煤矿液压支架纯水安全阀的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯水液压具有环保、安全和清洁等优点,在食品、造纸、冶金等工业领域具有广泛的应用前景。随着材料科学和现代加工技术的发展,使纯水液压元件的研制成为可能,同时随着人们对节约能源和环保的日益重视,纯水液压技术已成为国内外液压界的研究热点。本文首次将纯水液压研究定位在煤矿液压支架安全阀上。
     本文以煤矿液压支架纯水安全阀为研究对象,采用理论分析、计算机仿真等方法,对其进行系统、深入的分析和研究。在充分考虑水介质特殊的理化性能的基础上,分析了纯水阀存在的关键技术问题,并从材料、密封形式、新型结构等方面入手,提出了相应的解决措施。提出了煤矿液压支架纯水安全阀的具体结构,在不同结构参数条件下进行了流场仿真,并通过安全阀的流量和阀芯受力方程,分析了安全阀的动态性能。
     本文介绍了纯水液压和安全阀的研究现状,阐述了和分析了纯水安全阀设计的关键技术问题,提出了解决措施。对纯水安全阀的工作原理和结构作了分析,采用滑阀式结构,阀体采用奥氏体不锈钢,阀芯和阀座采用耐蚀合金材料,抗气蚀性能最好,并对其主要尺寸进行了设计。使用FLUENT软件研究纯水安全阀阀芯内部流动,仿真结果表明都在阀芯孔出口处左边边缘出现了最低负压,并且负压都集中在这一块。单从气蚀方面考虑,6孔结构的阀芯产生负压最小,发生气蚀的可能性最小,为优先选择的结构。分析纯水安全阀的结构性能,建立安全阀的数学模型,利用所建立的数学模型对纯水安全阀动态特性作仿真研究分析,得出了影响阀的工作稳定性的主要因素。仿真结果表明纯水安全阀动态特性良好,满足实用要求。
     最后对全文做了总结,对今后该课题的进一步开展作了一些展望。
Water hydraulic will be widely used in some industrial areas,such as food,paper and metallurgy for its advantage of fine condition,safety and cleanness. With the development of material science and modern processing technology, developing water hydraulic component become possible.And human devoting much attention to saving energy and protecting environment,water hydraulic techonolgy become research focus at home and abroad. The thesis firstly analyses the water hydraulic on the safety valve of coal mine hydralic supporter.
     In the thesis,water safety valve is systematically and deeply researched by combining theory analysis and computer simulation together. Considered the physical and chemical characteristics of water sufficiently, the key technical problems existing in the water valve were analyzed and solved from the aspects of material, seal form, new structures.Concrete structure of Water safety valve used in coal mine hydraulic supporter are presented for the first time. Computational fluid dynamics methods were applied to simulate in the water safety valve spool internal with different structure parameters.Through flow equations of safety valve and force equations of valve core, dynamic performance of safety valve was analyzed.
     In the thesis, present status of water hydraulic and safety valve is introduced.Key technologies of water safety valve are expounded and solutions are proposed.The structure and working principle of safety valve are analysed,which takes the slide-valve structure,with the valve being made of austenitic stainless steel, valve core and seat made of corrosion resistant materials having the best anti-cavitation performance and its main sizes are designed. FLUENT is used to simulate the flow in water safety valve,the simulation results show that the negative pressure appears in the left edge of the valve hole, which ,moreover,is focused on one point.From the aspect of cavitation,the valve core with 6 holes has a minimum negative pressure and is less likely to get cavitation,.thus being the best choice. the structural preformance of water safety valve is built and its dynamic performance studied.Dynamic performance of water safety valve is simulated using mathematical model.Then the main factors which affects the stability of valve work are obtained. The simulation results indicate that the water relief valve has good performance and can be adopted in practical application.
     Finally a brief summary on research work of this thesis is provided. Also some researches that need to do by next step are pointed out.
引文
[1]周华.纯水液压介质、泵与试验系统的研究[博士后研究报告].杭州:浙江大学流体传动国家重点实验室
    [2] Wolfgang Backe. Water- or oil- hydraulics in the future. In:Kari T, Koskinen, Matti Vilenius eds. The Proc. of the 6th Scandinavian Int. Con. on Fluid Power, SICFP'99, Tampere, Finland, May 26-28, 1999, Tampere:A Publication of TUT, 1999:51-65
    [3]路甬祥.流体传动与控制技术的历史进展与展望.机械工程学报,2001,10, 1-9
    [4]杨华勇,周华,路甬祥.水液压技术的研究现状与发展趋势.中国机械工程. 2001, 11(12):1430-1433
    [5]杨华勇,周华.纯水液压传动技术的若干关键问题.机械工程学报(增刊),2002(38):96-100
    [6]周华,杨华勇.重新崛起的现代水压传动技术.液压气动与密封,2000(82):6-9
    [7]周华,杨华勇.环境友好的纯水液压传动技术.重庆工业高等专科学校学报(’99全国液体动力与机电一体化技术学术会议论文专辑),1999, 3-5
    [8]袁桂锋.纯水液压阀的结构、机理及性能研究[D].安徽理工大学,2006,4
    [9]贺小峰等.液压传动技术的研究与应用[J].重庆工业高等专科学校学报,2002,14(3-4):6-8
    [10]袁桂锋.纯水液压阀的结构、机理及性能研究[D].安徽理工大学,2006,4
    [11]杨华勇,周华.纯水液压传动技术的若干关键问题[J].机械工程学报(增刊),2002(38):96-100
    [12]栾振辉,侯波.液压支架的技术现状与发展[J].矿山机械,2004(9):15-16
    [13]韩伟.液压支架控制系统大流量阀与移架速度定量化研究[D].北京:煤炭科学研究总院,2006
    [14]中国矿业学院机电系.液压支架.北京:煤炭工业出版社,1978
    [15]谢伟.纯水液压节流阀及阀口气蚀分离研究[D].浙江大学,2005,1
    [16]段晓敏.纯水管式溢流阀的研制[D].浙江大学,2006,5
    [17]杨署东,李壮云,朱玉泉.水压传动的主要课题与研究进展[J].中国机械工程,2004,9(11):1070-1073
    [18]白平.水压元件陶瓷化新工艺的实验研究[J].机床与液压,2007(2):117-118
    [19] J.Terava,T.vilenius.Development of sea water hydraulic power pack.Proc.4th Scandina vian Int Conf.on Fluid Power,Tampere,Finland,Sept,1995.978-991
    [20] Wang Youqiang(王优强),Yang Chengren(杨成仁).The development and study of the water lubricated rubher bearings(水润滑橡胶轴承研究进展)[J].Lubrication engineer(润滑与密封),2001(2):65
    [21]刘毅,叶献华,王传礼等.纯水溢流阀主要结构参数的设计[J].液压与气动,2008(5):68-70
    [22]高荣发.热喷涂[M].北京:化学工业出版社,1992,12
    [23]周华,杨华勇.纯水液压元件中陶瓷涂层零件的腐蚀失效机理分析[J].液压气动与密封,1999(6):1-3
    [24]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993,11
    [25]袁桂锋.纯水液压阀的结构、机理及性能研究[D].安徽理工大学,2006,4
    [26]宋鸿尧,丁忠尧等.液压阀设计与计算[M].北京:机械工业出版社,1982
    [27]陆培文.实用阀门设计手册.北京:机械工业出版社,2002.9
    [28] GB/T 1239.4—200×,热卷圆柱螺旋压缩弹簧技术条件
    [29] Vaughan N.D., Johnston D.N., Edge K.A., Numerical simulation of fluid flow in poppet valves. Proc.Instn Mech Engrs, Part C, Journal of Mechanical Engineering Science, 1992,206:119-127
    [30] John.D.Anderson. Computational Fluid Dynamics:The basics with applications[M].清华大学出版社,2002
    [31]赵兴艳. CFD方法在流体机械设计中的应用[J].流体机械,2000,28(3):22-25
    [32]李家春主编.第六届全国流体力学学术会议论文集.北京:气象出版社, 2001
    [33]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [34]向虎,韦文术.CFD技术及其在液压支架用阀设计中的应用探讨[J].煤矿机械,2007(1):13-14
    [35]谢伟,周华,弓永军.纯水液压阀气蚀试验系统研制[J].液压与气动,2004(5):14-17
    [36]曾祥荣.液压噪声控制[M].哈尔滨:哈尔滨工业大学出版社,1988
    [37] Oshima Shigeru, Timo Leino, Matti Linjama. Experimental study on cavitation in water hydraulic poppet valve, Transactions of the Japan Fluid Power System Society, 2002, 33(2):29-35
    [38] Tsukiji Tetsuhiro, Nakayama Singo. Study of lateral oscillation of a poppet valve for oilhydraulics, Transactions of the Japan Society of Mechanical Engineers, Part B, 1998,64(620): 120-126
    [39] Regiane Fortes Patella. A New Approach to Evaluate the Cavitation Erosion Power. Jouranl of Fluids Engineering. Vol.120, June 1998: 335-344
    [40] Borghi M., Bussi C., Milani M., et al. Reliability of Fluid Cavitation Analysis by Means of Equivalent Fluid Characteristics Modelling . Proceedings of 7th Scandinavian International Conference on Fluid Power, Linsheping, Sweden, May 1999:143-160
    [41] Berger. Kavitationserosion und Massnahmen zu ihrer Vermeidung in Hydraulikanlagen fur HFA-Flussigkeiten. Dissertation, RWTH, Achen, Germany, 1983.
    [42] Paoluzzi R. Stationary and Dynamic Analysis of a Water Relief Valve. Proceedings of the 4th JHPS International Symposium on Fluid Power, Tokyo, November 1999: 561-566
    [43] Dipl-Ing H.Cuppers. Modern Water Hydraulics-Your choice for the Future. Germany,2001
    [44] Gao Hong.Numerical Investigation of Cavitating Flow behind the Cone of a Poppet Valve in Water Hydraulic System. Journal of Zhejiang University SCIENCE, 2002, 3(4): 395-400
    [45]周善淮.高压单相流细水雾自动灭火系统的研制及火场温度监测[D].浙江大学,2004,3
    [46]贺小峰,张铁华,李壮云.以海淡水为工作介质的液压传动技术[J].液压气动与密封,2002(2):18-20
    [47]周华,杨华勇.环境友好的纯水液压传动技术[J].重庆工业高等专科学校学报(’99全国液体动力与机电一体化技术学术会议论文专辑),1999, 3-5
    [48]刘桓龙,许明恒,柯坚等.液压驱动技术[J].中国机械工程,2002,6(13):534-536
    [49] Songlin Nie, Guohe Huang, Yongping Li, et al.Research on low cavitation in water hydraulic two-stage throttle poppet valve. Process Mechanical Engineering, 2006,5: 167-179
    [50]林建忠.湍动力学[M].杭州:浙江大学出版社,1999
    [51] Fluent Inc. Fluent 5: User’s Guide, 1998, Vol. 2, Chapter 8-9
    [52]章梓雄,董曾南编著.粘性流体力学[M].北京:清华大学出版社, 1998
    [53]陈矛章.粘性流体动力学基础[M].北京:高等教育出版社,1993
    [54]赵学端,廖其奠.粘性流体力学[M].北京:机械工业出版社,1998
    [55] Launder B E,Spalding D B. Lectures in Mathematical Models of Turbulence. Academic Press,London,England,1972
    [56]郑淑娟,权龙.基于CFD的液压锥阀阀芯起闭过程的液动力分析[J].机电产品开发与创新,2007(3):81-85
    [57]罗亚敏,王有荣,刘桓龙等.水压锥阀流场的CFD解析[J].流体传动与控制,2007(7):7-10
    [58]郑淑娟,权龙,陈青.阀芯运动过程液压锥阀流场的CFD计算与分析[J].农业机械学报,2007(1):168-172
    [59]杨国来,叶清,林男.纯水液压锥阀阀口流场气穴的CFD研究[J].机床与液压,2007(1):148-150
    [60]唐兵,卢昆,郝燕文等.水压锥阀内流场的数值模拟[J].兰州理工大学学报,2007(8):54-58
    [61]王艳珍,于兰英,柯坚等.水压锥阀流场的CFD解析[J].机械,2003(5):20-22
    [62]朱保林.离心泵内流三维数值模拟[D].浙江工业大学,2005
    [63]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [64]韩伟.液压支架控制系统大流量阀与移架速度定量化研究[D].北京:煤炭科学研究总院,2006
    [65]黄忠霖.控制系统MATLAB计算及仿真[M].北京:国防工业出版社,2004
    [66]张森,张正亮.MATLAB仿真技术与实例应用教程[M].北京:机械工业出版社,2004
    [67]姚俊,马辉松.Simulink建模与仿真[M].西安:西安电子科技大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700