秸秆重组材制备及成板机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了充分利用农作物秸秆,生产可替代木材、强度高、环境友好的重组材,本文以几种农作物秸秆(棉秆、豆秆、辣椒秆、烟秆及玉米秆)为原料,围绕原料特性、秸秆重组材的制板工艺、成板机理及关键技术展开研究。首先通过显微镜观察、纤维离析、化学成份分析等方法研究五种秸秆的理化特性,为原料的合理利用提供基础理论和数据;其次,研究了秸秆的软化处理方法及梳解工艺,通过正交试验、单因素试验研究了秸秆重组材的制板工艺及改善棉秆重组材防水性能的措施;第三,检测了板坯中心层温度的变化,采用非稳态法测量秸秆重组材的导热系数、比热和导温系数,建立了秸秆重组材板坯的传热模型。利用显微照相观察成板过程中棉秆组织结构的变化规律,应用傅立叶变换红外光谱、扫描电镜分析了脲醛胶棉秆重组材的胶接机理;最后,分析了秸秆重组材工业化生产的流程,并对工业化生产中关键的梳解设备和铺装设备进行了深入研究。主要结论如下:
     (1)棉秆、豆秆、辣椒秆和烟秆均由韧皮部、木质部和髓心组成,玉米秆是由表皮层、维管束组织和薄壁细胞组成;五种秸秆纤维的化学成分与木材相似,但也存在着各自的特点,可以作为木材的替代原料。在五种秸秆中,棉秆是优良的重组材制备原料。
     (2)在实验室条件下,含水率为12%左右的棉秆、豆秆、辣椒秆以及烟秆木质化程度较高的实心部位采用90℃热水常压蒸煮3h,可以取得较好的梳解效果,烟秆中空部位和玉米秆只需在常温下用冷水浸泡1~2h即可达到软化的目的。
     (3)利用脲醛胶压制10mm厚的棉秆重组材,在实验室条件下较佳的工艺参数为:密度0.7g/cm~3、施胶量12%、热压温度150℃、热压时间为14min,除2h吸水厚度膨胀率(2hTS)外,棉秆重组材的其它性能指标均超过刨花板国标GB/T4897.2-2003(以下国标均指此标准)的要求;参照此工艺参数,压制豆秆和辣椒秆重组材,测试结果和棉秆重组材相似,烟秆重组材的内结合强度和2hTS没有达到国标要求,利用脲醛胶无法压制玉米秆重组材;利用酚醛胶压制秸秆重组材,除了玉米秆外,棉秆、豆秆、辣椒秆和烟秆重组材的各项性能均达到或远远超过国标的要求。
     (4)在较佳工艺参数条件下,施加石蜡乳液能够降低棉秆重组材的2hTS,但施加量即使达到2.5%,仍未达到国标的要求;将热压温度分别提高到180℃和200℃,在添加1.5%的石蜡乳液的条件下制板,棉秆重组材的2hTS均能达到国标的要求;当混合胶料中脲醛胶和酚醛胶的重量比为4:2时,棉秆重组材的2hTS也达到国标的要求。
     (5)秸秆重组材板坯热压时中心层温度的变化曲线可以分为三段,即水分开始气化前的快速升温段、水分气化时的恒温段和水分气化之后的慢速升温段;在热压过程中,施胶量、含水率、热压温度、目标密度和厚度对棉秆重组材板坯中心层的升温速度、水分气化所需时间以及板坯中心层达到玻璃化反应温度的时间均有不同程度的影响。
     (6)对秸秆重组材的导热系数、比热和导温系数进行测定;在试验条件下,含水率和密度与棉秆重组材的导热系数和比热均呈显著正相关,与导温系数的相关性不显著;板材厚度变化对棉秆重组材热学性能各指标没有明显的影响。
     (7)在合理假设下,建立了秸秆重组材板坯中心层温度随时间变化的数学模型,模型曲线基本反映了秸秆重组材板坯热压时中心层温度的变化规律,提出了模型修正的思路。
     (8)棉秆重组材在成板过程中,原料存在径向和弦向的压缩,组织结构发生了变形,木射线变弯曲了,导管由原来的近似圆形明显被压扁了,木纤维也被压缩成不规则的形状。压力是细胞发生变形的主要因素,同时,细胞变形与温度和含水率也有一定关系。
     (9)红外光谱分析表明:脲醛胶棉秆重组材在成板过程中,羟基缔合形成氢键,使得游离羟基的数量减少;半纤维素羰基吸收峰的位置和形状发生了变化,说明半纤维素在成板中可能参与了化学反应;木质素羰基的吸收峰位置发生变化,表征苯环的特征峰吸收强度相对减弱,说明木质素在成板过程中可能参与了化学反应。
     (10)扫描电镜显示在用脲醛胶压制棉秆两片的横面和纵面及周围细胞中,能够明显看到固化的胶层,说明棉秆重组材中存在着“胶钉”接合。
     (11)从机械胶接理论、吸附胶接理论、化学键理论、弱界面层理论及流变学理论的角度分析了脲醛胶棉秆重组材的胶接机理。
     (12)秸秆重组材工业化生产可分为预处理、梳解、干燥、施胶及铺装、热压和完成共6个工段,据此制定了工业化生产的工艺流程,绘制了厂房工艺平面布置图。
     (13)提出了棉秆梳解机主要参数的设计原则、限定条件以及用撕裂系数表示梳解质量,完成了梳解机的结构装配设计;设计了一种新的板坯铺装方法和设备,可实现秸秆重组材的机械化铺装。
Crop straw is a reproducible resource,whose effective utilization has drawn more andmore attention worldwide.In order to produce high strength and environmental safereconsolidated timber which would be used as an alternative to wood,the five raw materialsused in this experiment were cotton-stalks,soybean-stalks,capsicum-stalks,tobacco-stalksand corn-stalks.
     The main research of the dissertation was conducted in the areas of raw materialcharacteristics,processing technologies,forming mechanisms and key technologies ofreconsolidated crop-stalks.First of all,the characteristics of five crop stalks were analyzed inthe paper through observation via optical microscopy,fiber isolation,analysis of chemicalcomponents and so on.Secondly,through single factor and orthogonal experiments,theprocessing technologies of reconsolidated crop-stalks and the methods of improving waterresistance of reconsolidated cotton-stalks were studied in the article after determining theoptimum softening process and scrimming technology.In the third place,the temperature ofthe center layer of mat was measured continuously and automatically by advanced instrumentin the hot-pressing process.Thermal conductivity,specific heat and thermal diffusivity ofreconsolidated crop-stalks were measured with non-steady state conditions.Under fivesuppositions,mathematic model of thermal transfer in the process of hot-pressing wasdeduced.Variation of cotton-stalks cells before and after the hot-pressing were observed withoptical microscopy.By means of fourier transform infrared spectroscopy(FTIR)and scanningelectron microscope(SEM),mechanisms of adhesive joints of reconsolidated cotton-stalksbonded with urea-formaldehyde(UF)resin were analyzed.Lastly,the process for industrialproduction of reconsolidated crop-stalks was given and scrimming equipment and layingequipment were studied in the dissertation.
     The main results of the dissertation are as follows:
     (1)Cotton-stalks,soybean-stalks,capsicum-stalks and tobacco-stalks are all consist ofxylem,phloem and pith.Corn-stalks is consist of epidermis,vascular bundles andthinner-walled cells.The chemical components of fiber of five crop stalks are similar to woodfiber.Five crop stalks can substitute for wood as raw materials of reconsolidated timber.Among five crop-stalks,cotton-stalks is an excellent raw material of reconsolidated timber.
     (2)The optimum scrimming technology under the current conditions is that cotton-stalks,soybean-stalks,capsicum-stalks and the solid part of tobacco-stalks,whose moisture contentare all 11%,are cooked 3 hours(90℃)and then crushed.Corn stalks and the hollow part oftobacco-stalks soaked 1~2 hours(20℃)and then crushed can also obtain the betterscrimming effect.
     (3)Manufacturing UF reconsolidated cotton-stalks with the size 350mm×350mm×10mm,the optimum technological parameters obtained under the lab conditions are:0.7g/cm~3density,150℃press temperature,12% UF and pressing time of 12min.The mechanicalproperties of the UF reconsolidated cotton-stalks can meet the requirements of industrialstandard(GB/T4897.2-2003)except for 2h thickness swell(2hTS).Under the sametechnological conditions,the mechanical properties of the UF reconsolidated soybean-stalksand capsicum-stalks are similar to reconsolidated cotton-stalks and the internal bond strengthand 2hTS of UF reconsolidated tobacco-stalks can not meet the requirements of industrialstandard.The bunch of corn stalks can not be bonded with UF.Under the same technologicalconditions,the mechanical properties of reconsolidated cotton-stalks,soybean-stalks,capsicum-stalks and tobacco-stalks bonded with phenol-formaldehyde(PF)resin can alsomeet or exceed the requirements of industrial standard except for PF reconsolidatedcorn-stalks.
     (4)As the increasing of paraffin latex consumption,2hTS of UF reconsolidatedcotton-stalks can reduce gradually on the condition of optimum technological parameters.Even if the value of paraffin latex consumption is up to 2.5%,the 2hTS of the panel can notreach to the standard value.When the temperature of hot-pressing reaches to 180℃or 200℃and add 1.5% paraffin latex,or the weight ratio of UF to PF is up to 4:2 in the mixture ofadhesive,2hTS of UF reconsolidated cotton-stalks can all meet the requirement of industrialstandard.
     (5)The curves of temperature changing of mat' center layer can be divided into threestages:the fast temperature rising stage in which the moisture in the mat is not vaporizing,theconstant temperature stage in which the moisture is vaporizing,and the slow temperaturerising stage in which the moisture vaporizing process is near to the end.During thehot-pressing process of reconsolidated cotton-stalks,glue spread rate,moisture content,hot-pressing temperature,density and thickness have an effect on velocity of elevatedtemperature of mat' center layer,the times of moisture vaporizing process and the times thattemperature of mat' center layer is up to glass transition temperature.
     (6)Moisture content and density are all significantly correlated with thermalconductivity and specific heat of reconsolidated cotton-stalks,and are not closely related with its thermal diffusivity.The thickness change no long has an impact on thermal properties ofreconsolidated cotton-stalks.
     (7)Mathematic model is established in the paper,which can basically reflect the rule forthe changes of mat' center layer temperature varying with time,and whose improvingthoughts are also presented.
     (8)Raw materials are compressed in radial and tangential section during the hot-pressingprocess.Hot-pressing technology makes the wood rays bent,makes the vessels crushed,andmakes the wood fibers compressed into irregular form.Compress is the main factorinfluencing deformation of tissue structure.There are some other factors,such as temperatureand moisture content.
     (9)The results of FTIR show that free hydroxyls form hydrogen-bonding duringhot-pressing of UF reconsolidated cotton-stalks,resulting in strengthened fiber self-bonding,that the position and shape of carbonyl' absorption peak of hemicellulose have changed afterhot-pressing which indicates that hemicellulose may take part in chemical reaction,and thatthe position of carbonyl' absorption peak of lignin has changed and the relative absorbingintensity of peak of benzene ring has reduced after hot-pressing which indicates that ligninmay take part in chemical reaction.
     (10)The result of SEM shows that there are adhesive joints of glue nail in the UFreconsolidated cotton-stalks.
     (11)The mechanism of adhesive joints of UF reconsolidated cotton-stalks are analyzedin the aspects of mechanical bonding,absorption theory,chemical bond,weak bonding layerand rheology.
     (12)Industrial production of reconsolidated crop-stalks is divided into six sections thatare pretreatment,scrimming,drying,glue blending and lay-up,hot pressing andafter-treatment.Technological process of industrial production is made.The technologicalplane layout chart of reconsolidated crop-stalks is also drawn.
     (13)The design principles and limited conditions of main parameters of scrimmingmachine and scrimming quality expressed by tearing coefficient are proposed.Assemblingdesign of scrimming machine has been finished.A new laying equipment is developed,whichcan realize mechanized mat forming.
引文
[1]许美琪.中国家具业木质材料的需求和供应[J].中国木材,2007,(1):31-35.
    [2]贺祥瑞,张晓静,李巍等.2006年我国主要木材进口分析[J].林业经济,2007,(6):46-50.
    [3]康向阳.我国林纸一体化亟待解决的瓶颈问题[J].中华纸业,2007,28(4):22-25.
    [4]王宏棣,何金存,张佳彬.人工林小径结构用材的现状与发展趋势[J].林业机械与木工设备,2007,35(3): 13-15.
    [5]木节.国家木材节约发展中心确定近期木材节代工作重点[J].国际木业,2007,(10):48.
    [6]钱小瑜.中国人造板投资策略及产业前景[J].国际木业,2007,(4):11-15.
    [7]李长材.2006年我国人造板及木制品进出口状况[J].木业工业,2007,21(2):47-48.
    [8]林一木.原材料日益紧缺是制约我国人造板工业发展的瓶颈[J].国际木业,2007,(2):12-14.
    [9]尚大军.我国秸秆人造板工业若干问题之我见[J].中国人造板,2007,(4):6-9.
    [10]杨建队.农作物秸秆综合利用探讨[J].农业技术与装备,2007,(6):40-41.
    [11]Chung Y H,Todd F S.Utilization of agriculture waste for composite panels[C].The 6~(th)Pacific Rim Bio-based composite symposium,Portland,2002:164-168.
    [12]Hesch,R.Straw is a viable material for the particleboard industry[J].plywood and panel,1978,19(7):26-27.
    [13]Bowyer,Jim L,Stockman.Agricultural residues-an exciting bio-based raw material for the global panels industry[J].Forest prod.J.,2001,51(1):10-21.
    [14]Nicolas Boquillon.Properties of wheat straw particleboards bonded with different types of resin[J].Journal of wood science,2004,50(3):17-24.
    [15]Zhang Y,Pizzi A.Wheat straw particleboard bonding improvements by enzyme pretreatment[J].Holz als Roh-und Werkstoff,2003,61:49-54.
    [16]Wasylciw W,Jin J W.Comparison of the pressing behaviour of wood particleboard and strawboard[J].Wood Science and Technology[J].2004,38:529-537.
    [17]Donnell,Rich.Isobord's straw panel plant in manittoba completes first year of production[J].panel world,1999,40(11):8-11.
    []8]Donald E.北美一些农作物秸秆人造板项目失败的原因和经验教训[J].人造板通讯,2001,(1):3-6.
    [19]陆仁书,汪孙国.稻草碎料板制造工艺研究[J].林产工业,1988,15(5):10-13.
    [20]刘淑丽.不同胶粘剂的稻草碎料板工艺研究[D].南京:南京林业大学,2003.
    [2l]齐维君.稻草碎料板的研究[J].林产工业,1992,19(6):39-40.
    [22]郝丙业,刘正添.稻草刨花板制造工艺的初步研究[J].木材工业,1993,7(3):2-6.
    [23]陆仁书,濮安彬,张显权等.异氰酸酯胶稻草刨花板制造工艺[J].东北林业大学学报,1997,25(3):14-17.
    [24]Steven L Sauter.Developing composites from wheat straw[C].Proceedings of the 30th international particleboard/composite materials symposium,W.S.U.1996:197-214.
    [25]Effy Markessini.Panels from annual plant fibers bonded with Urea-Formaldehyde resins[C]. Proceedings of the 31th international particleboard/composite materials symposium,W.S.U. 1997:105-113.
    [26]Wayne Wasylciw,Wang Sunguo.Straw-based composite panels:Attributes,issues and UF bonding technology[J].SUAF Processings,2001:24-33.
    [27]Han Guangping,Kawai,Kenji Umemura.Development of high-performance UF-bonded reed and wheat straw medium-density fiberboard[J].Journal of wood science,2001,47(5):52-59.
    [28]艾军,陆仁书.预热处理对麦秆纤维板生能的影响[J].木材工业,2001,15(2):9-13.
    [29]吴章康,周定国.稻草原料酸碱性及稻草中密度纤维板的性能[J].林产工业,2002,29(3):12-14.
    [30]李凯夫,彭万喜.国内外秸秆制人造板的研究现状与趋势[J].世界林业研究,2004,19(2):34-36.
    [31]陆仁书.麦草稻草中密度纤维板[J].国际木业,2007,(5):19-21.
    [32]于文吉,马红霞,王天佑等.农作物秸秆人造板发展现状与应用前景[J].木材工业,2005,20(4):5-9.
    [33]姜征.农作物秸秆OSB与MDF的制造技术[J].木材工业,2005,19(1):45-48.
    [34]周晓燕.农作物秸秆材料新产品及生态环保型人造板的研制开发[J].林业科技开发,2002,16(3):8-9.
    [35]李小平,周定国,王卫东.挤压法生产稻草空芯刨花板[J].林产工业,2007,34(3):34-36.
    [36]Hesch R.Particle board from suger cane-a fully integrated production plant[J].Board Manufacture,1997,10(42):31-36.
    [37]H.Pande.Non-wood fiber and global fiber supply[J].Unasylva,1998,49:444-450.
    [38]C.Jingxing.Review of the bagsse particleboard production technology in China[R].UNIDO Report. UNIDO-ID/WG,1988.
    [39]Cao Yong,Shibata Shinichi.Effect of alkalitreated bagbasse fibres on fibre-reinforced biodegradable composites[J].Acta Materiae Compositae Sinica,2006,23(3):60-64.
    [40]王天佑,李强.蔗渣中密度纤维板的研制[J].林产工业,1988,15(6):1-4.
    [4l]陈化.Bajaj Hindusthan木材替代产品[J].国际木业,2006,(12):42.
    [42]马红霞.棉秆的湿润性能及其制造中密度纤维板技术的研究[D].北京:中国林科院,2006.
    [43]王建和.非木质人造板的开发与利用[J].林业勘探设计研究,1990,(1):52-56.
    [44]张纯基.棉秆刨花板生产工艺的特点[J].林业科技开发,1989(2):19-21.
    [45]Francois Fleur.棉秆替代木材生产刨花板的分析[J].林产工业,1995,22(6):9-11.
    [46]EL-Mously,M.Megahed.Investigation of the possibility of use of cotton stalks in particleboard production[C]The 33rd International Particleboard/Composite Materials Symposium,WSU,1999. 12-15.
    [47]杜建,安成立,邢宏宜.棉秆环保超强木地板及制造方法的研究[J].中国棉花,2003,30(10):36-38.
    [48]C.Guler,R.Ozen.Some properteies of particleboard made from cotton stalk[J].Holz als Roh-und Werkstoff,2004,62:40-43.
    [49]马红霞,于文吉,任丁华等.棉秆中密度纤维板工艺技术的研究[J].木材工业,2006,20(3):4-7
    [50]于文吉.生物质资源农作物秸秆应用于人造板工业的可行性分析[J].木材工业,2006,20(2):41-44.
    [51]丁占来,郑凤山.玉米秸秆制作建筑装饰复合板的研究[J].石家庄铁道学院学报,2004,17(3):47-49.
    [52]王琪,史宇亮,李济宁.玉米秸秆板加工工艺优化[J].农业机械学报,2007,38(8):199-201.
    [53]Reynaldo C.Castro,Shirley C.Agrupis,Julie L.lorenzo.利用烟秆制造纤维板的研究[J].烟草科技, 2000(7):32-34.
    [54]王天佑,李强.烟秆湿法硬质纤维板生产试验[J].木材工业,1990,4(3):10-13.
    [55]蔡静蕊,李光沛,鹿振友.烟秆无胶纤维板的研制与应用前景[J].林产工业,2002,29(5):16-18.
    [56]黄素涌.烟秆原料及其制板性能研究[D].昆明:西南林学院,2004.
    [57]李凯夫,张志刚.大豆秸制刨花板的工艺研究[J].木材加工机械,1992,(1):20-24.
    [58]周月.豆秸刨花板工艺的初步研究[J].木材工业,1997,11(4):15-17.
    [59]邢成,邓玉和,殷苏州.豆秸刨花板工艺的研究[J].林业科技开发,1999(2):21-23.
    [60]J.A.Youngquist,B.E.English,H.Spelter.Agricultural fibers in composition panels[C].Proceedings of the 27th international particleboard/composite materials symposium,W.S.U.1993:133-152.
    [61]Haq Z,Easterly J L.Agricultural residue availability in the United States[J].Applied Biochemistry and Biotechnology,2006,129:15-21.
    [62]王喜明,郭宝山.葵花秆刨花板用改性脲醛树脂的研究[J].木材工业,1995,9(5):30-32.
    [63]濮安彬,陆仁书.异氰酸酯胶芦苇刨花板生产工艺研究[J].木材工业,1997,11(2):3-5.
    [64]李阜东,吴健身,王俊先.油菜秆刨花板制造工艺研究[J].木材工业,1998,12(6):10-12.
    [65]杨小军.农作物秸秆层积材地板的开发研究[D].株洲:中南林学院,2004.
    [66]李永祥,曹端林,王建龙.向日葵制备刨花板工艺研究[J].林产工业,2006,33(2):20-23.
    [67]濮安彬,陆仁书.玉米秆—亚麻屑刨花板制造工艺研究[J].木材工业,1995,9(6):7-11
    [68]李凯夫,谭海彦.芦苇—麻屑刨花板的研制Ⅰ.制板工艺初探[J].木材工业,1995,9(2):1-4.
    [69]濮安彬,李明.芦苇—杨木刨花板制造工艺研究[J].林产工业,1996,23(2):1-4.
    [70]花军,吴炳佳.向日葵籽壳—杨木刨花板制造工艺研究[J].东北林业大学学报,1999,27(3):60-62.
    [71]Robert Jeffery Pearce.Feasibility of producing composite panels with agriculture residues[D]. Mississippi State University,1999.
    [72]Wang Donghai,Sun xiuzhi.Adhesive properties of modified soybean flour in wheat straw particleboard[J].Elsevier science,2004,35:297-302.
    [73]姚飞.稻草—木纤维复合材料制造工艺研究[J].南京:南京林业大学,2004.
    [74]于文吉.一种木基棉花秸秆复合人造板的制造法.http://search.sipo.gov.cn.
    [75]周定国.环保型草木复合高中密度纤维板制造方法.http://search.sipo.gov.cn.
    [76]Ibrahim Bektas,Cengiz Guler.The manufacture of particleboards using sunflower stalks and poplar wood[J].Journal of composite materials,2005,39(5):467-473.
    [77]潘明珠.草木纤维复合机理及制板工艺研究[D].南京:南京林业大学,2005.
    [78]罗鹏,杨传民,计宏伟.热压工艺对稻壳—木材复合材料性能影响的研究[J].林业科技,2005,30(6):36-39.
    [79]史宇亮.混合原料秸秆板加工特性试验研究[D].长春:吉林农业大学,2006.
    [80]许民,李帅苏玉伟.热压温度对麦秸塑料刨花板性能的影响[J].东北林业大学学报,2006,34(3):49-51.
    [81]张显权,邵生龙.稻草/石膏复合板工艺初探[C].中国林学会木材科学分会第十一次学术研讨会论文集.昆明:2007.512-516.
    [82]车文,刘一星,张显权.稻草/水泥复合板工艺研究[C].中国林学会木材科学分会第十一次学术研讨会论文集.昆明:2007.517-521.
    [83]沈文星,周定国.秸秆人造板的产业化问题[J].林业科学,2007,43(3):103-107.
    [84]Nicolas Boquillon.Poperties of wheat straw particleboards bonded with different types of resin[J].Journal of wood science,2004,3(50):230-235.
    [85]David A.Pease.Wood process adapted to straw particleboard[J].Wood technology,1997,(9):20-24.
    [86]Sauter S.Development composites from wheat straw[C].Proceedings of the 30~(th)international particleboard/composite material symposium,WSU,1996,197-214.
    [87]Rich Donneli.Act is key participant in wheat straw panel mill surge in United States[J].Panel world, 1998,(5):33-34.
    [88]Bill Fahey.Scrimber-exciting breakthrough in timber technology[J].Austrialian forest industries journal,1985,51:8-9.
    [89]William A.Scholes.Scrimber:another way to stretch timber supply[J].World wood,1990,31(10):26-27.
    [90]J.D.Coleman.A“Reconsolidated”wood for structural purposes[R].Division of Chem.tech.research review,CSIRO Australia,1981.
    [91]商晓霞,马岩.国内外重组木研究近况及发展前景[J].世界林业研究,1998,11(1):37-42.
    [92]Rich donnell.Enhanced scrimber productfinds life in southern pine belt.www.Panelworld mag.com, 2006.
    [93]Tomoyuki Hayashi.Recent development on the processing technology for wood-based materials in Japan[R].Forestry Agency Ministry of Agriculture,Forestry and Fisheries,Japan,2000.
    [94]肖亦华,何永锵.新型重组木的研制[J].林产工业,1989,16(1):25-27.
    [95]张贵麟,华毓坤.澳大利亚重组木的考察[J].林产工业,1991,18(6):38-39.
    [96]潘石峰,王喜明,赵亚军.沙柳材的特性及其重组材的研究[J].林产工业,1993,20(5):9-11.
    [97]李坚.新型木材[M].哈尔滨:东北林业大学出版社,1993.
    [98]阿伦.沙柳材重组木的制造工艺研究[D].呼和浩特:内蒙古农业大学,2004.
    [99]张洋,李耀峰,袁少飞.速生杨木/甘蔗渣重组材的工艺研究[J].林产工业,2007,34(3):11-13.
    [100]汪孙国,华毓坤.重组竹制造工艺的研究[J].木材工业,1991,5(2):12-14.
    [101]叶良明,姜志宏,叶建华.重组竹板材的研究[J].浙江林学院学报,1991,8(2):133-140.
    [102]饶文彬.木竹重组材加工机理研究[D].南京:南京林业大学,2003.
    [103]于文吉,余养伦,周月等.小径竹重组结构材性能影响因子的研究[J].林产工业,2006,33(6):24-28.
    [104]金维珠,马岩.重组木制造工艺学[M].哈尔滨:东北林业大学出版社,1998.
    [105]唐瑶.棉秆重组材工艺和性能的研究[D].南京:南京林业大学,1991.
    [106]陈桂华.农作物秸秆表面性能及胶合重组技术研究[D].株洲:中南林业科技大学,2006.
    [107]李金霞,卞科,许斌.棉秆资源特性及其在农业上的应用[J].河南农业科学,2007(1):46-49.
    [108]徐辉.采收后烟秆如何处理.http://www.tobaccochina.com,2006.
    [109]石庆伟.中国大豆种植面积和总产已退居世界第四.http://www.ce.cn,2007.
    [110]曲晓彬,李莉,候全刚.线辣椒主要农艺性状的初步研究[J].北方园艺,2007,(10):1-3.
    [111]J.D.Coleman.Reconsolidated wood product.http://patents.uspto.gov,1980.
    [112]马松梅.脲醛树脂的固化研究[J].化学工程师,2006,134(11):52-54.
    [113]Nicolas Boquillon.Properties of wheat straw particleboards bonded with different types of resin[J]. The Japan Wood Research Society,2004,50:230-235.
    [114]Han Guangping,Zhang Changwu,Zhang Dongrnei.Upgrading of urea formaldehyde-bonded reed and wheat straw particleboards using silane coupling agents[J].The Japan Wood Research Society, 1998,44:282-286.
    [115]Hsu.W.E,W.Schwaid,Chemical and physical change required for producing dimension stable wood based composites[J].world wood,1988,7: 81-89.
    [116]Guha S.R.D.Vitalization of cotton stem waste[J].Indian forester,1979,(1):105.
    [117]Guler C.Research on the production possibilities of the particleboard from cotton stalks[D].Turkey: Karaelmas University,2001.
    [118]Gencer A,Eroglu H,Ozen R.Medium density fibreboard manufacturing from cotton stalks[J].A publication on Wood Pulp and Paper Industry,2001,5(2):26-28.
    [119]Rowell R.M,Inoue,M.Dimensionally stabilized--very low density fiberboard[J].Wood Fiber Sci.1995,27:428-436.
    [120]Suchsland.O.Hygroscopic thickness swelling and related properties of selected commercial particleboards[J].Forest Prod.J,1973,23(7):26-30.
    [121]liu.J.Y.,J.D.Mcnatt.Thickness swelling and density variation in aspen flakeboards[J].Wood Sci. Technol,1991,25:73-82.
    [122]Kollmann F.P.Principles of wood science and technology[M].Berlin:Springier Verlarg,1968.
    [123]Karnke F.A,L.J.Casey.Agas pressure and temperature in the mat during flakeboard manufacture[J]. Forest products journal,1988,38(3):41-43.
    [124]Bolton.A.J,P.E.Humphrey.The hot pressing of dry-formed wood-based composites.partⅣ.predicted variation of mattress moisture content with time[J].Holzforshung,1989,43(5):345-348.
    [125]Hata T,Tsukuba A.Production of particleboard with steam-injection Ⅱ.Temperature behavior in particle mat during hot-pressing and steam-injection pressing[J].Wood science and technology,1989,23:361-369.
    [126]Hata T.Heat flow in particle mat and properties of particleboard under stea-injection pressing[J]. Wood research,1993,80:1-47.
    [127]Balaze G.Zombori,Frederick A.Kamke and Layne T.Watson.Simulation of the internal conditions during the hot-pressing process[J].Wood and fiber science,2003,35(1):2-23.
    [128]刘应安.刨花板热压过程中热传导的几个问题[J].林业科技开发,1992(4)43-45.
    [129]张帝树,李启岭.刨花板板坯含水率及其梯度对热传递速度的影响[J].林产工业,1993,20(4):9-11.
    [130]刘正添,正洁瑛.影响刨花板热压传热过程因素的研究[J].北京林业大学学报,1995,17(2):64-72.
    [131]杨庚,张士成,沈玉英等.亚麻屑碎料板密度对板芯层升温速度的影响[J].吉林林学院学报,1995,11(4):247-250.
    [132]孙光瑞.刨花板板坯表面增湿处理—缩短热压周期的有效途径[J].木材工业,1995,9(5):8-12.
    [133]俞兰生,蔡力平.建筑刨花板热学性质的测定[J].建筑人造板,1996(1):34-36.
    [134]黎爱纯.中密度纤维板导热系数的测定[J].林产工业,1997,24(2):27-30.
    [135]谢力生.干法纤维板热压过程中的传热研究[D].南京:南京林业大学,2003.
    [136]雷亚芳.刨花板热压过程中传热特性的研究[D].北京:北京林业大学,2005.
    [137]朱本城,于志明,李青青.三倍体毛白杨大片刨花板热压过程中导热性能的初探[J].山东林业科技,2005(6):1-3.
    [138]陈天全.大片刨花板热压过程中温度、气压和含水率变化规律的研究[D].北京:北京林业大学,2006.
    [139]隋仲义.竹木复合材导热性能的研究[J].林业科技,2006,31(1):50-51.
    [140]李晓平,高魏,周定国.稻草-木材复合空芯刨花板保温性能研究[J].中国人造板,2007,14(6):7-8.
    [141]Yang Qingxian.Theoretical expressions of thermal conductivity of wood[J].Journal of Forestry Research,2001,12(1):43-46.
    [142]Sampathrajan A.,Vijayaraghavan N.C.,Swaminathan K.R.Mechanical and thermal properties of particleboards made from farm residues[J].Bioresour.Technol,1992 40,249-251.
    [143]N.M.Ozisik.Basic heat transfer[M].New York:Mcgraw hill book company,1977.
    [144]Franz F.P.Kollmann,Edward W.Kuenzi,AlfredJ.Stamn著,杨秉国译.木材学与木材工艺学原理(人造板)[M].北京:中国林业出版社,1984.
    [145]Frederick A.Kamke.Effects of wood-based panel characteristic on thermal conductivity[J].Forest productsjournal,1999,39(5):19-24.
    [146]席新民.热工基础实验指导书[M].西北农林科技大学,2004.
    [147]杨世铭.传热学[M].北京:高等教育出版社,1991.
    [148]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [149]刘志明.麦秆表面特性及麦秆刨花板胶接机理的研究[D].哈尔滨:东北林业大学,2002.
    [150]顾继友.胶接理论与胶接基础[M].北京:科学出版社,2003.
    [151]Deloris N J.Theory of adhesion-mechanism of bond failure and mechanism of bond improvement[J]. Part u.Adhesives Age,1969,(1):25-29.
    [152]Pizzi A.Wood Adhesives,Chemistry and Technology[M].New York Basel:Mar-Cel Dekker,1993.
    [153]Collett B.M.A review of surface and interfacial adhesion in wood science and related fields[J].Wood Sci.Technol.,1972,6:1-42.
    [154]Roffael.Effect of aging of urea-formaldehyde resin bonded particleboards on formaldehyde emissions[J].Adhesion,1978,22(6):180-182.
    [155]Tomitab.Effects of reaction PH on properties and performance of urea-formaldehyde resins[J].Holzforschung,1994,48(6):527-532.
    [156]Dankelman W.Modern methods for the analysis of urea formaldehyde resins[J].Angew.Makromol. Chem.,1976,54:187-201.
    [157]Wu Souheng.Polymer interface and adhesive[M].New York:Marcel Dekker Inc,1982.
    [158]Raeendran N.B,Joseph F.D.Kinetics and mechanism of urea-formaldehyde reaction[J].Polymer, 1983,24(5):626-630.
    [159]Boyarchuk Y M,Rappoport L A.A study of hydrogen bonding in urethane elastomers by infrared spectroscopy[J].Polymer Science U.S.S.R.,1965,7(5):859-867.
    [160]Jada S S.The structure of urea-formaldehyde resins[J].Appl.Polym.Sci.,1988,35:1573-1592.
    [161]Pizzi A.A molecular mechanics approach to the adhesion of urea-fomaldehyde resins to cellulose[J]. Adhes.Sci.Technol,1990,4(7):573-589.
    [162]R Mrammon.The chemical structure of UF resin[J].Adhesion,1986,(19):115-135.
    [163]Johns William E.The chemical bonding of wood:Wood Adhesives and Technology[M].New York: Marcel Dekker Inc.,1983.
    [164]W.C.Wake.Adhesion[M].Oxford University press,1961.
    [165]K.Pandey.A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy[J].J.Polvm.Sci.,1999,71:1969-1975.
    [166]M Kazayawoko,J J Balatinecz,R T Woodhams.Diffuse reflectance fourier transform infrared spectra of wood fibers treated with malcated polypropylenes[J].J Applpolym Sci.,1997,(16): 1663-1673.
    [167]Abreu H S,Nascimento A M,Maria M A.Lignin structure and wood properties[J].Wood and Fiber Science,1999,31(4):426-433.
    [168]Vazquez G,Antorrena G,Gonzalez Jet al.FTIR,~1H and ~(13)C NMR characterization of acetosolvsolubilized Pine and Eucalyptus lignins[J].Holzforschung,1997,5 1:158-166.
    [169]K K Pandeya,A J Pitmanb.FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi[J].International Biodeterioration Biodegradation,2003,52:151-160.
    [170]Gianfranco Gilardi,Luigi Abis,Anthony E G Cass.Carbon-13 CP/MAS solid-state MMR and FT-IR spectroscopy of wood cell wall biodegradation[J].Enzyme Microb.Technology,1995,17:268-275.
    [171]Zhang Jun,D.Pascal Kamdem.FTIR characterization of copper Ethanolamine-wood intertion for wood preservation[J].Holzforschung,2000,54(2):119-122.
    [172]李坚.木材波谱学[M].北京:科学出版社,2003.
    [173]宁永成.有机化合物结构鉴定与有机波普学[M].北京:科学出版社,2000.
    [174]Jin Weizhu.Comparison and analysis of the main technological factors of influencing mechanical properties of scrimber and PSL[J].Journal of Forestry Research,2001,12(4):266-268.
    [175]张方文,于文吉.木/竹重组结构材料研究与进展[J].林产工业,2008,35(1):7-12.
    [176]Cz.卡那沃依斯基著,曹崇文等译.收获机械[M].北京:中国农业机械出版社,1983.
    [177]北京农业工程大学.农业机械学(下册)[M].北京:中国农业机械出版社,1999.
    [178]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700