基于Vortex的月球车移动性能仿真与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月球车移动性能虚拟仿真在月球车的评价、测试过程和未来的遥控探测过程中有着举足轻重的地位,而仿真的保真度和实时性则是评价仿真平台的两项非常重要的指标。为了提高月球车移动性能虚拟仿真的保真度,必须从轮地相互作用力学模型出发,开发具有高保真度的地面力学模块;提高仿真平台的实时性,则需要对动力学/运动学求解进行优化,选用快速的动力学求解引擎,这样才能保证仿真平台的高保真度和实时性。出于这种考虑,本论文构建了基于月球车轮地力学模型的移动性能仿真平台。
     本论文进行了月球车移动性能仿真平台的总体设计及实现。该仿真平台基于Vortex动力学仿真引擎,主要实现月球车仿真模型和月面地形仿真模型的构建,轮地力学模型的实现、月壤力学特性参数修正、仿真数据的输出存储以及移动性能的评价六个功能模块;
     进行了月表地形通用建模方法的研究。基于对月球的真实环境的分析,简化月面地形,抽象出月面仿真地形的几种典型工况,并建立了各典型工况的数学模型,同时为了完善月面地形生成器的体系结构,提出了三种具有特定功用的组合地形和随机地形的构建方法,利用Matlab和3DMax分别创建月面地形的物理模型和场景模型,实现月面各种典型工况下仿真地形的构建;
     实现了Vortex仿真环境中轮地相互作用力学模型的二次开发,编写轮地作用区域求解和轮地相互作用力学求解子函数,调用月球车仿真模型和月面仿真地形,设定月壤力学特性参数,整合动力学仿真引擎,完成了月球车移动性能仿真平台的构建,实现了在松软崎岖地形中的移动性能仿真;
     基于地面力学知识进一步改进了月球车在典型工况下的移动性能评价体系,完善了月球车移动系统通过性、可操纵性和地面适应性指标体系;利用月球车移动性能仿真平台,进行了月球车的平面地形、爬坡性能、曲面地形、越障性能及在随机地形中的仿真,结合评价指标,在满足一定滑转率指标的前提下,对月球车最大爬坡角度和最大越障高度等性能进行了综合评价。
Performance simulation for lunar rover play an essential role in the process of evaluation, testing and teleoperation of lunar rover. Fidelity and real-time are two very important indexes in evaluating simulation platform. To improve the fidelity of performance simulation of lunar rover, research must be started from model of wheel-soil interaction terramechanics, to develop terramechanics model of high fidelity. To improve the real-time of performance simulation of lunar rover, it need to optimize the dynamics / kinematics algorithm, select fast dynamic server, and this is to ensure the simulation platform with high-fidelity and real-time. With that in mind, this paper constructs performance simulation platform for c rover based on the wheel-soil interaction terramechanics.
     This paper carry out the overall design of performance simulation for lunar rover and make it out. This simulation platform is based on Vortex dynamics server, mainly achieved seven function modules: construction of simulation model for lunar rover and moon environment、realization for model of wheel-soil interaction terramechanics、amendent for mechanical properties of lunar soil、export and storage for simulation data、evaluation for Performance simulation.
     This paper carries on research about general modeling method for lunar terrain. Based on the analysis of the real lunar environment, it simplifies lunar terrain, abstracts several typical working conditions and their mathematical models. And in order to perfect the lunar terrain generator, it puts forward constructing methods for combined terrain and random terrain, and achieves the constructing of simulation terrain on typical working conditions using Matlab and 3DMax.
     It carries on the secondary development for model of wheel-soil interaction terramechanics in Vortex simulation environment, compiles two subfunctions which achieve regional solution and interaction force calculation between wheels and soil, calls the simulation models of lunar rover and terrain, amends mechanical properties of lunar soil, integrates dynamic server, completes the construction for performance simulation platform for lunar rover, achieves the performance simulation on bumpy terrains.
     Based on the terramechanics, it improved the mobile performance evaluation system in typical working conditions, perfected indexes system for traversability, maneuverability and terradaptability. Using the simulation platform, did the performance simulation in flat、slope、sine、obstacles and random terrain, combining with evaluation system, evaluated the indexes for maximum climbing angle and biggest obstacle height of lunar rover, under the premise of certain slip ratio.
引文
1.欧阳自远.我国月球探测的总体科学目标与发展战略.地球科学进展. 2004, 19(3)
    2.中国空间技术研究院.月面巡视探测器原理样机移动子系统方案设计报告.2005.3
    3.欧阳自远.月球探测的进展与我国的月球探测(上).自然杂志. 2005, 27 (4): 187-190
    4.陈百超.月球车悬架研究及动力学仿真.吉林大学硕士学位论文. 2006.5
    5.郑晓曦,孙国正.虚拟样机系统.计算机工程与应用. 2005.1
    6. Ding Liang, Gao Haibo, Deng Zongquan, Song Peilin, Liu Rongqiang. Design of Comprehensive High-fidelity/High-speed Virtual Simulation System for Lunar Rover[C]. Proc. of 2008 IEEE International Conference on Robotics, Automation and Mechatronics, Chengdu, China, 21-24, Sep. 2008: 1118-1123
    7. Terramechanics-based High-Fidelity Dynamics Simulation for Wheeled Mobile Robot on Deformable Rough Terrain. Proc. of 2010 IEEE Conference on Robotics and Automation, 2008
    8.史海龙,李焱,贺汉根.一种基于图像的月面虚拟环境建模方法.系统仿真技术及其应用. 2005.7
    9.高海波,邓宗全,胡明.行星轮式月球车移动系统的关键技术.机械工程学报. 2005,41(12): 156~161
    10.徐利明,姜昱明.可漫游的虚拟场景建模与实现.系统仿真学报.2006.18(1):120~124
    11. P. Lamon and R. Siegwart. Wheel Torque Control in Rough Terrain—Modeling and Simulation. Proceedings of IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005: 867-872
    12. K. Yoshida, H. Asai, and H. Hamano. Motion Dynamics Simulations and Experiments of an Exploration Rover on Natural Terrain. Proceedings of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space. Montrl, Canada, 2001
    13. Genya Ishigami, Akiko Miwa, Keiji Nagatani and Kazuya Yoshida.Terramechanics-Based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil. Journal of Field Robotics. 2007, 24 (3): 233-250
    14. WITS Team. WITS Simulation System. Http://wits.jpl.nasa.gov/
    15. J. Yen, A. Jain and J. (Bob) Balaram. ROAMS: Rover Analysis Modeling and Simulation Software. International Symposium on Artifcial Intelligence, Robotics and Automation in Space. Noordwijk, the Netherlands, 1999: 255-262
    16. Jain A, Balaram J, Cameron J, et al. (2004) Recent developments in the ROAMS planetary rover simulation environment. In: Proceedings of the IEEE Aerospace Conference, Big Sky,Montana, USA, 2004:861-875
    17. Jain, A., Guineau, J., Lim, C., Lincoln, W., Pomerantz, M., and Sohl, G., 2003.“ROAMS: Planetary surface rover simulation environment”. In i-SAIRAS 2003:274-282
    18. Niranijian S. The Role of Terrain Modeling in Lunar Rover Simulation. 1993,6(1):60~68
    19.仝光.基于ADAMS月球车仿真平台的研究.长春:吉林大学硕士学位论文. 2007: 38-64
    20.矫庆丰,左正兴,廖日东等.六轮月球漫游车越障平顺性仿真分析.计算机仿真. 2005, 22 (6): 108-111
    21. Luo Xunji, Sun Zengqi. A Lunar Rover Simulation Platform. International Conference on Computational Intelligence, Robotics and Autonomous Systems,Singapore. 2001: 283-287
    22.骆训纪,孙增圻.月球漫游车仿真系统研究.系统仿真学报.2002, 14 (9):1235-1238
    23.尚建忠,罗自荣,张新访.两种轮式月球车悬架方案及其虚拟样机仿真.中国机械工程. 2006, 17 (1): 49-51
    24.洪炳熔,蔡则苏,唐好选.虚拟现实及其应用.国防工业出版社,2005: 206-207
    25.陶建国,全齐全,邓宗全等.月球车不等径车轮在土壤上滚动的力学分析与实验.哈尔滨工程大学学报.2007, 28 (10): 1144-1149
    26.王巍,梁斌,强文义.基于虚拟样机技术月球机器人运动仿真.高技术通讯.2002(2): 84-87
    27.张朋,邓宗全,胡明,高海波.基于地面力学的变质心月球车移动性能分析.吉林大学学报, 2009
    28.陶建国,王林,吴凤久,邓宗全.月球车车轮与土壤相互作用的力学特性分析.机械设计与制造.2006, 12: 56-57
    29.胡明,邓宗全,高海波等.基于ADAMS的六轮月球车动力学建模与仿真.哈尔滨工业大学学报, 2007, 39 (1): 28-31
    30. Jianguo Tao, Zongquan Deng, Ming Hu, et al. A Small Wheeled Robotic Rover for Planetary Exploration. Proceedings of the 1st International Symposium on Systems and Control in Aerospace and Astronautics. Harbin, 2006: 413-417
    31.王梦宇.基于崎岖地形的月球车仿真研究.哈尔滨:哈尔滨工业大学硕士学位论文. 2008: 19-44
    32.焦震.基于地面力学的月球车动力学建模及仿真研究.哈尔滨:哈尔滨工业大学硕士学位论文. 2009: 44-75
    33. http://www.cm-labs.com
    34. http://www.vxsim.com
    35.樊世超,贾阳,向树红.月面地形地貌环境模拟初步研究.航天器环境工程. 2007, 24(2): 15-20
    36.王洪.基于遥感图像的月球表面特征分析.吉林大学硕士学位论文. 2007.6:3-4
    37.张玥.月球表面地形数据分析及仿真研究.国防科技大学硕士学位论文. 2008.11:15-30
    38. Yan-chun Yang, Jin-song Bao, Ye Jin, et al. A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies. International Journal of Advanced Robotic Systems, 2008: 201-208
    39. Robert Bauer1, Tim Barfoot2, Winnie Leung, et al. Dynamic Simulation Tool Development for Planetary Rovers. International Journal of Advanced Robotic Systems, 2008: 311-314
    40. J. Y. Wong, A. R. Reece. Prediction of Rigid Wheel Performance Based on Analysis of Soil-Wheel Stresses, Part I: Performance of Driven Rigid Wheels. Journal of Terramechanics, 1967, 4 (1): 81–98
    41. Z. Janosi, B. Hanamoto. Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicle in Deformable Soils. Proceedings of the 1st International Conference of ISTVES, Torino, Italy, 1961, 707-726
    42.丁亮,高海波,邓宗全,刘吉成.基于应力分布的月球车轮地相互作用力学模型.机械工程学报. 2009. 45 (7): 49–55
    43.丁亮.星球车轮地相互作用地面力学模型及其应用.哈尔滨工业大学博士学位论文. 2009.11: 77–80
    44. J. Y. Wong, A. R. Reece. Prediction of Rigid Wheel Performance Based on Analysis of Soil-Wheel Stresses, Part II: Performance of Towed Rigid Wheels. Journal of Terramechanics, 1967, 4 (2): 7–25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700