基于车载传感网的交通异常信息检测与传输关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线传感器网络应用在车辆领域中的延伸,车载传感网作为备受关注的新一代网络技术,在城市路况监测和交通异常检测等方面具有广阔的应用前景。鉴于交通异常事件极易引发二次事故和道路拥堵问题,如何利用车载传感网及时准确地检测出交通异常信息,并提供切实可行的信息发布和订阅服务,减轻异常事件对城市交通的恶劣影响成为推进智慧城市建设的核心。
     本文立足于车载传感网的交通异常信息检测与传输关键技术研究,以城市路况数据采集为基础,通过拥堵信息检测补充和完善异常信息的检测内容,并结合异常信息传输的不同需求,分别讨论面向多目标路段的地理广播技术和基于车车间通信的跨区域信息订阅问题,本文主要工作和贡献包括:
     (1)车辆节点因最小化能耗需求普遍存在自私性,导致现存路况数据采集协议可靠性不高,针对该问题,本文利用DTN路由框架和激励合作思想,在以公共车辆为主体的网络架构下提出了一种能量感知社交路由协议。该协议首先通过感知节点的剩余能量和速度信息对有限的复制令牌进行比例分配,不仅避免了拷贝资源的盲目扩散,还均衡了节点的整体能耗水平,间接实现了鼓励自私节点参与合作的目的;同时,该协议根据历史相遇节点的差异性来评估节点的社会活跃程度,并设计了基于社交关系能力的聚焦算法。实验结果表明,在接近真实条件的仿真场景下,该协议将数据成功交付给sink节点的概率要比SF协议高出约10%;而对于SW协议、EBR协议,该概率值可提升至20%。
     (2)针对目前异常信息检测内容的不完整性和单级信息融合方法的局限性,本文从综合优化的角度出发,通过整合特征级信息融合和决策级信息融合技术,提出了基于多级信息融合的道路拥堵信息检测机制。该机制首先设计了基于模糊分簇算法的消息聚合方法来剔除大量错误或冗余的原子消息;然后利用自定义的事件概率预测函数和消息可信度分配策略来筛选拥堵特征,并基于D-S证据理论提出了一种抗干扰拥堵判决方法,从而避免由交通信号灯等待产生的虚假拥堵特征。实验结果表明,该机制的平均消息聚合效率可达98%,虽然仅比RSMA方法高出2%,但它能够从相邻两车道间准确地提取出极其细微的拥堵特征。理论分析也证明,该机制能确保拥堵信息检测的一致性和准确性。
     (3)针对异常信息分发目标区域的不唯一性、地理广播路径的重复性以及广播对象的流动性问题,本文提出了一种智慧地理广播机制。该机制通过在十字路口和目标区域中分别部署”灯塔”和”浮标”等虚拟的地理标志物,并将其坐标信息封装在广播的消息包内,从而引导消息智慧地执行广播行为和选择信息传输方向。为了减少路由成本,消息先利用”灯塔”建立多播共享路径,并经过路径分裂到达多个目标区域的入口处。然后,消息在每个目标区域中基于”浮标”进行初始地理广播,并选择在距离目标路段出口最近的截面单元内,利用最优重广播时间预测方法来选拔重广播继任节点。实验结果表明,该机制不仅降低了消息重广播的总次数,还能在容忍的消息丢失率范围内最小化消息重复接收概率。
     (4)由于异常信息订阅节点和目标节点所在地理位置之间存在跨区域和RSU分布数量少且不均衡的特点,导致基于V2V通信的异常信息回复过程中的订阅成功率低且成本高。针对该问题,本文提出了一种基于车辆社区结构感知的机会路由协议。该协议首先设计了基于链路稳定性的配额消息复制策略,以解决消息拷贝资源有限且易丢失的问题:其次,利用车辆移动行为的社会性和规律性,提出了基于访问相似度的车辆社区构建方法,并结合”消息移动趋势”和”社交关系能力”两项参数定义设计了基于社区结构感知的消息转发算法。实验结果表明,在跨区域特点显著的场景下,该协议能够以较低的成本获得与Epidemic协议一样高的信息成功订阅概率,且比采用贪婪式复制策略的ProPHET协议要高出约8%。
With the in-depth promotion of wireless sensor networks in the field of vehicles, ve-hicular sensor networks(VSNs) has attracted more attention as a new generation of network technology. Its application into the urban road condition monitoring, traffic abnormal event detection and other aspects would be hopefully promising. To solve the problem of traffic jam and secondary accident caused by the abnormal traffic event, it is essential to know the road condition accurately and timely, and provide the feasible traffic information release ser-vice and subscription service to mitigate the serious impact caused by the abnormal event on urban traffic through VSNs. This is very crucial in the construction of a smart city.
     The dissertation researches on the perspective of traffic abnormal event detection and information transmission protocols. Under the premise of discovering road congestion, it discusses the issues of multi-target geocasting and deals with the inter-region information subscription problem based on the collected data of urban road condition. The main contri-butions of this dissertation can be summarized as follows:
     (1) Due to the drivers'energy-saving need and the unfair energy consumption among nodes, the existing data collection mechanisms are unreliable. To address this issue, this dissertation proposes an energy-aware socially-based routing protocol based on the DTN routing and stimulation ideas, and designs a new data collection framework by taking the public transport vehicles as the main part. Firstly, this protocol prorates the limited replication tokens by sensing the residual energy and speed of vehicle nodes. It not only can avoid blind data spraying, but also equalize the whole energy consumption level. So, it indirectly achieves the purpose of encouraging selfish nodes to participate the data forwarding. Meanwhile, this protocol evaluate the social rela-tionship ability of nodes according to the difference of their history encounters, and designs a socially-based focus algorithm. Amount of simulation experiment results show that, under scenarios closing to the real environment, the probability of data suc-cessful delivery to the sink nodes of this protocol is about10%higher than SF, and20%higher than SW and EBR.
     (2) To deal with the incompleteness of abnormal information detection and the limitation of single-level information fusion, from the perspective of comprehensive optimiza-tion, this dissertation proposes a multi-level information fusion mechanism to detect the road congestion information, by combining the feature level information fusion with the decision-level information fusion. Firstly, this mechanism implements the fuzzy-clustering-based message aggregation method to remove the inaccurate and re-dundant atomic messages. Then, it selects congestion feature information utilizing the custom event prediction function and message credibility assignment strategy, and proposes an anti-jamming congestion decision method based on the Dempster-Shafer evidence theory, so as to avoid the false congestion evidences generated by the long-time traffic lights. The experimental results show that the average message aggregation ratio of this mechanism can reach to98%, which is only2%higher than RSMA, but it can extract more subtle congestion feature information from the neighbor lanes ac-curately. Also, the theoretical analysis shows that it can ensure the consistency and accuracy of event detection.
     (3) To address the non-uniqueness of the target regions where disseminating abnormal information, the repeatability of message transmission paths, and the mobility of mes-sage receiving nodes in each target region, this dissertation proposes a smart geo-casting protocol. It guides the message broadcast behaviors and controls the mes-sage transmission direction, by deploying some virtual landmarks like lighthouses and buoys at cross-road center and in each target region, and embedding their coor-dinates information in each broadcast message. To reduce the routing overhead, the message firstly builds the shared multicast path using the lighthouse. After the path splitting, the message arrives at the entrance of the target region. Then, the initial message broadcast is completed based on buoys in each target region, and the mes-sage rebroadcast maintenance mechanism is implemented by cutting a small unit area near the exit of the target region and predicting the next optimal rebroadcast time. The experimental results show that, this protocol can greatly reduce the total message rebroadcast times, and minimize the message repeatedly receiving probability while limiting the message missing probability in a tolerant range.
     (4) Due to the cross-regional feature between the subscribing node and the publishing node, the less and uneven distribution of RSUs, the abnormal information reply based on the vehicle-to-vehicle communication has the problems of a high transmission cost and low successful subscribing probability. To this, this dissertation proposes an op-portunistic routing protocol. It designs the quota-style message replication procedure based on the link stability, to avoid the limited number of message copies are easily aborted. Meanwhile, with the sociality and regularity of vehicles'mobile behaviors, this protocol proposes a method to construct the vehicle community structure based on the visiting similarity degree, and designs a community-aware message forward-ing algorithm by integrating "the message moving tendency" with "the social rela-tionship ability". The amount experiment results show that, in obvious cross-region scenario, the proposed protocol can reach the same high successful subscribing prob-ability like Epidemic with lower transmission cost, and its value is about8%higher than ProPHET.
引文
[1]Y. Saleh, S. Mahmoud and F. Mahmood. Vehicular Ad Hoc Networks (VANETs):Challenges and Perspectives. In Proc. of ITST'06, Chegdu, China, June 2006,761-766.
    [2]U. Lee, R. Cheung and M. Gerla. Emerging vehicular applications. Technical report, UCLA, June, 2008.
    [3]I. Akyildiz, W. Su, Y. Sankarasubramaniam, et al. A survey on sensor networks. Communications Magazine, IEEE,40(8):102-114, Aug.2002.
    [4]任丰原,黄海宁,林闯.无线传感器网络.软件学报,14(7):1282-1291,2003.
    [5]Y.C. Wang, F.J. Wu and Y.C. Tseng. Mobility management algorithms and applications for mobile sensor networks. Wireless Communications and Mobile Computing,12(1):7-21,2012.
    [6]P. Juang, H. Oki, Y. Wang, et al. Energy-efficient computing for wildlife tracking:Design tradeoffs and early experiences with zebranet. In Proc. of ACM ASPLOS'02,2002,96-107.
    [7]T. Small and Z. Haas. The shared wireless infostation model:A new ad hoc networking paradigm. In Proc. of MobiHoc'03, Annapolis, MD, USA, June 2003,233-244.
    [8]B. Liu, O. Dousse, P. Nain and D. Towsley. Dynamic Coverage of Mobile Sensor Networks. IEEE Transactions on Parallel and Distributed Systems,24(2):301-311,2013.
    [9]P. Hui, A. Chaintreau, J. Scott, et al. Pocket switched networks and human mobility in conference environments. In Proc. of ACM SIGCOMM workshop on Delay-Tolerant Networking, Philadelphla, PA, August 2005,244-251.
    [10]S. Wasserman and K. Faust. Social network analysis:Methods and applications.1994. Cambridge university press.
    [11]Body Sensor Networks.http://www.bsn-web.org.
    [12]A. Milenkovic, C.Otto and E.Jovanov. Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer communications,29(13):2521-2533,2006.
    [13]U. Lee and M. Gerla. A Survey of Urban Vehicular Sensing Platforms. Computer Networks, 54(4):527-544,2010.
    [14]X. Yu, H. Zhao, L. Zhang, et al. Cooperative Sensing and Compression in Vehicular Sensor Net-works for Urban Monitoring. In Proc. of ICC'10, Cape Town, South Africa, May 2010,1-5.
    [15]L. Kai, and V. C. S. Lee. RSU-based real-time data access in dynamic vehicular networks. In Proc. ofITSC'10, Madeira Island, Portugal, September 2010,1051-1056.
    [16]J.A. Fernandez, K. Borries, L. Cheng, et al. Performance of the 802.11 p physical layer in vehicle-to-vehicle environments. IEEE Transactions on Vehicular Technology,61(1):3-14,2012.
    [17]M.H. Cheung, F. Hou, V.W. Wong, et al. DORA:Dynamic optimal random access for vehicle-to-roadside communications. IEEE Journal on Selected Areas in Communications,30(4):792-803, 2012.
    [18]B.Petit, M. Ammar and R. Fujimoto. Protocols for roadside-to-roadside data relaying over vehicu-lar networks. In Proc. of WCNC'06, Las Vegas, Nevada, April 2006,294-299.
    [19]李旭.车载传感器网络的应用及关键技术研究[博士学位论文].上海交通大学,2009.
    [20]S. Ukkusuri and L. Du. Geometric connectivity of vehicular ad hoc networks:Analytical charac-terization. In Proc. of Mobicom'07, Montreal, QC, Canada, September 2007,79-80.
    [21]L. Chen, Y. Peng and Y. Tseng. An Infrastructure-Less Framework for Preventing Rear-End Colli-sions by Vehicular Sensor Networks. IEEE Communications Letters,15(3):358-360,2011.
    [22]A.A. Reshi, S. Shafi and A. Kumaravel. VehNode:Wireless Sensor Network platform for automo-bile pollution control. In Proc. of Information & Communication Technologies 2013, JeJu Island, Korea, April 2013,963-966.
    [23]H.S. Ramos, A. Boukerche, R.W. Pazzi, et al. Cooperative target tracking in vehicular sensor net-works. IEEE Wireless Communications,19(5):66-73,2012.
    [24]X.D. Lin. LSR:Mitigating Zero-Day Sybil Vulnerability in Privacy-Preserving Vehicular Peer-to-Peer Networks. IEEE Journal on Selected Areas in Communications,31(9):237-246,2013.
    [25]J.Y. Sun, X.Z. Zhu, C. Zhang and Y.G. Fang. RescueMe:Location-Based Secure and Dependable VANETs for Disaster Rescue. IEEE Journal on Selected Areas in Communications,29(3),659-669, 2011.
    [26]T. Nadeem, S. Dashtinezhad, C. Liao, et al. TrafficView:traffic data dissemination using car-to-car communication. ACM SIGMOBILE Mobile Computing and Communications Review,8(3):6-9, 2004.
    [27]W. Enkelmann. FleetNet-applications for inter-vehicle communication. In Proc. of IEEE Intelligent Vehicles Symposium, Columbus, USA, June 2003,162-167.
    [28]D. Reichardt, et al. CarTALK 2000:Safe and comfortable driving based upon inter-vehicle-communication. In Proc. of IEEE Intelligent Vehicle Symposium, Versailles, France, June 2002, 545-550.
    [29]B. Hull, et al. CarTel:a distributed mobile sensor computing system. In Proc. of the 4th Interna-tional Conference on Embedded Networked Sensor Systems, Boulder, Colorado, USA, November 2006,125-138.
    [30]U. Lee, B. Zhou, M. Gerla, et al. Mobeyes:Smart Mobs for Urban Monitoring with a Vehicular Sensor Network. IEEE Wireless Communications,13(5):52-57,2006.
    [31]J. Burgess, B. Gallagher, D. Jensen, et al. MaxProp:Routing for Vehicle-Based Disruption-Tolerant Networks. In Proc. of INFOCOM'06, Barcelona, Catalunya, SPAIN, April 2006,1-11.
    [32]F. Haruki, A. Masami and T. Kiyohito. Inter-Vehicle Communications Protocol for Group Cooper-ative Driving. In Proc. of VTC'1999, Amsterdam, Netherhnds, September 1999,2228-2232.
    [33]SAFESPOT. http://www.safespot-eu.org.
    [34]D. Abusch-Magder.911-NOW:A network on wheels for emergency response and disaster recovery operations. Bell Labs Technical,11(4):113-133,2007.
    [35]VII. http://ral.ucar.edu/projects/vii.old/vii/docs/VIIArchandFuncRequirements.pdf.
    [36]PReVENT. http://www.prevent-ip.org.
    [37]国家自然科学基金委.NSFC. http://isis.nsfc.gov.cn/portal/index.asp.
    [38]S.Y. Liu, Y.H. Liu, L. Ni, et al. Detecting Crowdedness Spot in City Transportation. IEEE Trans-actions on Vehicular Technology,62(4):1527-1539,2013.
    [39]物联网十二五发展规划(全文).工业和信息化部http://www.china.com.cn/policy/txt/2012-02/14/content_24632205_4.htm.
    [40]2010年政府工作报告(全文).中国国务院.http://www.gov.cn/20101h/content1555767.htm.
    [41]M. Fogue, P. Garrido, F.J. Martinez, et al. Automatic accident detection:Assistance Through Com-munication Technologies and Vehicles. IEEE Vehicular Technology Magazine,7(3):90-100,2012.
    [42]M. Abuelela, S. Olariu and M.C. Weigle. Notice:An architecture for the notification of traffic incidents. In Proc. of VTC'08, Marina Bay, Singapore, May 2008,3001-3005.
    [43]M. Abuelela and S. Olariu. Automatic incident detection in vanets:A bayesian approach. In Proc. of VTC'09, Barcelona, Spain, April 2009,1-5.
    [44]S. Kamijo, Y. Matsushita, K. Ikeuchi and M. Sakauchi. Traffic monitoring and accident detection at intersections. IEEE Transactions on Intelligent Transportation Systems,1(2):108-118,2000.
    [45]K. Mandal, A. Sen, A. Chakraborty, et al. Road traffic congestion monitoring and measure-ment using active RFID and GSM technology. In Proc. of IEEE Intelligent Transportation Sys-tems(ITSC'11), Washington USA, October 2011,1375-1379.
    [46]C. Parisot, J. Meessen, C. Carincotte and X. Desurmont. Real-time road traffic classification using on-board bus video camera. In Proc. of ITSC'08, Beijing, China, Octoboer 2008,189-196.
    [47]R. Bauza, J. Gozalvez and J. Sanchez-Soriano. Road traffic congestion detection through cooper-ative vehicle-to-vehicle communications. In Proc. of IEEE Conference on Local Computer Net-works(LCN'10),Denver, Colorado, USA, October 2010,606-612.
    [48]L. Wischoff, A. Ebner, H. Rohling, et al. SOTIS:A self-organizing traffic information system. In Proc. of Vehicular Technology Conference(VTC'03), Jeju, Korea, April 2003,2442-2446.
    [49]S. Dornbush, A. Joshi. StreetSmart traffic:Discovering and disseminating automobile congestion using VANET. In Proc. of Vehicular Technology Conference(VTC'07), Dublin, Ireland, April 2007, 11-15.
    [50]R. Sen, P. Siriah and B. Raman. RoadSoundSense:Acoustic sensing based road congestion mon-itoring in developing regions. In Proc. of Sensor, Mesh and Ad Hoc Communications and Net-works(SECON'11), Salt Lake City, Utah, USA, June 2011,125-133.
    [51]S. Thajchayapong, W. Pattara-atikom, N. Chadil and C. Mitrpant. Enhanced detection of road traffic congestion areas using cell dwell times. In Proc. of ITSC'06, Seattle, Washington, USA, May 2006, 1084-1089.
    [52]G. Palubinskas and H. Runge. Detection of traffic congestion in SAR imagery. In Proc. of EU-SAR'08, Graf-Zeppelin-Haus, Friedrichshafen, Germany, June 2008,1-4.
    [53]D. Jiang and L. Delgrossi. IEEE 802.11p:Towards an International Standard for Wireless Access in Vehicular Environments. In Proc. of VTC'08, Marina Bay, Singapore, May 2008,2036-2040.
    [54]J. Rezgui, S. Cherkaoui and O. Chakroun. Deterministic access for DSRC/802.11 p vehicular safety communication. In Proc. of IWCMC'11, Istanbul, Turkey, July,2011,595-600.
    [55]M. Al-Rabayah and R. Malaney. A new hybrid location-based ad hoc routing protocol. In Proc. of GLOBECOM'10, Miami, Florida, USA, December 2010,1-6.
    [56]A. Bachir and A. Benslimane. A Multicast Protocol in Ad Hoc Networks Intervehicle Geocast. In Proc. of VTC'03, Jeju, Korea, April 2003,2456-2460.
    [57]C. Maihofer and R. Eberhardt. Geocast in vehicular environments:Caching and transmission range control for improved efficiency. In Proc. of IEEE Intelligent Vehicles Symposium, Parma, Italy, June 2004,951-956.
    [58]C. Maihofer, T. Leinmuller and E. Schoch. Abiding geocast:time-stable geocast for ad hoc net-works. In Proc. of VANET'05, Cologne, Germany, September 2005,20-29.
    [59]C.E. Palazzi, F. Pezzoni and P.M. Ruiz. Delay-bounded data gathering in urban vehicular sensor networks. Pervasive and Mobile Computing,8(2):180-193,2012.
    [60]K. Shafiee, V. Leung and R. Sengupta. Request-Adaptive Packet Dissemination for Context-Aware Services in Vehicular Networks. In VTC'12, Quebec City, Canada, September 2012,1-5.
    [61]G.Y. He. Destination-sequenced distance vector(DSDV) protocol. Networking Laboratory, Helsinki University of Technology,2002.
    [62]J. Bernsen and D. Manivannan. Greedy Routing Protocols for Vehicular Ad Hoc Networks. In Proc. of IWCMC'08, Crete Island, Greece, August 2008,632-637.
    [63]G. Pei, M. Gerla and T.W. Chen. Fisheye state routing:A routing scheme for ad hoc wireless networks. In ICC'00, New Orleans, USA, June 2000,70-74.
    [64]C. Perkins Nd E. Belding-Royer and S. Das. Ad hoc on demand distance vector(AODV) rout-ing(RFC 3561). IETF MANET Working Group, August,2003.
    [65]D.B. Johnson, D.A. Maltz, J. Broch, et al. DSR:The dynamic source routing protocol for multi-hop wireless ad hoc networks. Journal of Ad hoc Networking, volume 5,139-172,2001.
    [66]V.D. Park and S. Corson. Temporally-ordered routing algorithm (TORA) version 1 functional spec-ification (Internet-draft). IETF Mobile Ad-hoc Network (MANET) Working Group,1998.
    [67]Z.J. Haas and M.R. Pearlman. The zone routing protocol (ZRP) for ad hoc networks. In Internet draft-Mobile Ad hoc NETworking (MANET), Working Group of the Internet Engineering Task Force (IETF), November 1997.
    [68]M. Joa-Ng and I. Lu. A peer-to-peer zone-based two-level link state routing for mobile ad hoc networks. IEEE Journal on Selected Areas in Communications,17(8):1415-1425,1999.
    [69]B. Karp and H.T. Kung. GPSR:Greedy perimeter stateless routing for wireless networks. In Proc. of Mobicom'00, Boston, MA, USA, August 2000,243-254.
    [70]M. Jerbi, S.M. Senouci, R. Meraihi and Y. Ghamri-Doudane. An improved vehicular ad hoc routing protocol for city environments. In Proc. of ICC'07, Glasgow, Scotland, June 2007,3972-3979.
    [71]K.H. Cho. Position-based routing algorithm for improving reliability of inter-vehicle communica-tion. KSII Transactions on Internet and Information Systems,5(8):1388-1403,2011.
    [72]S.I. Sou and Y. Lee. SCB:Store-Carry-Broadcast Scheme for Message Dissemination in Sparse VANET. In Proc. of VTC'12, Yokohama, Japan, May 2012,1-5.
    [73]X.Li, W.Shu, M.Li, et al. DTN Routing in Vehicular Sensor Networks. In Proc. of GLOBECOM'08, New Orleans, Louisiana, November 2008,1-5.
    [74]Y. Feng, M. Liu, X. Wang and H. Gong. Minimum expected delay-based routing protocol(MEDR) for delay tolerant mobile sensor networks. Journal of Sensors,10(9),8348-8362,2010.
    [75]S. Bitam and A. Mellouk. QoS swarm bee routing protocol for vehicular ad hoc networks. In Proc. of ICC'11, Kyoto, Japan, June 2011,1-5.
    [76]A Probabilistic and Traffic-Aware Bundle Release Scheme for Vehicular Intermittently Connected Networks. IEEE Transactions on Communications,60(11):3396-3406,2012.
    [77]M.J. Khabbaz, W.F. Fawaz and C.M. Assi. A Probabilistic Bundle Relay Strategy In Two-Hop Vehicular Delay Tolerant Networks. In Proc. of ICC'11, Kyoto, Japan, June 2011,1-6.
    [78]A. lindgren, A. Doria, O. Schelen, et al. MobiHoc Poster:Probabilistic routing protocol in in-termittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Re-view,7(3):19-20,2003.
    [79]T. Spyropoulos, K. Psounis, C. Raghavendra, et al. Spray and Focus:Efficient Mobility-Assisted Routing for Heterogeneous and Correlated Mobility. In Proc. of PerCom Workshops'07, White Plains, New York, USA, March 2007,79-85.
    [80]Q. Yuan, I. Cardei and J. Wu. Predict and relay:an efficient routing in disruption-tolerant networks. In Proc. of MobiHoc'09, New Orleans, Louisiana, USA, May 2009,95-104.
    [81]D. Zhang and C.K. Yeo. A Cooperative Content Distribution System For Vehicles. In Proc. of GLOBECOM'11, Houston, Texas, USA, December 2011,1-6.
    [82]S. Nelson, M. Bakht, R. Kravets, et al. Encounter-Based Routing in DTNs. In Proc. of INFO-COM'09, Rio de Janeiro, Brazil, April 2009,19-25.
    [83]J.P. Jeong, T. He and D.H. Du. TMA:Trajectory-Based Multi-Anycast Forwarding for Efficient Multicast Data Delivery in Vehicular Networks. Journal of Computer Networks, May 2013.
    [84]Y. Feng, K. Liu, Q. Qian, et al. Public-Transportation-Assisted Data Delivery Scheme in Vehicular Delay Tolerant Networks. In Proc. of MSN'12, Chengdu, China, December 2012,14-18.
    [85]M. Musolesi and C.Mascolo. CAR:Context-Aware Adaptive Routing for Delay-Tolerant Mobile Networks. IEEE Transactions on Mobile Computing,8(2):246-260,2009.
    [86]B. Pasztor, M. Musolesi, C. Mascolo. Opportunistic mobile sensor data collection with SCAR. In Proc. of MASS'07, Pisa, Italy, October 2007,1-12.
    [87]J. Leguay, T. Friedman and V. Conan. Evaluating MobySpace-based routing strategies in delay-tolerant networks. Wireless Communications and Mobile Computing,7(10):1171-1182,2007.
    [88]J. Zhang and G.H. Cao. VADD:Vehicle-Assisted Data Delivery in Vehicular Ad hoc Networks. IEEE Transactions on Vehicular Technology,57(3):1910-1922,2008.
    [89]G. Sandulescu and S. Nadjm-Tehrani. Opportunistic DTN routing with window-aware adaptive replication. In Proc. of AINTEC'08, Pratunam, Bangkok, Thailand, November 2008,103-112.
    [90]F.L. Xu, M. Liu, H.G. Gong, G.H. Chen, et al. Relative distance-aware data delivery scheme for delay tolerant mobile sensor networks. Journal of Softeware,21(3):490-504,2010.
    [91]Y. Feng, H. Gong, M. Fan, M. Liu and X. Wang. A distance-aware replica adaptive data gathering protocol for delay tolerant mobile sensor networks. Journal of Sensors,11(4),4104-4117,2011.
    [92]A. Balasuramanian, B. Levine, A. Venkataramani, et al. Replication Routing in DTNs:A Resource Allocation Approach. IEEE/ACM Transactions on Networking,18(2):596-609,2010.
    [93]C. Ma and N. Liu. Traffic-Aware Data Delivery Scheme for Urban Vehicular Sensor Networks. International Journal of Distributed Sensor Networks,2013.
    [94]H. Lim and C. Kim. Flooding in wireless ad hoc networks. Computer Communications,24(3):353-363,2001.
    [95]A. Vahdat, and D. Becker. Epidemic routing for partially connected ad hoc networks. Technical Report CS-2000-6, Department of Computer Science, Duke University,2000.
    [96]M. Grossglauser and D.N.C. Tse. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking,10(4):477-486,2002.
    [97]T. Spyropoulos, K. Psounis, C. Raghavendra, et al. Spray and wait:an efficient routing scheme for intermittently connected mobile networks. In Proc. of SIGCOMMW'05, Philadelphia, Pennsylva-nia, USA, August 2005,252-259.
    [98]P. Hui and J. Crowcro. How small labels create big improvements. In Proc. of PerComW'07), White Plains, New York, USA, March 2007,65-70.
    [99]P. Hui, J. Crowcro and E. Yoneki. BUBBLE rap:social-based forwarding in delay tolerant net-works. In Proc. of MobiHoc'08, HongKong SAR, China, May 2008,241-250.
    [100]S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems,30(1-7):107-117,1998.
    [101]J. Liu, H. Gong and J. Zeng. Preference location-based routing in delay tolerant networks. Interna-tional Journal of Digital Content Technology and Its Applications,5(12):468-474,2011.
    [102]J. Liu, M. Liu and H. Gong. Expected shortest path routing for social-oriented intermittently con-nected mobile network. Journal of Convergence Information Technology,7(1):94-101,2012.
    [103]W.J. Hsu, D. Dutta and A. Helmy. CSI:a paradigm for behavior-oriented delivery services in mobile human networks. Journal of Ad Hoc Networks,6(4):13-24,2011.
    [104]H. Gong, X. Wang, L. Yu, L. Wu and C. Song. Hot area based routing protocol for delay tolerant mobile sensor network. Journal of Convergence Information Technology,4(15):450-457,2012.
    [105]PC. Cheng, K.C. Lee, M. Gerla and J. Harri. GeoDTN+Nav:geographic DTN routing with naviga-tor prediction for urban vehicular environments. Mobile Networks and Applications,15(1):61-82, 2010.
    [106]F. Li, L. Zhao, X. Fan and Y. Wang. Hybrid Position-Based and DTN Forwarding for Ve-hicular Sensor Networks. International Journal of Distributed Sensor Networks,2012. DOI: 10.1155/2012/186146.
    [107]W.Z. Lo, J.S. Gao and S.C. Lo. Distance-Aware Routing with Copy Control in Vehicle-Based DTNs. In Proc. of VTC'12, Yokohama, Japan, May 2012,1-5.
    [108]X. Li, H. Huang, W. Shu, et al. Vstore:Towards Cooperative Storage in Vehicular Sensor Networks for Mobile Surveillance. In Proc. of WCNC'09, Budapest, Hungary, April 2009,1-6.
    [109]X. Su, S. Moh, L. Chung, et al. An Adaptive Routing Protocol Associated with Urban Traffic Control Mechanism for Vehicular Sensor Networks. In Proc. of HPCC'10, Melbourne, Australia, September 2010,597-602.
    [110]I. Salhi, M. Cherif and S. Senouci. A new architecture for data collection in vehicular networks. In Proc. of ICC'09, Dresden, Germany, June 2009,1-6.
    [111]L. Uichin, E. Magistretti, M. Gerla, et al. Dissemination and Harvesting of Urban Data Using Vehicular Sensing Platforms. IEEE Transactions on Vehicular Technology,58(2):882-901,2009.
    [112]C. Palazzi, F. Pezzoni, P. Ruiz. Delay-Bounded Data Gathering in Urban Vehicular Sensor Net-works. Pervasive and Mobile Computing,8(2),2012,180-193.
    [113]T. Jamal and A. Enrique. An Efficient Routing Protocol for Green Communications in Vehicular Ad-hoc Networks. In Proc. of GECCO'11, Dublin, Ireland, July 2011,719-726.
    []14] Y. Wang, H. Wu. DFT-MSN:The Delay/Fault-Tolerant Mobile Sensor Network for Pervasive In-formation Gathering. In Proc. of INFOCOM'06, Barcelona, Catalunya, SPAIN, April 2006,1-12.
    [115]F. Xu, M. LIU, J. CAO, et al. A Motion Tendency-Based Adaptive Data Delivery Scheme for Delay Tolerant Mobile Sensor Networks. In Proc. of GLOBECOM'09, Honolulu, Hawaii, USA, November 2009,1-6.
    [116]P. Michiardi and R. Molva. CORE:A Collaborative reputation mechianism to enforce node co-operation in mobile ad hoc networks. In Proc. of CMS'02, Portoroz, Slovenia, September 2002, 107-121.
    [117]J.J. Jaramillo and R. Srikant. DARWIN:Distributed and adaptive reputation mechanism for wireless ad hoc networks. In Proc. of MOBICOM'07, Montreal, QC, Canada, September 2007,87-98.
    [118]M.E. Mahmoud and X. Shen. PIS:A practical incentive system for multi-hop wireless networks. IEEE Transactions on Vehicle Technology,59(8):4012-4025,2010.
    [119]T. Chen and S. Zhong. INPAC:An enforceable incentive scheme for wireless networks using net-work coding. In Proc. of INFOCOM'10, San Diego, CA, USA, March 2010,1-9.
    [120]李莉,董树松,温向明.基于博弈理论建立无线自组网中激励合作机制的研究.电子与信息学报,29(6):1299-1303,2007.
    [121]T. Chen, L. Zhu, F. Wu and S. Zhong. Stimulating cooperation in vehicular ad hoc networks:a coalitional game theoretic approach. IEEE Transactions on Vehicular Technology,60(2):566-579, 2011.
    [122]张程,刘慧君,陈自郁,朱庆生.基于信用的重复博弈模型在节点转发中的应用.解放军理工大学学报,13(2):152-158,2012.
    [123]曲大鹏,王兴伟,黄敏.移动对等网络中自私节点的检测和激励机制Journal of Software, 24(4):887-898,2013.
    [124]李云,于季弘,尤肖虎.资源受限的机会网络节点激励策略研究.计算机学报,36(5):947-956,2013.
    [125]S. Jain, F. Kevin, R. Patra. Routing in a delay tolerant network. ACM SIGCOMM Computer Com-munication Review,34(4):145-158,2004.
    [126]T. Spyropoulos, T. Thierry, O. Katia, et al. Utility-based Message Replication for Intermittently Connected Heterogeneous Networks. In Proc. of WoWMoM'07, Helsinki, Finland, June 2007,1-6.
    [127]M. Ma and Y. Yang. SenCar:an energy-efficient data gathering mechanism for large-scale multihop sensor networks. IEEE Transactions on Parallel and Distributed Systems,18(10):1476-1488,2007.
    [128]T. Qin, J. Luo, H. Tang, et al. An Energy-Efficient Network Coded Cooperation Scheme in Wireless Sensor Networks. China Communications,8(2):166-172,2011.
    [129]S. Gao, H. Zhang, D. Sajal, et al. Efficient Data Collection in Wireless Sensor Networks with Path-Constrained Mobile Sinks. IEEE Transactions on Mobile Computing,10(4):592-608,2011.
    [130]X. Wang, M. Chen, T. Kwon, et al. Multiple Mobile Agents Itinerary Planning in Wireless Sensor Networks:Survey and Evaluation. IET Communications,5(12):1769-1776,2011.
    [131]S. Gao, L. Zhang, H. Zhang. Energy-aware Spray and Wait routing in mobile opportunistic sensor networks. In Proc. of IC-BNMT'10, Beijing, China, October 2010,1058-1063.
    [132]A. Keranen, J. Ott, T. Karkkainen, et al. The ONE simulator for DTN protocol evaluation. In Proc. of SIMUTools'09, Rome, March 2009,55-64.
    [133]F. Terroso-Saenz, M. Valdes-Vela, C. Sotomayor-Martinez, et al. A cooperative approach to traffic congestion detection with complex event processing and VANET. IEEE Transactions on Intelligent Transportation Systems,13(2):914-929,2012.
    [134]R. Weil, J. Wootton, et al. Traffic incident detection:sensors and algorithms. Mathematical and Computer Modelling,27(9-11):275-291,1998.
    [135]H. Bingyan, et al. Traffic incident impact analysis with random matrix theory and cluster analysis. In Proc. of ICEMMS'10, Beijing, China, August 2010,198-201.
    [136]G. Jiang, S. Niu, A. Chang, et al. Automatic traffic congestion identification method of expressway based on gain amplifier theory. In Proc. of ICACC'10, Shenyang, China,2010,648-651.
    [137]W. Zhu and M. Barth. Vehicle trajectory-based road type and congestion recognition using wavelet analysis. In Proc. of ITSC'06, Paris, France,2006,879-884.
    [138]K. Tawara, N. Mukai. Traffic signal control by using traffic congestion prediction based on Pheromone model. In Proc. of ICTAI'10, Arras, France,2010,27-30.
    [139]S. Vaqar, O. Basir. Traffic pattern detection in a partially deployed vehicular ad hoc network of vehicles. IEEE Wireless Communications,16(6):40-46,2009.
    [140]S. Dietzel, B. Bako, E. Schoch and F. Kargl. A fuzzy logic based approach for structure-free ag-gregation in vehicular ad-hoc networks. In Proc. of VANET'09, Beijing, China,2009,79-88.
    [141]C. Liu and C. Chigan. Structure-less message aggregation (SLMA):Reliably and efficiently im-prove information precision and certainty for VANETs. In Proc. of GLORECOM'10, Miami, FL, USA,2010,1-6.
    [142]Major highway performance ratings and bottleneck inventory-state of Maryland-Spring 2008, Tech. rep., Skycomp, Inc. in association with Whitney, Bailey, Cox and Magnani, LLC, November 2009.
    [143]C. Maihofer, et al. A survey of geocast routing protocols. Communications Surveys & Tutorials, 6(2):32-42,2004.
    [144]C. Truong and K. Romer. Efficient geocasting to multiple regions in large-scale wireless sensor networks. In Proc. of LCN'12, Clearwater, Florida, USA, October 2012,453-461.
    [145]李丽君,刘鸿飞,杨祖元等.车用自组网信息广播.软件学报,21(7):1620-1634,2010.
    [146]宋超,刘明,龚海刚等.基于分布式实时信息的车载网络路由协议.软件学报,22(3):466-480,2011.
    [147]钟婷,秦志光.基于排序的高效交通信息分发算法.通信学报,30(8):1-8,2009.
    [148]N. Cenerario, T. Delot and S. Ilarri. A content-based dissemination protocol for VANETs:Exploit-ing the encounter probability. Intelligent Transportation Systems,12(3):771-782, September 2011.
    [149]Y. Bi, L. Cai, X. Shen and H. Zhao. A cross layer broadcast protocol for multihop emergency message dissemination in inter-vehicle communication. In Proc. of ICC 10, Cape Town, South Africa, May 2010,1-5.
    [150]J. Lee, C. Wang and M. Chuang. Fast and reliable emergency message dissemination mechanism in vehicular ad hoc networks. In Proc. of WCNC'10, Sydney, Australia, April 2010,1-6.
    [151]K. Ibrahim, M. Weigle and M. Abuelela. p-IVG:Probabilistic intervehicle geocast for dense vehic-ular networks. In Proc. of VTC'09, Barcelona, Spain, April 2009,1-5.
    [152]Y. Tseng, R. Jan, C. Chen, et al. A vehicle-density-based forwarding scheme for emergency mes-sage broadcasts in VANETs. In Proc. of MASS'10, San Francisco, CA, USA, November 2010, 703-708.
    [153]H. Cozzetti, R. Scopigno, L. Casone, et al. Mapcast:A map-constrained broadcast solution for VANETs. In Proc. of WMob'10, Niagara Falls, Canada, October 2010,172-179.
    [154]N. Nakorn, K. Rojviboonchai. DEC A:Density-aware reliable broadcasting in vehicular ad hoc networks. In Proc. of ECTI-CON'10, Chiang Mai, Thailand, May 2010,598-602.
    [155]S. Lee and Y. Ko. Efficient geocasting with multi-target regions in mobile multi-hop wireless net-works. Wireless Networks,16(5):1253-1262, July 2010.
    [156]Cellint Traffic Soluations, www.cellint.com/.
    [157]Mobile Millenium, http://traffic.berkeley.edu/.
    [158]薛小平,张思东,张宏科,王小平等.基于内容的发布订阅系统路由算法.电子学报,36(5):953-960,2008.
    [159]L. Wu, M. Liu, X.M. Wang, G.H. Chen and H.G. Gong. Mobile distribution-aware data dissemi-nation for vehicular ad hoc networks. Journal of Software,22(7):1580-1596,2011.
    [160]I. Solis and J.J. Garcia-Luna-Aceves. Robust content dissemination in disrupted environments. In Proc. of the third ACM workshop on Challenged networks, San Francisco, CA, USA, September 2008,3-10.
    [161]Y. Jiao, Z. Jin and Y. Shu. Data dissemination in delay and disruption tolerant networks based on content classification. In Proc. of MSN'09, Wu Yi Mountain, China, December 2009,366-370.
    [162]H. Rakouth, P. Alexander, W. Kosiak, M. Fukushima, et al. V2X Communication Technology: Field Experience and Comparative Analysis. In Proc. of the FISITA 2012 World Automotive Congress, Beijing, China, November 2012,113-129.
    [163]A. Vegni and T.D. Little. Hybrid vehicular communications based on V2V-V2I protocol switching. International Journal of Vehicle Information and Communication Systems,2(3):213-231,2011.
    [164]孙利民,熊永平等.机会移动传感器网络中的自适应数据收集机制.通信学报,29(11):186-193,2008.
    [165]熊永平,孙利民,牛建伟等.机会网络.软件学报,20(1):124-137,2009.
    [166]T. Spyropoulos, et al. Efficient routing in intermittently connected mobile networks:the single-copy case. IEEE/ACM Transactions on Networking,16(1):63-76,2008.
    [167]C. Liu, et al. An optimal probabilistic forwarding protocol in delay tolerant networks. In Proc. of MohiHoc'09, New Orleans, Louisiana, USA, May 2009,105-114.
    [168]Q. Yuan, et al. Predict and Relay:An efficient routing in disruption-tolerant networks. In Proc. of MohiHoc'09, New Orleans, Louisiana, USA, May 2009,95-104.
    [169]L. Li, L. Sun. Seer:Trend-Prediction-Based Geographic Message Forwarding in Sparse Vehicular Networks. In Proc. of ICC'10, Cape Town, South Africa, May 2010,1-5.
    [170]D. Yu, M. Ikram and Y. Ko. (VVOF)velocity vector-based opportunistic forwarding in vehicular sensor network. In Proc. of ISCIT'09, Songdo-iFEZ ConvensiA, Incheon, Korea, September 2009, 627-628.
    [171]E. Bulut, S. Geyik and B. Szymanski. Efficient Routing in Delay Tolerant Networks with Correlated Node Mobility. In Proc. of MASS'10, San Francisco, CA, November 2010,79-88.
    [172]M. Uddin, H. Ahmadi, T. Abdelzaher, et al. A Low-Energy, Multi-copy Inter-contact Routing Protocol for Disaster Response Networks. In Proc. of SECON'09, Rome, Italy, June 2009,1-9.
    [173]T. Spyropoulos, et al. Efficient routing in intermittently connected mobile networks:the multiple-copy case. IEEE/ACM Transactions on Networking,16(l):77-90,2008.
    [174]R. Ramanathan, R. Hansen, P. Basu, et al. Prioritized epidemic routing for opportunistic networks. In Proc. of MobiSys'07, San Juan, Puerto Rico, USA, June 2007,62-66.
    [175]Y. Wang and H. Wu. Delay/fault-tolerant mobile sensor network (DFT-MSN):a new paradigm for pervasive information gathering. IEEE Transactiosn on Mobile Computing,6(9):1021-1034,2007.
    [176]S.C. Lo and W.R. Liou. Dynamic Quota-Based Routing in Delay-Tolerant Networks. In Proc. of VTC'12, Yokohama, Japan, May 2012,1-5.
    [177]A. Elwhishi and P.H. Ho. SARP:A Novel Multi-copy Routing Protocol for Intermittently Con-nected Mobile Networks. In Proc. of GLOBECOM'09, Honolulu, Hawaii, USA, November 2009, 1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700