基于水平移动床工艺的褐煤提质过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对清华大学提出的具有自主知识产权的基于水平移动床工艺的褐煤提质技术,采用实验测量与理论分析手段,开展褐煤提质过程的机理与模型研究,为完善水平移动床褐煤提质技术提供理论基础。
     本文首先从单个大颗粒褐煤干燥和热解两方面着手,获得单个大颗粒褐煤干燥和热解过程的微观机理。针对单个大颗粒褐煤干燥过程,首先搭建了大颗粒褐煤对流干燥实验台,完成单颗粒褐煤干燥实验。同时建立基于褐煤物性参数的热质耦合模型,所建模型与实验数据进行对比,证实了模型具有较好的精度。利用校验后的热质耦合模型计算获得不同工况下的大颗粒褐煤干燥数据,利用数值回归的方法得到简单且便于耦合计算的大颗粒褐煤集总参数干燥模型,并论证了该集总参数模型的适用性。针对大颗粒褐煤热解过程,通过建立准确描述褐煤热解机理的平行反应模型,发展了适用于单个大颗粒褐煤热解的数学模型。
     其次,以水平移动床褐煤提质技术所涉及的堆积态(固定床和移动床堆积态)干燥过程为目标,开展了褐煤提质过程的堆积态干燥模型与规律研究。对于固定床堆积态褐煤干燥过程,利用多尺度方法进行数学建模,在计算宏观的气相与颗粒表面的传热、传质的同时,通过瞬时边界条件计算颗粒内部微观的传热、传质过程。基于单个大颗粒褐煤集总参数干燥模型,建立了固定床集总参数干燥模型。上述两个固定床干燥模型与实验数据定量符合较好。对于提出的水平移动床工艺,利用集总参数模型进行了中试规模水平移动床装置运行参数研究,最终获得水平移动床中试装置合理的运行参数及优化建议,为大型化褐煤干燥提质工艺的开发提供理论指导。
     最后,从干燥提质产物的自燃倾向性和水分复吸特性两方面着手,探索能够保证提质产物安全、长期堆放的水含量范围。针对干燥褐煤自燃倾向性问题,利用搭建的联合国标准篮和氧化动力学测试实验台对不同水分含量褐煤提质产物的自燃倾向性进行了详细的表征工作,明确了水分对褐煤自燃倾向性的影响规律,以常见烟煤作为参考,提出不易发生运输与应用时自燃的水含量范围。对于提质产物的水分复吸特性,发展了现有的的平衡水含量模型,并提出了平衡水含量与初始水含量及储存条件的定量关系式。上述研究为褐煤提质过程的目标控制与存储条件确定提供了理论依据。
For the lignite upgrading technology based on the principle of horizontal movingbed which proposed by Tsinghua University the mechanism and model research hadbeen carried out by experimental measurements and theoretical analysis, and the finalgoal of the research is to provide theories and guidelines for the lignite upgradingtechnology.
     First, single coarse lignite particle drying and hydrolysis mechanism was studied.The drying kinetics of single coarse lignite particles in hot air were investigatedexperimentally, and a coupled heat and mass transfer mathematical model for the dryingof single particles was developed assuming local thermodynamic equilibrium. Thenumerical results agree well with the experimental data verifying that the mathematicalmodel can evaluate the drying performance of porous lignite particles, and a lumpeddrying model for single coarse lignite particle was established by simulation resultsfrom the coupled heat and mass transfer mathematical model. The lumped drying modelfor single particle is available for air and flue gas, and it is simple and can be easilycoupled for drying of packed lignite particles. The mathematical model of the pyrolysisof single coarse lignite particles was established using a parallel reaction kinetics modelcoupled with a heat transfer model.
     Then, the drying process of packed lignite particles (packed bed and moving bed)was studied. A multi-scale model was used in a numerical investigation of ligniteparticle drying in a fixed bed. The multi-scale model simultaneously analyzed amacroscopic thin bed layer and a microscopic thin particle layer. The macroscopic heatand mass transfer between the drying gas and the lignite particle surfaces was calculatedin conjunction with the microscopic intra-particle heat and mass transfer using transientboundary conditions. Meanwhile, a lumped drying model of fixed bed was establishedbased on the lumped drying model of single coarse lignite particle. Compared withexperimental results of drying of fixed bed it can be found that the both drying model offixed bed are available for drying process simulation of packed lignite particles. Forproposed horizontal drying technology, the influence of operating parameters wasstudied using lumped drying model, and suitable parameters and optimationrecommendations were determined.
     Finally, the spontaneous combustion propensity and water vapour readsorptioncharacteristics were studied, and the range of water content of the lignite upgradingproduct was determine to ensure secure and long-term stacking. For the spontaneouscombustion UN basket method and oxidation kinetics testing method were used toresearch the influence of water content on spontaneous combustion of the ligniteupgrading product. The bituminous coal was selected as benchmark, so the watercontent of upgraded lignite product can be calculated to avoid the spontaneouscombustion. For the water vapour readsorption characteristics, considering the effect ofinitial water content the equilibrium water content model was developed. The goal ofthe above research is to provide theoretical guidelines for the target control of theupgrading process and storage conditions.
引文
[1] Thomas T, Sandro S J, Peter J. Lignite and hard coal: energy suppliers for world needs untilthe year2100-an outlook. International Journal of Coal Geology,2007,72:1-14.
    [2]戴和武,谢可玉.褐煤利用技术.北京:煤炭工业出版社,1998.
    [3] Karthikeyan M. Minimization of moisture readsorption in dried coal samples. DryingTechnology,2008,26(7):948-955.
    [4] Clayton S A, Scholes O N, Headly A F, et al. Dewatering of biomaterials by mechanicalthermal expression. Drying Technology,2006,24(7):819-834.
    [5] Miknia F P, Netzel D A, Turner T F, et al. Effect of different drying methods oil coal structureand reactivity toward liquefaction. Energy&Fuels,1996,10(3):631-640.
    [6]许光文,纪文峰,万印华,等.轻工业纤维素生物质过程残渣能源化技术.化学进展,2007,19(7):1164-1176.
    [7] Faber E F, Heydenrych M D, Seppa R V, et al. A technoeconomic comparison of air and steamdrying. Drying Technology,1986,2:588-594.
    [8] Klutz H J, Moser C, Block D. WTA fine grain drying: module for lignite-fired power plants ofthe future-development and operating results of the fine grain drying plant. VGB Powertech,2006,86(11):57-61.
    [9] Favas G, Jackson W R. Hydrothermal dewatering of lower rank coals.1. Effects of processconditions on the properties of dried product. Fuel,2003,82:53-57.
    [10] Favas G, Jackson W R. Hydrothermal dewatering of lower rank coals.2. Effects of coalcharacteristics for a range of Australian and international coals. Fuel,2003,82:59-69.
    [11] Racovalis L, Hobday M D, Hodges S. Effect of processing conditions on organics in wastewater from hydrothermal dewatering of low rank coal. Fuel,2002,81:1369-1378.
    [12] Banks P J, Burton D R. Press dewatering of brown coal: Part1. Exploratory studies. DryingTechnology,1989,7(3):443-475.
    [13] Strauss K. Method and device for reducing the water content of water-containing brown coal[P]. Germany, EP0784660B1,1996.
    [14] Butler C J, Green A M, Chaffee, A.L. Assessment of the water quality produced frommechanical thermal expression processing of three Latrobe Valley lignites. Fuel,2006,85(10-11):1364-1370.
    [15] Clayton S, Scholes O, Hoadley A. Influencing factors in the dewatering of compressiblebiomaterials via mechanical thermal expression[R]. Cooperative Research Centre for CleanPower from Lignite, Canberra, Australia,2004.
    [16] Bergins C. Kinetics and mechanism during mechanical/thermal dewatering of lignite. Fuel,2003,82:355-364.
    [17] Bergins C. Mechanical/thermal dewatering of lignite. Part2: A rheological model forconsolidation and creep process. Fuel2004,83,267-276.
    [18] Butler C J, Green A M, Chaffee A L. MTE water remediation using Loy Yang brown coal as afilter bed adsorbent. Fuel2008,87(6):894-904.
    [19] Stamatios J B, Elias P, Nikolas K, et al. Evaluation of thin-layer drying models for describingdrying kinetics of figs. Journal of Food Engineering,2006(75):205-214.
    [20] Lewis W K. The rate of drying of solid materials. Industrial Engineering Chemistry,1921(13):427-432.
    [21] Henderson S M, Pabis S. Grain drying theory.1. Temperature effect on drying coefficient.Journal of Agricultural Engineering Research,1961(6):169-174.
    [22] Togrul I T, Pehlivan D. Modelling of thin-layer drying kinetics of some fruits under open-airsun drying process.Journal of Food Engineering,2004,65(3),413-425.
    [23] Sharaf-Eldeen Y I, Blaisdel J L, Hamdy, M. Y. A model for ear corn drying. Transactions ofthe ASAE,1980,23:1261-1265.
    [24] Overhults D G, White H E, Hamilton H E, et al. Drying soybean with heated air. Transactionsof the ASAE,1973(16):112-113.
    [25] Yves J, Andre T, Jean N, et al. Modeling of Banana Convective Drying by the DryingCharacteristic Curve (DCC) Method. Drying Technolgy,2004,22(8):1949-1968.
    [26] Baini R, Langrish T A G. Choosing an appropriate drying model for intermittent andcontinuous drying of bananas. Journal of Food Engineering,2007,79:330-343.
    [27] Salah B M, Besma K, Mohamed S. Modeling of heat and mass transfer in a tunnel dryer.Applied Thermal Engineering,2006,26,2110-2118.
    [28] Chen Z, Wu W, Agarwal P K. Steam-drying of coal. Part1. Modeling the behavior of a singleparticle. Fuel,2000,79:961-973.
    [29] Hager J, Hermansson M, Wimmerstedt R. Modelling steam drying of a single porous ceramicsphere: experiments and simulations, Chemical Engineering Science,52(8)(1997)1253-1264.
    [30] Looi A Y, Golonka K, Rhodes M. Drying kinetics of single porous particles in superheatedsteam under pressure. Chemical Engineering Journal,2002,87(3),329-338.
    [31] Geoffrey D, Bongers W, Jackson, R, et al. Pressurised steam drying of Australian low-rankcoals: Part1. Equilibrium moisture contents. Fuel Processing Technology.1998,57:41-54.
    [32]魏砾宏,李润东,李爱民,等.煤粉热解特性实验研究.中国电机工程学报,2008,28(26):53-58.
    [33] Lemaignen L, Zhuo Y, Redd G P. Facrors governing reactivity in low temperature coalgasification. PartⅡ. An attempt to correlate conversions with inorganic and mineralconstituents. Fuel,2002,81(3):315-326.
    [34] Hanson S, Patrick J W, Walker A. The effect of coal particle size on pyrolysis and steamgasification. Fuel,2002,81(5):531-537.
    [35] Jamil K, Hayashi J I, Li C W. Pyroysis of a Victorian Brown coal and gasification of nascentchar in CO2atmosphere in wire-mesh reactor. Fuel,2004,86(7-8):833-84.
    [36] Porada S. The influence of elevated pressure on the kinetics of evolution of selected gaseousproducts during coal pyrolysis. Fuel,2004,83(7-8):1071-1078.
    [37] Sun Q L, Li W, Chen H K. The variation of structural characteristics of macerals duringpyrolysis. Fuel,2003,82(6)669-676.
    [38]张晓方,金玲,熊燃,等.热分解气氛对流化床煤热解制油的影响.化工学报,2009,60(9):2299-2307.
    [39]朱学栋,朱子彬,张成芳.煤热失重动力学的研究.高校化学工程学报,1999,13(3):223-228.
    [40] Kobayashi H, Howard J B, Sarofim A F. Coal devolatilization at hightemperatures.Symposium (International) on Combustion,1977,16(1):411-425.
    [41] Saxena S C. Devolatilization and Combustion Characteristics of Coal. Progress in Energy andCombustion Science,1990,16(1):55-94.
    [42] Solomon R P, Serio M A, Suuberg E M. Coal Pyrolysis: Experiments, Kinetic Rates andMechanisms. Progress in Energy and Combustion Science,1992,18(2):133-220.
    [43] Essenhigh R H. Chemistry of Coal Utilization. New York: John Wiley&sons, Inc.,1981.
    [44] Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data. Nature,1964,201(1):68-69
    [45] Ubhayakar S K, Stickler D B, Gannon R E. Rapid devolatilization of pulverized coal in hotcombustion gases.16th Symposium on Combustion,1976.
    [46] Scott S A, Dennis J S, Davidson J F, et al. An algorithm for determining the kinetics ofdevolatilisation of complex solid fuels from thermogravimetric experiments. ChemicalEngineering Science,2006,61:2339-2348.
    [47] Pitt G J. The kinetics of the evolution of volatile products from coal. Fuel,1962,41:264-274.
    [48] Anthony D B, Howard J B. Coal devolatilization and hydrogasication. AIChE Journal,1976,22:625-656.
    [49] Maki T. Analysis of pyrolysis reactions of various coals including Argonne premium coalsusing a new distributed activation energy model. Energy&Fuels,1997,11:972-977.
    [50] Mcguinness M J, Donskoi E, Mcelwain L S. Asymptotic approximations to the distributedactivation energy model. Applied Mathematics Letters,1999,12:27-34.
    [51] Burnham A K. An nth-order Gaussian energy distribution model for sintering. ChemicalEngineering Journal,2005,108:47-50.
    [52] Larfeldt J, Leckner B, Melaaen M C. Modelling and measurements of the pyrolysis of largewood particles. Fuel,2000,79(13):1637-1643.
    [53] Sadhukhan A K, Gupta P, Saha R K. Modelling of pyrolysis of large wood particles.Bioresource Technology,2009,100(12):3134-3139.
    [54] Sadhukhan A K, Gupta P, Saha R K. Modelling and experimental studies on pyrolysis ofbiomass particles. Journal of Analytical and Applied Pyrolysis,2008,81,183-192.
    [55] Sun S Z, Zhang J W, Hu X D, et al. Kinetic analysis of NO-Char reaction. Korean Journal ofChemical Engineering,2009,26(2):554-559.
    [56] Lee J M, Kim D W, Kim J S. Reactivity study of combustion for coals and their chars inrelation to volatile content. Korean Journal of Chemical Engineering,2009,26(2):506-512.
    [57] Huang Y J, Jin B S, Zhong Z P, et al. Effect of operating conditions on gas components in thepartial coal gasification with air/steam. Korean Journal of Chemical Engineering,2007,24(4):698-705.
    [58] Zhang J W, Sun S Z, Hu X D, et al. Modeling NO-Char Reaction at High Temperature.Energy&Fuels,2009,23:2376-2382.
    [59] Fang F, Li Z S, Cai N S.CO2capture from flue gases using a fluidized bed reactor withlimestone. Korean Journal of Chemical Engineering,2009,26(5):1414-1421.
    [60] Prompubess C, Mekasut L, Piumsomboon P, et al. Co-combustion of coal and biomass in acirculating fluidized bed combustor. Korean Journal of Chemical Engineering,2007,24(6),989-995.
    [61] Chern J S, Hayhurst A N. A simple theoretical analysis of the pyrolysis of an isothermalparticle of coal. Combustion and Flame,2010,157(5):925-933.
    [62] Park W C, Atreya A, Baumb H R. Experimental and theoretical investigation of heat and masstransfer processes during wood pyrolysis. Combustion and Flame,2010,157(3):481-494.
    [63] Cenkowski S, Jayas D S, Pabis S. Deep-bed grain drying. A review of particular theories.Drying Technology,1993,11(7),1553-1581.
    [64] Parry J L. Mathematical modeling and computer simulation of heat and mass transfer inagricultural grain drying: A review. Journal of Agricultural Engineering Research,1985,32,1-29.
    [65] Sharp J R. A review of low temperature drying simulation models. Journal of AgriculturalEngineering Research,1982,27,169-190.
    [66] Kuwahara F, Shirota M, Nakayama A. A Numerical Study of Interfacial Convective HeatTransfer Coefficient in Two-Energy Equation Model for Convection in Porous Media.International Journal of Heat and Mass Transfer,2001,44:1153-1159.
    [67] Nakayama A, Kuwahara F, Sugiyama M, Xu G. A Two Energy Equation Model forConduction and Convection in Porous Media. International Journal of Heat and Mass Transfer,2001,44:4375-4379.
    [68] Naghavi Z, Moheb A, Ziaeirad S. Numerical simulation of rough rice drying in a deep-beddryer using non-equilibrium model. Energy Conversion and Management,2009,518(3):936-942.
    [69] Aregba A W, Sebastian P, Nadeau J P. Stationary deep-bed drying: A comparative studybetween a logarithmic model and a non-equilibrium model Journal of Food Engineering.2006,77,27-40.
    [70] Chekib G, Hmaied B, Mohamed S. Two-dimensional computational modeling and simulationof wood particles pyrolysis in a fixed bed reactor. Combustion Science and Technology,2008,180:833-853.
    [71] Sitompul J P, Istadi I, Sumardiono S. Modelling and Simulation of Momentum, Heat andMass Transfer in a Deep-Bed Grain Dryer. Drying Technology,2003,21(2):217-229.
    [72] Miknis F P, Netzel D A, Turner T, et al. Effect of different drying methods on coal structureand reactivity toward liquefaction. Energy&Fuels,1996,10(3):631–640.
    [73] Hassan K, Rajender G. Low-Grade Coals: A Review of Some Prospective UpgradingTechnologies. Energy&Fuels,2009,23(7):3392-3405.
    [74] Nagle M, Azcarraga J C G, Phupaichitkun S. Effects of operating practices on performance ofa fixed-bed convection dryer and quality of dried longan International Journal of FoodScience and Technology,2008,43(11):1979-1987.
    [75] Nagle M, Azcarraga J C G, Mahayothee B. Improved quality and energy performance of afixed-bed longan dryer by thermodynamic modifications. Journal of Food Engineering,2010,99(3),392-399.
    [76] Nganhou J. Heat and mass transfer through a thick bed of cocoa beans during drying. Heatand Mass Transfer,2004,40(9),727-735.
    [77] García-Pérez J V, Carcel J A, García-Alvarado M A, et al. Simulation of grape stalk deep beddrying. Journal of Food Engineering,2009,90(2):308-314.
    [78] Srivastava V K, John J. Deep bed grain drying modeling. Energy Conversion andManagement,2002,43(13):1689-1708.
    [79] Abhari R, Isaacs L L. Drying kinetics of lignite, subbituminous coals, and high-volatilebituminous coals. Energy&Fuels,1990,4(5),448-452.
    [80] Androutsopoulos G P. Megalopolis lignite drying kinetics based on tga experimental results.Chemical Engineering Science.1986,41(8),2053-2059.
    [81] Vorres K S. Effect of temperature, sample-size, and gas-flow rate on drying on beulah-zaplignite and wyodak subbituminous coal. Energy&Fuels1994,8(2),320-323.
    [82] Wang H H. Kinetic analysis of dehydration of a bituminous coal using the TGA technique.Energy&Fuels2007,21(6),3070-3075.
    [83] Srinivasa R P, Satish B, Goswami T K. Modelling and optimization of drying variables in thinlayer drying of parboiled paddy. Journal of Food Engineering,2007,78:480-487.
    [84] Hemisa M, Bettaharb A, Singhc C B, et al. An Experimental Study of Wheat Drying in ThinLayer and Mathematical Simulation of a Fixed-Bed Convective Dryer Drying Technology.2009,27(10):1142-1151.
    [85] Stamatios J B, Vassilios G B. Influence of the drying conditions on the drying constants andmoisture diffusivity during the thin-layer drying of figs. Journal of Food Engineering,2004,65:449-458.
    [86] Dimitriadis A N, Akritidis C B. A model to simulate chopped alfalfa drying in a fixed deepbed. Drying Technology,200422(3):479-490.
    [87] Aregba A W, Sebastian P, Nadeau J P. Stationary deep-bed drying: A comparative studybetween a logarithmic model and a non-equilibrium model. Journal of Food Engineering,2006,77(1):27-40.
    [88] Sitompul J P, Istadi I, Sumardiono S. Modelling and simulation of momentum, heat, and masstransfer in a deep-bed grain dryer. Drying Technology,2003,21(2):217-229.
    [89] Sitompul J P, Istadi I, Widiasa I N. Modeling and simulation of deep-bed grain dryers DryingTechnology,.2001,19(2):269-280.
    [90] Istadi I, Sitompul J P. A comprehensive mathematical and numerical modeling of deep-bedgrain drying. Drying Technology,2002,20(6):1123-1142.
    [91] Saastamoinen J J. Comparison of moving bed dryers of solids operating in parallel andcounterflow modes. Drying Technology,2005,23(5):1003-1025.
    [92] Yrjola J, Saastamoinen J J. Modelling and practical operation results of a dryer for woodchips. Drying Technology,2002,20(6):1077-1099.
    [93] Saastamoinen J J, Impola R. Drying of biomass particles in fixed and moving beds. DryingTechnology,1997,15(6-8):1919-1929.
    [94] Saastamoinen J J, Impola R. Drying of solid-fuel particles in hot gases. Drying Technology,1995,13(5-7):1305-1315.
    [95] Wang Z H, Chen G H. Heat and mass transfer during low intensity convection drying.Chemical Engineering Science,1999,54(17):3899-3908.
    [96] Schlunder E U. Drying of porous material during the constant and the falling rateperiod: A critical review of existing hypotheses. Drying Technology,2004,22(6):1517-1532.
    [97] Fierro V, Miranda J L, Romero C, et al. Prevention of spontaneous combustion in coalstockpiles: Experimental results in coal storage yard. Fuel Processing Technology,1999,59:23-34.
    [98] Fei Y, Aziz A A, Nasir S, et al. The spontaneous combustion behavior of some low rank coalsand a range of dried products. Fuel,2009,88:1650-1655.
    [99] Sahu H B, Mahapatra S S, Panigrahi D C. An empirical approach for classification of coalseams with respect to the spontaneous heating susceptibility of Indian coals. InternationalJournal of Coal Geology,2009,80:175-180.
    [100] Rena T X, Edwards J S, Clarke D. Adiabatic oxidation study on the propensity of pulverisedcoals to spontaneous combustion. Fuel,1999,78:1611-1620.
    [101] Wang H H, Dlugogorski B Z, Kennedy E M. Pathways for production of CO2and CO inlow-temperature oxidation of coal. Energy&Fuels,2003,17(1):150-158.
    [102] Wang H H. Coal Oxidation at Low Temperatures: Oxidation Products, Reaction Mechanismand Chemical Kinetics [D]. Australia: University of Newcastle,2002.
    [103] Wang H H, Dlugogorski B Z, Kennedy E M. Thermal decomposition of solid oxygenatedcomplexes formed by coal oxidation at low temperatures. Fuel,2002,81(15):1913-1923.
    [104] Maarten V B, Eyerusalem M G, Eddy A B, et al. Spontaneous ignition of wood, charand RDF in a lab scale packed bed. Fuel,2010,89:2393-2404.
    [105] Makino A, Higuchi R, Hisamoto A, et al. Spontaneous ignition temperature for the compactedmixture of Ti–Al system: Theory and experimental comparisons. Proceedings of theCombustion Institute,2011,33:1967-1974.
    [106] Li X R, Lim W, Iwata Y, et al. Thermal behavior of sewage sludge derived fuels.Thermal Science,2008,12(2):137-148.
    [107] Yang F Q, Wu C, Li Z J. Investigation of the propensity of sulfide concentrates tospontaneous combustion in storage. Journal of Loss Prevention in the Process Industries,2011,24:131-137.
    [108] Sujanti W, Zhang D K. A laboratory study of spontaneous combustion of coal: theinfluence of inorganic matter and reactor size. Fuel,1999,78:549-556.
    [109]何启林.煤低温氧化性与自燃过程的实验及模拟的研究[博士学位论文].徐州:中国矿业大学安全工程学院,2004.
    [110]仲晓星.煤自燃倾向性的氧化动力学测试方法研究[博士学位论文].徐州:中国矿业大学安全工程学院,2008.
    [111] Li X R, Koseki H, Momota M. Evaluation of danger from fermentation-inducedspontaneous ignition of wood chips. Journal of Hazardous Materials,2006,135:15-20.
    [112]孙金华,丁辉.化学物质热危险性评价.北京:科学出版社,2005.
    [113] Wang Q S, Guo S, Sun J H. Spontaneous Combustion Prediction of Coal by C80andARC Techniques. Energy&Fuels,2009,23:4871-4876.
    [114] Aktas N, Gurses A. Moisture adsorption properties and adsorption isosteric heat ofdehydrated slices of Pastirma (Turkish dry meat product). Meat Science2005,71:571-576.
    [115] Yan Z Y, Sousa-Gallagher M J. Effect of temperature and initial moisture content onsorption isotherms of banana dried by tunnel drier. International Journal of FoodScience and Technology2008,43:1430-1436.
    [116] Oyelade O J, Tunde-Akintunde T Y, Igbeka J C. Predictive equilibrium moisturecontent equations for yam (Dioscorea rotundata, Poir) flour and hysteresis phenomenaunder practical storage conditions. Journal of Food Engineering,2008,87:229-235.
    [117] Basu S, Shivhare U S, Mujumdar A S. Models for sorption isotherms for foods: areview. Drying Technology,2006,24:917-930.
    [118] Arslan N, Togrul H. The fitting of various models to water sorption isotherms of teastored in a chamber under controlled temperature and humidity. Journal of StoredProducts Research,2006,42:112-135.
    [119] Phoungchandang S, Woods J L. Moisture diffusion and desorption isotherms forbanana. Journal of Food Science,2000,65:651-657.
    [120] Luikov A V. Systems of differential equations of heat and masstransfer in capillary-porousbodies. International Journal of Heat and Mass Transfer,1975,18(1):1-14.
    [121] Whitaker S. SimultaneousHeat, Mass, and MomentumTransfer in Porous Media: ATheory ofDrying. Advances in Heat Transfer,1977,13:119-203.
    [122] Plumb O A, Spolek G A, Olmstead B A. Heat and mass transfer in wood during drying.International Journal of Heat and Mass Transfer,1985,28(9):1669-1678.
    [123] Quintard, M.; Whitaker, S. One and two equation models for transient diffusion processes intwo phase systems. Advances in Heat Transfer,1993,23:369-464.
    [124] Ilic M, Turner I W. Drying of a wet porous material Applied Mathematical Modelling,1986,10(1):16-24.
    [125] Ilic M, Turner I W. Convective drying of a consolidated slab of wet porous material.International Journal of Heat and Mass Transfer.1989,32(12):2351-2362.
    [126] Rogers J A, Kaviany M. Funicular and evaporative-front regimes in convective drying ofgranular beds. International Communications in Heat and Mass Transfer,1992,35:469-480.
    [127] Perre P, Turner I W. A3-D version of TransPore: a comprehensive heat and mass transfercomputational model for simulating the drying of porous media. International Journal of Heatand Mass Transfer,1999,42:4501-4521.
    [128] Nasrallah S B, Perre P. Detailed study of amodel of heat and masstransfer during convectivedrying of porous media. International Journal of Heat and Mass Transfer,1988,31(5):957-967.
    [129] Melaaen, M. C. Numerical analysis of heat and mass transfer in drying and pyrolysis ofporous media. Numerical Heat Transfer. Part A, Applications,1996,29(4):331-355.
    [130] Nijdam J J, Langrish T A G, Keey R B. A high temperature drying model for softwood timber.Chemical Engineering Science,2000,55(18):3585-3598.
    [131] Lu T, Jiang P X, Shen S Q. Numerical and Experimental Investigation of Convective Dryingin Unsaturated Porous Media with Bound Water. Heat and Mass Transfer2005,41(12):1103-1111.
    [132] Agroskin A A. Thermal and Electrical Properties of Coals. Science and Technology Press,Moscow,1959.
    [133] Couture F, Fabrie P, Puiggali J R. Drying behavior as influenced by the relative permeabilityrelations. Proceedings of9th International Drying Symposium, Brisbane,1994,2,263-276.
    [134] Huang C L D, Siang H H, Best C H. Heat and moisture transfer in concrete slabs.International Journal of Heat and Mass Transfer.1979,22(2):257-266.
    [135] Stanish M A. The roles of bound water chemical-potential and gas-phase diffusion inmoisture transport through wood. Wood Science and Technology,1986,20(1):53-70.
    [136]白丽莹.热管型吸收式制冷余热回收系统的优化研究[硕士学位论文].北京:天津大学机械工程学院,2007.
    [137] Miura K. A new and simple method to estimate f(E) and k0(E) in the distributed activationenergy model from three sets of experimental data. Energy&Fuels,1995,9:302-327
    [138] Miura K, Maki T. A simple method for estimating f(E)and k0(E) in the distributed activationenergy model. Energy&Fuels,1998,12:864-869.
    [139] Merrick D. Mathematical models of the thermal decomposition of coal:2. Specific heats andheats of reaction. Fuel,1983,62(5):540-546.
    [140] Strezov V, Lucas J A, Evans T J, et al. Effect of heating rate on the thermal properties anddevolatilisation of coal. Journal of Thermal Analysis and Calorimetry,2004,78(2):385-397
    [141] Hanrot F, Ablitzer D, Houzelot J L, et al., Experimental measurement of the true specific heatcapacity of coal and semicoke during carbonization. Fuel,1994,73(2):305-309.
    [142] Volborth A. Coal Science and Chemistry, Elsevier, Amsterdam,1987.
    [143]潘永康,王喜忠,刘旭东.现代干燥技术(第二版).北京:化学工业出版社,2007.
    [144]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算(第三版).北京:科学出版社,2003.
    [145]张基标,郝卫,赵之军,等.锅炉烟气低温腐蚀的理论研究和工程实践.动力工程学报,2011,31(10):730-738.
    [146]毛健雄,毛健全,赵树民.煤的清洁燃烧.北京:科学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700