江苏农业科学, 2007, 6: 226-227.
    [101]高建民,翁海波,席宇,等.一株嗜热嗜酸纤维素酶高产霉菌分鉴定及其酶学性质研究[J].微生物学通报,2007,34(4):715-718.
    [102]胡亚林,洗亮,刘果,等.两株纤维素降解真菌的分离鉴定及其产纤维素酶酶学性质的初步研究[J] .广西农业科学, 2008, 39( 4): 425-28.
    [103]张苏龙,吕淑霞,林英,等. -株产纤维素真菌的筛选、鉴定及酶学性质初步研究[J].微生物学杂志, 2009, 29( 3): 72- 76.
    [104]陶婧,钟巧芳,黄兴奇,等.云南-株高产纤维素酶菌株YN-2的筛选及其产酶条件的研究[J].云南农业大学, 2010, 25(5): 731-736.
    [105]曾青兰.纤维素菌的分离筛选[J].安徽农业科学, 2007, 35(36): 11946-11947.
    [106]Hendrick CW, Doyle JD, Hugley B. A new solid medium for enumerating cellulose-utilizing bacteria in soid[J]. Applied and Environmental Microbiology, 1995, 61 (5): 2016– 2019.
    [107]Hart T D, De Leij, Lynch J M, et al. Strategies for the isolation of cellulolytic fungi for composing of wheat straw[J]. World Journal of Microbiology and Biotechnology, 2002, (18): 471-480.
    [108]程丽娟,薛泉宏等.微生物学实验技术[M].西安:世界图书出版西安公司, 2000: 409 - 412.
    [109]陈宗洪.胶体化学[M].北京:高等教育出版社, 1984.
    [110]魏志文,赵艳霞,张梅梅,等. 1株纤维素分解菌的初步鉴定及酶活检测[J].江苏农业科学, 2010, (1): 329-331.
    [111]Lynd LR, Weimer PJ, Vanzy WH, et al. Microbial cellulose utilization: fundamentals and biotechnology [J]. Microbiology and Molecular Biology Reviews, 2002, 66 (3): 506 -577.
    [112]石文卿,陶能国,刘跃进,等. -株高产纤维素酶真菌的分离及产酶特性研究[J].环境工程学报, 2011, 5(6): 1435-1440.
    [113]刘清锋,支晓鹏,徐惠娟,等.纤维素降解菌青霉T24-2的分离及产酶特性[J].工业微生物, 2007, 37( 3): 15-19.
    [114]艾斌凌,王义强,陈介南.麸皮对里氏木霉Rut C-30产纤维素酶的促进作用[J].生物质化学工程, 2009, 43( 2): 27-33.
    [115]郭艳,张进良,梁峰.玉米秸秆还田土壤中纤维素菌的分离、筛选和鉴定[J].黑龙江畜牧兽医. 2010, 9(上): 10-13.
    [116]Matthew TH, David AM, T ony H. App roach to designing rotating drum bioreactors for solid-state fermentation on the basis of dimensionless design factors[J]. Biotechnology and Bioengineering, 2006, 67 (3): 274 - 282.
    [117]李保深,高大文,张博. -株产纤维素酶真菌的筛选、鉴定及降解效果[J].东北林业大学学报, 2011, 39(7): 134-137.
    [118]崔宗均,朴哲,王伟东,等.一组高效稳定纤维素分解菌复合系MC1的产酶条件[J].农业环境科学学报, 2004 ,23 (2): 296-299.
    [119]吕育才,朱万斌,崔宗均,等.纤维素分解菌复合系WDC2分解小麦秸秆的特性及菌群多样性[J] .中国农业大学学报, 2009 , 14 (5): 40-46.
    [120]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社, 2005.
    [121]毕江涛,孙权,李素剑,等.解磷微生物研究进展[J].农业科学研究, 2009, 30(4): 58?63.
    [122]范丙全,金继运,葛诚.溶磷真菌促进磷素吸收和作物生长的作用研究[J].植物营养与肥料学报, 2004,10 (6): 620-624.
    [123]王莉晶,高晓蓉,吕军,等.解磷真菌C2′的分离鉴定及其在土壤中实际解磷效果的研究[J].土壤通报, 2009, 40(4): 771-775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700