土壤紧实胁迫对苹果生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤紧实度是衡量土壤紧实程度的指标,它与土壤其他特性如土壤容重直接相关,土壤紧实、容重偏高是我国当前果树生产中普遍存在的逆境胁迫因子之一。本试验研究了不同土壤紧实度对苹果(Malus pumila. Mill)植株生长发育以及土壤微生物和土壤酶活性的影响,旨在丰富果树逆境生理理论,并为果树土壤改良提供理论依据。
     采用盆栽试验,研究了不同土壤紧实度对苹果幼苗生长、生物产量、叶绿素荧光参数、根系生长以及根系活力的影响;采用大田试验,研究了平邑甜茶(Malus hupehensis . Rehd)和新疆野苹果(Malus sieversii. Roem)两种不同砧木的嘎拉苹果,经不同容重土壤处理2年后植株生长特性与生物产量的差异;初步研究了土壤紧实度与水分胁迫对苹果幼苗生长的互作效应;为了进一步了解土壤紧实胁迫影响苹果正常生长的原因,对不同容重的土壤中土壤微生物数量和土壤酶活性的差异进行了初步探索。
     紧实土壤条件下平邑甜茶、楸子(Malus prunifolia. Borkh)以及嘎拉苹果植株的生长指标及生物产量均发生不同程度的下降;通过对平邑甜茶叶片叶绿素荧光参数的分析发现,1.55 g·cm-3处理的植株叶片内部光能转化机构功能下降,紧实土壤中平邑甜茶叶片组织中O2.-和H2O2含量的显著升高在一定程度上诱导了抗氧化酶活性的提高,但是植物体内活性氧(reactive oxygen species ,ROS)增幅更大,从而使细胞膜受到伤害,透性增大,发生膜脂过氧化,最终表现为叶片相对电导率(relative electrical conductivity,REC)和丙二醛(MDA)含量显著升高。
     通过不同时期对根系形态的观察看出,过于紧实土壤(1.55 g·cm-3)中生长的楸子根系生长减慢、根系数量减少、根系活力下降,1.25和1.40 g·cm-3两个处理间差异不显著。在持续干旱的情况下,一定紧实程度的土壤有利于保持土壤水分,楸子幼苗受到干旱胁迫伤害小。不同砧木的苹果植株生长受土壤紧实度影响的幅度有差异。
     土壤微生物数量和土壤酶活性也会受到土壤紧实度的变化的影响,适度紧实的土壤有利于土壤微生物数量尤其是细菌数量的增加,脲酶和脱氢酶活性随着土壤紧实度的增加而下降,碱性磷酸酶和转化酶在1.40 g·cm-3容重土壤中最高,过氧化氢酶随着土壤紧实度的增加而增加。
     总之,紧实土壤不利于苹果的生长以及生物产量的增加,然而在持续干旱的情况下紧实土壤比疏松土壤保水。土壤紧实度发生变化时,苹果植株形态和生理生化功能以及土壤的容重、土壤微生物和土壤酶土壤都会产生出适应性响应与调整。
Soil compaction is an indicator measuring the degree of soil compaction,and it has a direct relationship to other properties such as soil bulk dentisity.Soil compaction, high density is one of stress factors which is prevalent in China's current production of fruit trees.Effcets of different soil compaction on apple plant growth,soil microbial and soil enzymatic activities were studied in the experiment, aim to enrich pomology physiological theory of adverse circumstances and provide theoretical basis for soil improvement.
     Pot culture experiment was conducted to study the effects of soil compaction with different soil bulk dentisity(SBD,1.25 g·cm-3,1.40 g·cm-3and 1.55 g·cm-3) on apple tree growth, biological yield,chlorophyll fluorescence parameters,root growth and root activities of apple seedling.Though field experiments,difference of plant grow characteristic and biological yield of gala apple grafted on two rootstock(Malus hupehensis and Malus sieversii) growing under different SBD for two years were investigated.Interaction effects of soil compaction and water stress was researched preliminarily.In order to understand the reason that siol compaction affects apple growth, variation of microbiol number and soil enzymatic activities of different SBD were investigated preliminarily.
     Malus hupehensis ,Malus prunifolia and gala appale growth index and biological yield declineded at different degrees under soil compaction.Thougt the analyze of chlorophyll fluorescence parameters,we found out that conversion of light energy function of plant leaves dicreased under 1.55 g·cm-3SBD.The increase of Superoxide anion radical and Hydrogen peroxide content induced the rise activity of antioxidant enzymes,but the rise degree of reactive oxygen species (ROS) was bigger than the rise activity of antioxidant enzymes,so ROS did harm to cell membrane,which resulted in the increase of permeability of the membrane and lipid peroxidation, and which performanced in remarkable increasing of REC and MDA content of leaves.
     Through observation of root form and activity of Malus prunifolia seedling on different date,root of Malus prunifolia seedling under 1.55 g·cm-3SBD growed slowly,root number and activity decreased.The difference between 1.25 and 1.40 g·cm-3treatment were not significant. However, in the case of continuous drought, a certain extent soil compaction was conducive to soil moisture maintaining, injury of drought stress on plant was less than low soil bulk density.The impact of soil compaction on apple plant grafted different rootstock were different.
     Soil microbiol and soil enzymatic activities also were affected by the variation of soil compaction,Moderate compaction was favorable for soil microbiol number increase, especially for bacteria.With soil compaction increase,the activity of urease and dehydrogenase dropped, alkalescence phoshatase and invertase activity both were highest in 1.40 g·cm-3SBD, catalase enhanced with the soil compaction increasing.
     On the whole,soil compaction is not conducive to the growth of apple and the increase of biological yield.However, in the case of continuing drought compacted soil can maintain more water than loose soil. In the event of soil compaction change,apple plant morphology, physiological,biochemical functions,as well as the bulk density of soil,soil microbiol and soil enzymatic activities will produce adaptive response and adjustment.
引文
[1]贺明荣,王振林.土壤紧实度变化对小麦籽粒产量和品质的影响[J] .西北植物学报,2004,24(4):649~650.
    [2]Steniter E, Murer E. Impact of soil compaction upon soil water balance and maize yield estimated by SIMWASER model[J]. Soil and Tillage Research, 2003,73:43~56.
    [3]李潮海,周顺利.土壤容重对玉米苗期生长的影响[J] .华北农学报,1994,9(2):49~54.
    [4]宋家祥,庄恒扬,陈后庆等.不同土壤紧实度对棉花根系生长的影响[J].作物学报,1997,23(6):719~726 .
    [5]南志标,赵红洋,聂 斌.黄土高原土壤紧实度对蚕豆生长的影响[J]. 应用生态学报,2002,13(8):935~938.
    [6]孙 艳,王益权,杨 梅等.土壤紧实胁迫对黄瓜根系活力和叶片光合作用的影响[J].植物生理与分子生物学学报,2005,31(5):545~550.
    [7]Vepraskas MJ. Plant response mechanisms to soil compaction [C]//. Wilkinson R E. Plant-Environment interaction. New York: Marcel Dekker, Inc,1994:263~287.
    [8]Ishaqm, Hassana, Saeedm. Subsoil compaction effects on crops in Punjab, Pakistan.Ⅰ.Soil physical properties and crop yield.[J]. Soil and Tillage, 2001,59(1-2):57~65.
    [9]宋家祥,刘世平,马 刚等.土壤紧实度对棉花产量的影响[J].江苏农学院学报,1997,18(2):7~11.
    [10]张兴义,隋跃宇.土壤压实对农作物影响概述[J].农业机械学报,2005,36(10):161~164.
    [11]Tobias S. Estimating soil resilience to compaction by measuring changes in surface and subsurface levels[J].Soil use manage Oxon, UK:CABI International,2001,17(4):229~234.
    [12]Neve S, Hofman G. Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues[J]. Biology and Fertility of Soils, 2000,30(5-6):544~549.
    [13]Bakken L R, Borresen T, Njos A. Effect of soil compaction by tractor traffic on soil structure, denitrification, and yield of wheat[J]. Journal of Soil Science, UK, 1987,38(3):541~552.
    [14]Atwell B J. The effect of soil compaction on wheat during early tillering. I. growth, development and root structure[J]. New Physiologist, 1990, 115(1):29~35.
    [15]徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量的影响[J].土壤学报,2002,39(1):89~95.
    [16]陆雅海,张福锁.根际微生物研究进展[J].土壤 (Soils),2006,38 (2):113~121.
    [17]乔樵,杨忠厚.东北北部黑土紧实度在农业增产上的意义[J] .土壤通报,1995,26(1):9~11.
    [18]Jordan D, Ponder F Jr, Hubbard VC.Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity[J]. Appl Soil Ecol ,2003,23:33~41.
    [19]Kaiser EA, Heisler C, Walenzik G, et al. The effect of mechanical soil compaction on microbial biomass development, Collembolan fauna, denitrification and mineralization in an agricultural location[J]. Einflussevon mechanischen Bodenbelastungen auf mikrobielle Biomasseen twicklung, 1991, 66(1): 531~534.
    [20]Sochtig W, Larink O. Effect of soil compaction on activity and biomass of endogeic lumbricids in arable soils[J]. Soil-Biol-Biochem. Ex et el: Pergamon Press, 1992, 24(12): 1595~1599.
    [21]张国红,张振贤,黄延楠等.土壤紧实程度对其某些相关理化性状和土壤酶活性的影响[J].土壤通报,2006,37(6):1094~1097.
    [22]Hartung W, Zhang J, Davies WJ. Does abscisic acid play a stress physiological role in maize plants growing in heavily compacted soil [J]. Exp.Bot.1994 ,45:221~226.
    [23]黄细喜.土壤紧实度及层次对小麦生长的影响[J].土壤学报,1988,25 (1):59~65.
    [24]许 衡,杨和生,束怀瑞等.果树根际微域环境的研究进展[J].山东农业大学学报(自然科学版),2004,35(3):476~480.
    [25]Young IM,Montagu K,Conboy J,et al.Mechanical impedance of root growth directly reduces leaf elongation rates of cereals[J]. New Phytol,1997 ,135 :613~619.
    [26]李志洪,王淑华.土壤容重对土壤物理性状和小麦生长的影响[J].土壤通报,2000,31(20):55~57.
    [27]刘晚苟.不同水分条件下容重对于玉米生长和水分利用的调控[D].博士学位研究生学位论文.2001(6):40~41.
    [28]Longstreth DJ and Nobel PS.Nutrient influences on leaf photosynthesis.Effects of nitrogen, phosphoro- ous and potassium for Gossypium hirsutum L[J]. Plant Physiol. 1980, 65,541~543.
    [29]Andrade A , Wolf DW, Fereres E. Leaf expansion, photosynthesis and water relations of sunflower plants growth on compacted soil[J]. Plant and Soil ,1993,149:175~184.
    [30]Masle J and Farquhar GD.Effects of soil strength on the relation of water-use efficiency and growth to carbon isotope discrimination in wheat seedlings[J]. Plant Physiol. 1988,86, 32~38.
    [31]Bengough AG,Young IM.Root elongation of seedling peas through layered soil of different penetration resistances[J].Plant and Soil,1993,149:129~139.
    [32]Buttery BR, Tan CC, Drury CF, et al. The effects of soil compaction,soil moisture and soil type on growth and nodulation of soybean and common bean[J]. Can J Plant Sci,1998,78:571~576.
    [33]Masle J , Passioura JB. The effect of soil strength on the growth of young wheat plants[J]. Aust. J Plant Physiol,1987,14:643~656.
    [34] 吴思政,柏文富,禹 霖等.土壤容重与杏生长和结果的关系[J]. 经济林研究,2001,4(11): 20~22.
    [35]Goodman AM , Ennos AR. The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize[J]. Ann .Bot , 1999 ,83 :293~302.
    [36]Oussible M , Crookston RK, Larson WE. Subsurface compaction reduces the root and shoot growth and grain yield of wheat[J].Agron .J.1992,84:34~38.
    [37]Groleau-Renaud V, Plantureux S, Guckert A Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponics’ conditions[J].Plant Soil,1998,201:231~239.
    [38]Stirzaker RJ,Passioura JB,Wilms Y. Soil structure and plan growth: Impact of bulk density and biopores[J].Plant Soil, 1996.185:151~162.
    [39]刘晚苟,山 仑.不同土壤水分条件下容重对玉米生长的影响[J].应用生态学报,2003,14(11):1906~1910.
    [40]Kahnt G. Effect of homogeneous and heterogeneous soil compaction on shoot and root growth of field bean and soy-bean[J]. Journal of Agronomy and Crop Science,1986,157(2):105~113.
    [41]Bengough AG,Mackenzie CJ,Elangwe HE. Biophysics of the growth response of pea roots to changes in penetration resistance[J]. Plant and soil,1994,167:135~141.
    [42]Rosolem CA,Schiochet MA,Souza LS,et al.Root growth and cotton nutrition as affected by liming and soil compaction[J].Commun Soil Sic Plant Anal,1998,29(12):169~177.
    [43]Bengough AG, Mullins CE. The resisitance experienced by roots growing in a pressurized cell-areaappraisal[J]. Plant and Soil, 1990, 123:73~82.
    [44]Materechera SA,Dexter AR,Alston AM. Penetration of very strong soils by seedling roots of different plant species[J]. Plant and Soil,1991,135:31~41.
    [45]Passioura JB. Soil structure and plant growth. Aust J Soil Res .1991 ,29 :717~728.
    [46]刘晚苟,山 仑,邓西平.植物对土壤紧实度的反应[J].植物生理学通讯[J] .2001,37(3):254~260.
    [47]宋家祥,刘世平,沈新平等.土壤紧实度对棉花吸肥的影响[J],江苏农学院学报,1997,18(3):21~26.
    [48]Arvidsson J. Nutrient uptake and growth of barely as affected by soil compaction . Plant and Soil, 1999, 208: 9~19.
    [49]刘晚苟,山 仑,邓西平.干湿条件下土壤容重对玉米根系导水率的影响,土壤学报,2003,40(5):779~782.
    [50]Passioura JB. Water transport in and to roots. Annu Rev Plant. Physiol Plant MolBiol, 1988, 39:245~265.
    [51]Pasioura JB,Lepper GW.Passioura JB,Leeper GW. Soil compaction and manganese deficiency. Nature, 1963,200:29~30.
    [52]Evans DG, Miller MH. Vesicular-arbscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize. New Phytol,1988,110:67~74.
    [53]Marschner H. 1995. Mineral Nutrition of Higher Plants[C]. Academic Press, London, pp.889.
    [54]Cornish P.S., So H.B. and Mc William J.R.. Effects of soil bulk density and water regimen on root growth and uptake of phosphorus by ryegrass[J]. 1984Aust. J. Agric. Res. 35: 631~644.
    [55]Mulholland BJ , Black CR , Taylor IB et al.Effect of soil compaction on barley ( Hordeum v ulgare L. ) growth.Ⅱ.Are increased xylem sap ABA concentrations involved in maintaining leaf expansion in compacted soil. [J]. Exp. Bot , 1996 ,297 :551~556.
    [56]孙艳,王益权,冯嘉玥等.土壤紧实胁迫对黄瓜生长、产量及养分吸收的影响[J].植物营养与肥料学报 2006,12(4):559~564.
    [57]Carmi A, Hesketh JD, Enos WT and Peters DB 1983 Interrelationships between shoot growth and photosynthesis, as affected by root growth restriction[J]. Photosynthetica17, 240~245.
    [58]张国红,张振贤,梁勇等.土壤紧实度对温室番茄生长发育产量及品质的影响[J] .中国生态农业学报, 2004,12(3):65~67.
    [59]Zhang H,Andera J,Peter W,et al.Dual pathways for regulation of root branching by nitrate[J]. Plant Biology, 1999,96(11):6529~6534.
    [60]Laboski CAM,Dowdy RH,Allmaras RR,et al.Soil strength and content influences on corn root distribu- tion in a sandy soil[J]. Plant and soil,1998,203:239~247.
    [61]Passioura JB, Stirzaker RJ. Feedforward response of plants to physically in hospitable soil. In:Buxton DR(ed).International Crop Science I.[J]. Crop Socience Society of America Madison, WI, USA. 1994, 715~719.
    [62]Jakobson BF,Dexter AR.Effect of soil structure on wheat root growth, water uptake and grain yield. A computer simulation model[J].Soil Till Res,1987,10:331~345.
    [63]Ludlow MW,Sommer KJ,Flower DJ et al .Influence of root signals resulting from soil dehydration and high strength on the growth of crop plants. [J] Curr.Tropics Plant Biochem Physiol,1998, 8:81~99.
    [64]Stirzaker RJ,Passioura JB,Sutton BG,et al. Soil management for irrigated vegetable productionⅡ .Possible causes for slow vegetable growth of lettuce associated with zero tillage[J]. Aust.Agric Res, 1993,44:831~844.
    [65]Hurley MB,Rowarth JS. Resistance to root growth and changes in the concentration of ABA within the root and xylem sap during root-restriction stress[J]. Exp Bot, 1999,335:799~804.
    [66]Tardieu F,Katerji N,Bethenod O,et al. Maize stomatal conductance in the field: its relationship with soil and plant water potentials, mechanical constraints and ABA concentration in the xylem sap[J]. Plant Cell Environ,1991,4:121~126.
    [67]Masle J.Growth and stomatal responses of wheat seedlings to spatial and temporal variations in soil strength of bilayered soils[J]. Exp Bot , 1998 ,324 :1245~1257.
    [68]Clark LJ,Whalley WR,Dexter A R,et al. Complete mechanical impedance increase the turgor of cells in the apex of pea roots[J]. Plant Cell Environ,1996,19:1099~1102.
    [69]Greacen EL,Oh JS. Physics of root growth. Nature(Lond)New Biol,1972,235:152~159.
    [70]Carmi A, Heuer B, The role of roots in control of bean shoot growth[J].Ann Bot,1980,48:519~527.
    [71]Bar-Tal A, Feigin A, Sheinfeld S,et al .Root restriction and N-NO3 solution concentration effects on nutrient uptake, transpiration and dry matter production of tomato[J].Sci Horticult,1995,63:195~208.
    [72]Lachno DR, Harrison-Murray RS, Audus LJ. The effect of mechanical impedance to root growth on the levels of ABA and IAA in root tips of zeamaysL[J].Exp Bot, 1982, 33:943~951.
    [73]Braam J, Davis RW. Rain,wind and touch-induced expression of calmodulin and calmodulin-related gene in Arabidopsis[J].Cell,1990,60:357~364.
    [74]Saab IN, Sharp RE, Pritchard J,et al .Increased endogenous abscisic acid maintains primary root grow -th and inhibits shoot growth of maize seedlings at low water potentials[J]. Plant Physiol, 1990, 93: 1329~1336.
    [75]Goss MJ , Russell RS. Effects of mechanical impedance on root growth in barley ( Hordeum vulgare L).Ⅲ . Observations on the mechanism of the response[J]. Exp Bot , 1980 ,31 :577~588.
    [76]Barley KP. The effect of mechanical stress on the growth of roots[J]. Exp Bot , 1962 ,13 :95~110.
    [77]翟衡,赵政阳,束怀瑞等.世界苹果产业发展趋势分析[J] .果树学报,2005,22(1):44~50.
    [78]李嘉瑞.铸造中国苹果强势产业[J] .果农之友,2005,(1):5~11.
    [79]周鹏,彭福田,魏绍冲等.氮素形态对平邑甜茶细胞分裂素水平和叶片生长的影响[J] .园艺学报,2007,34(2):269~274.
    [80]李合生,孙群,赵世杰.植物生理生化实验原理合技术[M].北京:高等教育出版社,2000.7.
    [81]匡廷云,卢从明,李良壁.作物光能利用效率与调控[C] .济南:山东科学技术出版社,2004.
    [82]郝再彬,苍晶.植物生理试验[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [83]高俊凤.植物生理学实验技术[M].西安:世界图书出版公司,2000.1.
    [84]张志良,瞿伟菁.植物生理学实验指导(第三版)[M]. 北京:高等教育出版社,2003.
    [85]孙群,胡景江.植物生理学研究技术[M].陕西西安:西北农林科技大学出版社,2005.9.
    [86]张守仁.叶绿素荧光动力学参数的意义及讨论[J] .植物学通报,1999,16(4):444~448.
    [87]朱新广,王 强,张其德等.冬小麦光合功能对盐胁迫的响应植[J].植物营养与肥料学报,2002,8(2):177~180.
    [88]张其德,卢从明,刘丽娜等.CO2 倍增对不同基因型大豆广和色素含量及荧光诱导动力学参数的影响[J].植物学报,1997,39(10):946~950.
    [89]孙文越,王辉,黄久常.外源甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响[J].西北植物学报,2001.21(3):487~491.
    [90]刘国琴,樊卫国.果树对水分胁迫的生理响应[J].西南农业学报,2000,13(1):101~106.
    [91]陆定志,傅家瑞,宋松泉.植物衰老及其调控[M].北京:中国农业出版社,1997,P184.
    [92]陈立松,刘星辉.水分胁迫对荔枝叶片活性氧代谢的影响[J].园艺学报,1998,25(3):241~246.
    [93]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,32(2):144~150.
    [94]闫成仕.水分胁迫下植物叶片抗氧化系统的响应研究进展[J].烟台师范学院学报(自然科学版), 2002,18(3):220~225.
    [95]闫成仕,李德全,张建华.植物叶片衰老与氧化胁迫[J].植物学通报,1999,19(4):398~404.
    [96]Zhang JX, Kirkham MB. Drought-stress-induced changes in activities of super oxide dismutas catalpas, and peroxides in wheat species[J].Plant Cell Physiol,1994,35(5):785~791.
    [97]张宪政.作物生理研究法[M].北京:农业出版社,1990.
    [98]张雄.用 TTC(红四氮唑)法测定小麦根和花粉活力及其应用[J].植物生理学通讯,1982,(3):48~50.
    [99]陆雅海,张福锁.根际微生物研究进展[J].土壤(Soils),2006,38 (2):113~121.
    [100]Orsvi kV, Ovreas L. Microbial diversity and function in soil: From genes to ecosystems[J].Current Opinion Microbial,2002,5:240~245.
    [101]Torsvik V,State K,Sorheim R,Goksoyr J. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria[J].Applied Environmental Micobiol,1990,56:776~781.
    [102]ZellesL.1999.Fatty acid patterns of phospholipids and lip polysaccharides in the characterization of microbial communities in soil: Are view [J]. Biol. Fertile. Soils ,29:111~129.
    [103]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [104]Marscher P,Yang CH, Lieberei R,et al.2001.Soil and plant specific effects on bacterial community composion in rhizospher[J]. Soil Biol.Biochem.33:1437~1445.
    [105]关松荫,张得生.土壤酶及其研究法[M].北京:农业出版社,1986:266~288.
    [106]陈利军,武志杰.与氮转化有关的土壤酶活性对抑制剂使用的响应[J].应用生态学报,2002,13(9):1099~1101.
    [107]王书锦,胡江春.新世纪中国土壤微生物学的展望[J].微生物学杂志,2002,22(1):36~39.
    [108]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.
    [109] ?.X.哈兹耶夫.(郑洪元,周礼恺,张德生,翻译)土壤酶活性[M].北京:科学出版社,1980.11.
    [110]郭天财,宋 晓,马冬云等.氮素营养水平对小麦根际微生物及土壤酶活性的影响[J].水土保持学报,2006,20(3)129~131.
    [111]王光华,金 剑,徐美娜等.植物、土壤及土壤管理对土壤微生物群落结构的影响[J].生态学杂志,2006,25(5):550~556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700