PLGA/纤维蛋白凝胶复合支架的制备及其用于软骨再生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文构建了纤维蛋白凝胶填充聚乳酸-乙醇酸(PLGA)支架用于关节软骨缺损的修复。采用明胶微球为致孔剂制备了平均孔径为350μm、孔隙率为87%的PLGA多孔支架。利用纤维蛋白凝胶的溶胶-凝胶过程,将纤维蛋白凝胶负载于PLGA多孔支架中构建复合体系。纤维蛋白凝胶能够均匀地填充PLGA支架的孔隙,在PLGA大孔中充满了直径200nm左右的纳米纤维填充物。体外软骨细胞共培养表明,虽然填充支架与PLGA支架在细胞增殖上无明显差别,但填充支架能够更好地维持软骨细胞的正常表型,促进细胞分泌粘多糖(GAGs)。
     评价了PLGA支架在37℃的磷酸盐缓冲液(PBS, pH=7.4)和兔关节软骨缺损处的降解性能。体外降解表明PLGA分子量半衰期为6周;24周后,PLGA的分子量降低到初始分子量的7%。植入体内的PLGA表现出更快的降解速率,12周后,分子量降低到初始分子量的4%。
     将异体骨髓间充质干细胞(BMSCs)负载于PLGA/纤维蛋白凝胶复合支架中,植入新西兰大白兔关节软骨全层缺损(直径3mm,深度4mm)处,以PLGA/BMSCs作为对照组。12周后取样,切片后进行苏木素-伊红染色(H-E)、过碘酸雪夫碱(PAS)染色GAGs、Ⅱ型胶原免疫组化染色。结果表明实验组新生软骨表面连续,软骨层厚度甚至稍厚于正常关节软骨厚度;新生软骨组织和周围正常软骨组织连接较好;软骨层中细胞密度接近正常关节软骨,深层细胞呈现明显陷窝状;宿主接近的新生组织中富含GAGs和Ⅱ型胶原,但着色稍弱于周围正常软骨,缺损中心区域有较少的GAGs、未见Ⅱ型胶原沉积。对照组主要生成纤维组织,新生组织PAS和Ⅱ型胶原染色的着色强度明显弱于实验组。表明纤维蛋白凝胶填充的PLGA多孔支架比单一的PLGA支架有更好的软骨修复能力。
     采用CM-Dil标记异体BMSCs,负载于PLGA/纤维蛋白凝胶中植入兔关节软骨缺损处。小动物成像系统发现即使在植入12周后依然可见红色荧光位于缺损区域,冰冻切片结果也表明植入的BMSCs在12周后依然存活。
     为了进一步提高关节软骨的修复效果,将转化生长因子-β1 (TGF-β1)负载于该复合支架中,构建PLGA/纤维蛋白凝胶/BMSCs/TGF-β1复合体系,将该复合体系植入到兔关节软骨全层缺损(直径4mm,深度4mm),以PLGA/纤维蛋白凝胶/BMSCs为对照组。12周后,实验组新生组织填充整个缺损区域,软骨层厚度接近正常软骨,软骨下骨和潮线恢复良好,软骨层和软骨下骨连接一致;整个新生软骨层中富含GAGs和Ⅱ型胶原,其中的细胞为典型软骨细胞的表型,细胞密度接近正常软骨。不含TGF-β1的对照组,宿主附近的新生组织中富含GAGs和Ⅱ型胶原,着色稍弱于周围正常软骨,缺损中心主要生成纤维组织;荧光定量聚合酶链式反应(qRT-PCR)的结果也证实了实验组软骨特异性基因的表达显著高于对照组。说明负载TGF-β1的复合支架能更好地促进关节软骨缺损的修复。
     为了克服生长因子易失活价格昂贵等缺点,将基因治疗引入PLGA/纤维蛋白凝胶复合支架。采用季铵化壳聚糖(TMC)作为质粒DNA (pDNA)的载体,通过TMC和pDNA之间的静电作用,将pDNA压缩形成纳米复合粒子。在2D培养系统中,TMC/pDNA对BMSCs的转染效率为9%。采用能够表达TGF-β1的质粒DNA (pDNA-TGF-β1)转染BMSCs能够在10天内持续表达TGF-β1将构建的PLGA/纤维蛋白凝胶/BMSCs/(TMC/pDNA-TGF-β1)植入兔关节软骨全层缺损处(直径4mmm,深度4mm),以无pDNA或无BMSCs为对照组。实验组2周和4周取样,western blotting和qRT-PCR检测到异种的TGF-β1的表达,但随时间延长TGF-β1的量减少。实验组12周取样发现缺损处填满半透明的组织,表面平整,与周围组织的界限已不明显。组织学染色发现,新生组织厚度接近正常软骨,与宿主组织连接较好,较难找出缺损位置;整个新生软骨层中PAS和Ⅱ型胶原着色均匀,且和正常软骨差别;细胞为典型软骨细胞的表型,有明显的软骨陷窝出现;软骨下骨和潮线恢复良好,软骨层和软骨下骨连接一致;qRT-PCR的结果也证实了软骨特异性基因的表达显著上调。不含pDNA组,宿主附近的新生组织中富含GAGs和Ⅱ型胶原,着色稍弱于周围正常软骨,但缺损中心仍有1mm左右的区域未修复;未加入BMSCs组,则主要生成了纤维组织,基本未见软骨样组织。负载功能DNA能够原位转染BMSCs、表达TGF-β1,能促进BMSCs向软骨细胞分化及软骨特异性基质的合成,促进缺损关节软骨的修复。
A composite scaffold was fabricated by fibrin gel filled poly(lactide-co-glycolide) (PLGA) sponge for cartilage tissue engineering. The PLGA sponge with an average pore size of 350μm and a porosity of 87% was fabricated by a gelatin porogen leaching method. Via a process of sol-gel of fibrin gel, it was filled into the PLGA sponge. The fibrin gel evenly distributed in the composite scaffold with visible fibrinogen fibers with a diameter about 200nm after drying. In vitro co-culture with chondrocytes found that in the PLGA/fibrin gel the chondrocytes distributed more evenly and kept a round morphology as that in the normal cartilage. Although the chondrocytes seeded in the PLGA sponges showed similar proliferation behavior with that in the PLGA/fibrin gel, they were remarkably elongated, forming a fibroblast-like morphology. Moreover, a larger amount of glycosaminoglycans (GAGs) was secreted in the PLGA/fibrin gel than that in the PLGA sponges after 4wk. The results suggest that the fibrin/PLGA may be more favorably applied for cartilage tissue engineering than the PLGA sponge.
     Degradation of the PLGA sponges was investigated in PBS (pH=7.4) at 37℃and in cartilage defects, respectively. In vitro, the number-average molecular weight (Mn) of the scaffold decreased almost exponentially along with the incubation time. After 24wk, the Mn decreased from 76kDa to 5.6kDa. Meanwhile, Mn of the sponges decreased to 3.3kDa at 12wk post-implantion in cartilage defect, showing a faster degradation rate.
     BMSCs were employed as seed cell for the animal experiment. The PLGA/fibrin gel/BMSCs was implanted into the full-thickness cartilage defects made in New Zealand white rabbit joints (3mm in diameter and 4mm in thickness), while the PLGA/BMSCs served as the control. At 12wk post-implantation, the generated neo-cartilage integrated well with its surrounding normal cartilage and subchondral bone in the experimental group, whereas only a little bit of cartilage-like tissue and fibrous tissue was observed in the group absent from fibrin gel. These results imply that the PLGA/fibrin gel may be a better choice for cartilage restoration than the PLGA sponge too, when the BMSCs are used as the seed cells.
     The effectiveness of any cellular repair approach depends on the retention of cell viability after implantation. To evaluate the cell viability, allogenic BMSCs were labeled with CM-Dil fluorochrome, seeded in PLGA/fibrin gel scaffolds and implanted into the full-thickness cartilage defects (4mm in diameter and 4mm in thickness). The red fluorescence in the defects zone and in BMSCs was observed by small animal in vivo fluorescence imaging system and laser scanning confocal microscope after frozen section, respectively. The results showed that even after 12wk post-implantation, the transplanted BMSCs still localized and kept alive in the defects.
     Then the composite scaffold was upgraded by incorporating with transforming growth factor-β1 (TGF-β1). The PLGA/fibrin gel/BMSCs/TGF-β1 composite constructs were implanted into the full-thickness cartilage defects (4mm in diameter and 4mm in thickness), while the constructs absent from TGF-β1 served as the control. At 12wk post-implantation, the generated neo-cartilage integrated with its surrounding normal cartilage and subchondral bone in the experimental group, whereas only a little bit of cartilage-like tissue was observed in the group absent from TGF-β1. Immunohistochemical and GAGs staining confirmed the similar distribution of collagen type II and GAGs in the regenerated cartilage as that of hyaline cartilage. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) data also showed that the cartilage special genes expressed in the neo-tissue were higher than those of the control group. The composite scaffold incoporated with TGF-β1 improved cartilage restoration substantially.
     Growth factors are expensive and generally have a short-half life in the order of minutes because of rapid clearance via the lymphatic system. Another way to solve the problem is the use of gene therapy, which was incorporated into this composite system in the next study. A cationized chitosan derivative N,N,N-trimethyl chitosan chloride (TMC) was employed as a carrier to condense DNA forming nano-complexes. In vitro, BMSCs were transfected by the TMC/DNA complexes with an efficiency of 9% and showed heterogeneous TGF-β1 expression in a 10 day culture period after transefected by TMC/pDNA encoding TGF-β1 (pDNA-TGF-β1). The PLGA/fibrin gel/BMSCs/(TMC/pDNA-TGF-β1) constructs were implanted into the full-thickness cartilage defects (4mm in diameter and 4mm in thickness), while the scaffolds absent from pDNA-TGF-β1 or BMSCs served as the control. In vivo heterogeneous TGF-(31 was expressed in the experimental group at least lasting for 4wk detected by western-blotting and qRT-PCR. At 12wk post-implantation, the generated neo-cartilage integrated well with its surrounding normal cartilage and subchondral bone in experimental group, whereas only a little bit of cartilage-like tissue and fibrous tissue was observed in the group absent from pDNA-TGF-β1 and BMSCs, respectively. Immunohistochemical and GAGs staining confirmed the similar distribution of collagen type II and GAGs in the regenerated cartilage as that of hyaline cartilage. The qRT-PCR data also showed that cartilage special genes expressed in the neo-tissue were comparable to those of the normal cartilage and were much higher than those of the control groups. The successful repair thus evinces the potentiality of using this composite construct for cartilage regeneration.
引文
[1]J. M. Hootman and C. G. Helmick, Projections of US prevalence of arthritis and associated activity limitations, Arthritis Rheum 54(2006) 226-9.
    [2]C. H. Evans, E. Gouze, J. N. Gouze, P. D. Robbins and S. C. Ghivizzani, Gene therapeutic approaches-transfer in vivo, Adv Drug Deliv Rev 58(2006) 243-58.
    [3]唐副林,应重视骨与关节病的研究,中华全科医师杂志2(2003)337-8.
    [4]管剑龙,韩星海,中国骨关节炎十年.上海:第二军医大学出版社,2006.
    [5]时述山,胥少汀,马世云,实用骨与软骨移植.北京:人民军医出版社,2002.
    [6]曹谊林,组织工程学.北京:科学出版社,2008.
    [7]M. Cucchiarini, T. Thurn, A. Weimer, D. Kohn, E. F. Terwilliger and H. Madry, Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9, Arthritis Rheum 56(2007) 158-67.
    [8]J. S. Temenoff and A. G. Mikos, Review:tissue engineering for regeneration of articular cartilage, Biomaterials 21(2000) 431-40.
    [9]G. D. Gramstad and L. M. Galatz, Management of elbow osteoarthritis, J Bone Joint Surg Am 88(2006) 421-30.
    [10]D. T. Felson, Clinical practice. Osteoarthritis of the knee, N Engl J Med 354(2006)841-8.
    [11]J. M. Bert, Role of abrasion arthroplasty and debridement in the management of osteoarthritis of the knee, Rheum Dis Clin North Am 19(1993) 725-39.
    [12]J. M. Bert and K. Maschka, The arthroscopic treatment of unicompartmental gonarthrosis:a five-year follow-up study of abrasion arthroplasty plus arthroscopic debridement and arthroscopic debridement alone, Arthroscopy 5(1989) 25-32.
    [13]S. Singh, C. C. Lee and B. K. Tay, Results of arthroscopic abrasion arthroplasty in osteoarthritis of the knee joint, Singapore Med J 32(1991) 34-7.
    [14]L. L. Johnson, Arthroscopic abrasion arthroplasty:a review, Clin Orthop Relat Res (2001) S306-17.
    [15]J. R. Steadman, W. G. Rodkey and J. J. Rodrigo, Microfracture:surgical technique and rehabilitation to treat chondral defects, Clin Orthop Relat Res (2001) S362-9.
    [16]J. R. Steadman, W. G. Rodkey and K. K. Briggs, Microfracture to treat full-thickness chondral defects:surgical technique, rehabilitation, and outcomes, J Knee Surg 15(2002) 170-6.
    [17]H. K. Kim, M. E. Moran and R. B. Salter, The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits, J Bone Joint Surg Am 73(1991) 1301-15.
    [18]P. C. Kreuz, M. R. Steinwachs, C. Erggelet, S. J. Krause, G. Konrad, M. Uhl, et al., Results after microfracture of full-thickness chondral defects in different compartments in the knee, Osteoarthritis Cartilage 14(2006) 1119-25.
    [19]M. W. Kessler, G. Ackerman, J. S. Dines and D. Grande, Emerging technologies and fourth generation issues in cartilage repair, Sports Med Arthrosc 16(2008) 246-54.
    [20]T. Rose, S. Craatz, P. Hepp, C. Raczynski, J. Weiss, C. Josten, et al., The autologous osteochondral transplantation of the knee:clinical results, radiographic findings and histological aspects, Archives of Orthopaedic and Trauma Surgery 125(2005)628-637.
    [21]D. Karataglis and D. J. Learmonth, Management of big osteochondral defects of the knee using osteochondral allografts with the MEGA-OATS technique, Knee 12(2005) 389-93.
    [22]M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson and L. Peterson, Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N Engl J Med 331(1994) 889-95.
    [23]S. Marlovits, P. Zeller, P. Singer, C. Resinger and V. Vecsei, Cartilage repair: Generations of autologous chondrocyte transplantation, European Journal of Radiology 57(2006) 24-31.
    [24]G. Bentley, L. C. Biant, R. W. J. Carrington, M. Akmal, A. Goldberg, A. M. Williams, et al., A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee, Journal of Bone and Joint Surgery-British Volume 85B(2003) 223-230.
    [25]R. F. LaPrade, Autologous chondrocyte implantation was superior to mosaicplasty forrepair of articular cartilage defects in the knee at one year-Bentley G, Biant LC, Carrington RWJ, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br.2003 Mar;85:223-30., Journal of Bone and Joint Surgery-American Volume 85A(2003) 2259-2259.
    [26]G. Kish and L. Hangody, A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee, Journal of Bone and Joint Surgery-British Volume 86B(2004) 619-619.
    [27]G. Knutsen, L. Engebretsen, T. C. Ludvigsen, J.O. Drogset, T. Grontvedt, E. Solheim, et al., Autologous chondrocyte implantation compared with microfracture in the knee-A randomized trial, Journal of Bone and Joint Surgery-American Volume 86A(2004) 455-464.
    [28]E. Kon, A. Gobbi, G. Filardo, M. Delcogliano, S. Zaffagnini and M. Marcacci, Arthroscopic Second-Generation Autologous Chondrocyte Implantation Compared With Microfracture for Chondral Lesions of the Knee Prospective Nonrandomized Study at 5 Years, American Journal of Sports Medicine 37(2009) 33-41.
    [29]L. Peterson, T. Minas, M. Brittberg, A. Nilsson, E. Sjogren-Jansson and A. Lindahl, Two-to 9-year outcome after autologous chondrocyte transplantation of the knee, Clin Orthop Relat Res (2000) 212-34.
    [30]M. Brittberg, Autologous chondrocyte transplantation, Clinical Orthopaedics and Related Research (1999) S147-S155.
    [31]U. Horas, D. Pelinkovic, G. Herr, T. Aigner and R. Schnettler, Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint-A prospective, comparative trial, Journal of Bone and Joint Surgery-American Volume 85A(2003) 185-192.
    [32]S. Nehrer, S. Domayer, R. Dorotka, K. Schatz, U. Bindreiter and R. Kotz, Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair, European Journal of Radiology 57(2006) 3-8.
    [33]C. Csaki, P. R. Schneider and M. Shakibaei, Mesenchymal stem cells as a potential pool for cartilage tissue engineering, Ann Anat 190(2008) 395-412.
    [34]R. Langer and J. P. Vacanti, Tissue Engineering, Science 260(1993) 920-926.
    [35]M. J. Lysaght, A. Jaklenec and E. Deweerd, Great expectations:private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics, Tissue Eng Part A 14(2008) 305-15.
    [36]高长有,马列,医用高分子材料.北京:化学工业出版社,2006.
    [37]C. Chung and J. A. Burdick, Engineering cartilage tissue, Adv Drug Deliv Rev 60(2008)243-62.
    [38]G. J. V. M. van Osch, E. W. Mandl, H. Jahr, W. Koevoet, G. Nolst-Trenite and J. A. Verhaar, Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering, Biorheology 41(2004) 411-421.
    [39]A. Panossian, S. Ashiku, C. H. Kirchhoff, M. A. Randolph and M. J. Yaremchuk, Effects of cell concentration and growth period on articular and ear chondrocyte transplants for tissue engineering, Plastic and Reconstructive Surgery 108(2001) 392-402.
    [40]T. S. Johnson, J. W. Xu, V. V. Zaporojan, J. M. Mesa, C. Weinand, M. A. Randolph, et al., Integrative repair of cartilage with articular and nonarticular chondrocytes, Tissue Engineering 10(2004) 1308-1315.
    [41]N. Isogai, H. Kusuhara, Y. Ikada, H. Ohtani, R. Jacquet, J. Hillyer, et al., Comparison of different chondrocytes for use in tissue engineering of cartilage model structures, Tissue Engineering 12(2006) 691-703.
    [42]C. H. Chang, T. F. Kuo, C. C. Lin, C. H. Chou, K. H. Chen, F. H. Lin, et al., Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold:A porcine model assessed at 18,24, and 36 weeks, Biomaterials 27(2006) 1876-88.
    [43]J. L. C. van Susante, P. Buma, L. Schuman, G. N. Homminga, W. B. van den Berg and R. P. H. Veth, Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat, Biomaterials 20(1999) 1167-1175.
    [44]A. M. Mackay, S. C. Beck, J. M. Murphy, F. P. Barry, C.O. Chichester and M. F. Pittenger, Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow, Tissue Engineering 4(1998) 415-428.
    [45]S. Wakitani, T. Mitsuoka, N. Nakamura, Y. Toritsuka, Y. Nakamura and S. Horibe, Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae:two case reports, Cell Transplant 13(2004) 595-600.
    [46]R. Kuroda, K. Ishida, T. Matsumoto, T. Akisue, H. Fujioka, K. Mizuno, et al., Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells, Osteoarthritis Cartilage 15(2007) 226-31.
    [47]J. M. Gimble, D. M. Franklin, A. Bond, D. C. Hitt, G. R. Erickson, F. Guilak, et al., Adipose tissue:Derived stromal cells are multipotent., Journal of Bone and Mineral Research 15(2000) S508-S508.
    [48]M. Q. Wickham, G. R. Erickson, J. M. Gimble, T. P. Vail and F. Guilak, Multipotent stromal cells derived from the infrapatellar fat pad of the knee, Clinical Orthopaedics and Related Research (2003) 196-212.
    [49]J. L. Dragoo, G. Carlson, F. McCormick, H. Khan-Farooqi, M. Zhu, P. A. Zuk, et al., Healing full-thickness cartilage defects using adipose-derived stem cells, Tissue Engineering 13(2007) 1615-1621.
    [50]T. Hennig, H. Lorenz, A. Thiel, K. Goetzke, A. Dickhut, F. Geiger, et al., Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGF beta receptor and BMP profile and is overcome by BMP-6, Journal of Cellular Physiology 211(2007) 682-691.
    [51]H. J. Kim and G. I. Im, Combination of Transforming Growth Factor-Beta(2) and Bone Morphogenetic Protein 7 Enhances Chondrogenesis from Adipose Tissue-Derived Mesenchymal Stem Cells, Tissue Engineering Part A 15(2009) 1543-1551.
    [52]N. S. Hwang, M. S. Kim, S. Sampattavanich, J. H. Baek, Z. J. Zhang and J. Elisseeff, Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells, Stem Cells 24(2006) 284-291.
    [53]N. S. Hwang, S. Varghese, Z. Zhang and J. Elisseeff, Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate modified hydrogels, Tissue Engineering 12(2006) 2695-2706.
    [54]J. Kramer, C. Hegert, K. M. Guan, A. M. Wobus, P. K. Muller and J. Rohwedel, Embryonic stem cell-derived chondrogenic differentiation in vitro:activation by BMP-2 and BMP-4, Mechanisms of Development 92(2000) 193-205.
    [55]W. S. Toh, Z. Yang, H. Liu, B. C. Heng, E. H. Lee and T. Cao, Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells, Stem Cells 25(2007) 950-960.
    [56]A. Vats, R. C. Bielby, N. Tolley, S. C. Dickinson, A. R. Boccaccini, A. P. Hollander, et al., Chondrogenic differentiation of human embryonic stem cells:The effect of the micro-environment, Tissue Engineering 12(2006) 1687-1697.
    [57]M. Nawata, S. Wakitani, H. Nakaya, A. Tanigami, T. Seki, Y. Nakamura, et al., Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage, Arthritis and Rheumatism 52(2005)155-163.
    [58]N. Adachi, K. Sato, A. Usas, F. H. Fu, M. Ochi, C. W. Han, et al., Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects, Journal of Rheumatology 29(2002) 1920-1930.
    [59]T. Fukumoto, J. W. Sperling, A. Sanyal, J. S. Fitzsimmons, G. G. Reinholz, C. A. Conover, et al., Combined effects of insulin-like growth factor-1 and transforming growth factor-beta 1 on periosteal mesenchymal cells during chondrogenesis in vitro, Osteoarthritis and Cartilage 11(2003) 55-64.
    [60]M. Pei, F. He, B. M. Boyce and V. L. Kish, Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs, Osteoarthritis Cartilage 17(2009) 714-22.
    [61]J. H. P. Hui, L. Li, Y. H. Teo, H. W. Ouyang and E. H. Lee, Comparative study of the ability of mesenchymal stem cells derived from bone marrow, periosteum, and adipose tissue in treatment of partial growth arrest in rabbit, Tissue Engineering 11(2005)904-912.
    [62]F. H. Chen and R. S. Tuan, Mesenchymal stem cells in arthritic diseases, Arthritis Research & Therapy 10(2008)-
    [63]T. Togo, A. Utani, M. Naitoh, M. Ohta, Y. Tsuji, N. Morikawa, et al., Identification of cartilage progenitor cells in the adult ear perichondrium:utilization for cartilage reconstruction, Laboratory Investigation 86(2006) 445-457.
    [64]K. E. Wescoe, R. C. Schugar, C. R. Chu and B. M. Deasy, The Role of the Biochemical and Biophysical Environment in Chondrogenic Stem Cell Differentiation Assays and Cartilage Tissue Engineering, Cell Biochemistry and Biophysics 52(2008) 85-102.
    [65]L. A. Solchaga, J. S. Temenoff, J. Z. Gao, A. G. Mikos, A. I. Caplan and V. M. Goldberg, Repair of osteochondral defects with hyaluronan-and polyester-based scaffolds, Osteoarthritis and Cartilage 13(2005) 297-309.
    [66]X. X. Shao, D. W. Hutmacher, S. T. Ho, J. C. H. Goh and E. H. Lee, Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits, Biomaterials 27(2006) 1071-1080.
    [67]K. Seunarine, N. Gadegaard, M. Tormen, D. O. Meredith, M. O. Riehle and C. D. Wilkinson,3D polymer scaffolds for tissue engineering, Nanomedicine (Lond) 1(2006)281-96.
    [68]龚逸鸿,浙江大学2006年博士学位论文,
    [69]J. L. Ifkovits, H. G. Sundararaghavan and J. A. Burdick, Electrospinning fibrous polymer scaffolds for tissue engineering and cell culture, J Vis Exp (2009)
    [70]H. Cao, T. Liu and S. Y. Chew, The application of nanofibrous scaffolds in neural tissue engineering, Adv Drug Deliv Rev 61(2009) 1055-64.
    [71]J. H. Jang, O. Castano and H. W. Kim, Electrospun materials as potential platforms for bone tissue engineering, Adv Drug Deliv Rev 61(2009) 1065-83.
    [72]劳丽红,浙江大学2010年硕士学位论文,
    [73]A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow, et al., Preparation and Characterization of Poly(L-Lactic Acid) Foams, Polymer 35(1994) 1068-1077.
    [74]Y. M. Shin, K. S. Kim, Y. M. Lim, Y. C. Nho and H. Shin, Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(L-lactide-co-epsilon-caprolactone) substrates, Biomacromolecules 9(2008) 1772-1781.
    [75]S. H. Jung, J. W. Jang, S. H. Kim, H. H. Hong, A. Y. Oh, J. M. Rhee, et al., Articular Cartilage Regeneration Using Hyaluronic Acid Loaded PLGA Scaffold by Emulsion Freeze-Drying Method, Tissue Engineering and Regenerative Medicine 5(2008) 643-649.
    [76]Y. L. Chen, H. P. Lee, H. Y. Chan, L. Y. Sung, H. C. Chen and Y. C. Hu, Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering, Biomaterials 28(2007) 2294-2305.
    [77]T. Gotterbarm, W. Richter, M. Jung, S. B. Vilei, P. Mainil-Varlet, T. Yamashita, et al., An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects, Biomaterials 27(2006) 3387-3395.
    [78]C. C. Jiang, H. Chiang, C. J. Liao, Y. J. Lin, T. F. Kuo, C. S. Shieh, et al., Repair of porcine articular cartilage defect with a biphasic osteochondral composite, J Orthop Res 25(2007) 1277-90.
    [79]A. Tampieri, M. Sandri, E. Landi, D. Pressato, S. Francioli, R. Quarto, et al., Design of graded biomimetic osteochondral composite scaffolds, Biomaterials 29(2008) 3539-3546.
    [80]Y. Wang, Y. Z. Bian, Q. Wu and G. Q. Chen, Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits, Biomaterials 29(2008) 2858-2868.
    [81]Y. Kang, J. Yang, S. Khan, L. Anissian and G. A. Ameer, A new biodegradable polyester elastomer for cartilage tissue engineering, Journal of Biomedical Materials Research Part A 77A(2006) 331-339.
    [82]Q. Yang, J. Peng, Q. Y. Guo, J. X. Huang, L. Zhang, J. Yao, et al., A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells, Biomaterials 29(2008) 2378-2387.
    [83]X. H. Hu, Y. Zhu and C. Y. Gao, Hydrogels for Cartilage Regeneration, Progress in Chemistry 21(2009) 2164-2175.
    [84]H. X. Liu, Y. W. Lee and M. F. Dean, Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads, Biochimica Et Biophysica Acta-General Subjects 1425(1998) 505-515.
    [85]K. B. Lee, J. H. Hui, I. C. Song, L. Ardany and E. H. Lee, Injectable mesenchymal stem cell therapy for large cartilage defects--a porcine model, Stem Cells 25(2007) 2964-71.
    [86]H. Chajra, C. F. Rousseau, D. Cortial, M. C. Ronziere, D. Herbage, F. Mallein-Gerin, et al., Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects, Bio-Medical Materials and Engineering 18(2008) S33-S45.
    [87]L. Galois, A. M. Freyria, L. Grossin, P. Hubert, D. Mainard, D. Herbage, et al., Cartilage repair:Surgical techniques and tissue engineering using polysaccharide-and collagen-based biomaterials, Biorheology 41(2004) 433-443.
    [88]S. Roche, M. C. Ronziere, D. Herbage and A. M. Freyria, Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering, Biomaterials 22(2001) 9-18.
    [89]C. Willers, J.Chen, D. Wood and M. H. Zheng, Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits, Tissue Engineering 11(2005) 1065-1076.
    [90]C. R. Lee, A. J. Grodzinsky and A. Spector, Biosynthetic response of passaged chondrocytes in a type Ⅱ collagen scaffold to mechanical compression, Journal of Biomedical Materials Research Part A 64A(2003) 560-569.
    [91]A. Funayama, Y. Niki, H. Matsumoto, S. Maeno, T. Yatabe, H. Morioka, et al., Repair of full-thickness articular cartilage defects using injectable type Ⅱ collagen gel embedded with cultured chondrocytes in a rabbit model, Journal of Orthopaedic Science 13(2008) 225-232.
    [92]P. Buma, J. S. Pieper, T. van Tienen, J. L. C. van Susante, P. M. van der Kraan, J. H. Veerkamp, et al., Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects-A study in rabbits, Biomaterials 24(2003) 3255-3263.
    [93]M. Brittberg, L. Peterson, E. Sjogren-Jansson, T. Tallheden and A. Lindahl, Articular cartilage engineering with autologous chondrocyte transplantation-A review of recent developments, Journal of Bone and Joint Surgery-American Volume 85A(2003) 109-115.
    [94]C. M. Hettrich, D. Crawford and S. A. Rodeo, Cartilage Repair Third-Generation Cell-based Technologies-Basic Science, Surgical Techniques, Clinical Outcomes, Sports Medicine and Arthroscopy Review 16(2008) 230-235.
    [95]J. I. Dawson, D. A. Wahl, S. A. Lanham, J. M. Kanczler, J. T. Czernuszka and R. O. C. Oreffo, Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells, Biomaterials 29(2008)3105-3116.
    [96]A. Montembault, K. Tahiri, C. Korwin-Zmijowska, X. Chevalier, M. T. Corvol and A. Domard, A material decoy of biological media based on chitosan physical hydrogels:application to cartilage tissue engineering, Biochimie 88(2006) 551-564.
    [97]J. K. F. Suh and H. W. T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering:a review, Biomaterials 21(2000)2589-2598.
    [98]胡小红,浙江大学2009年博士学位论文,
    [99]A. Motta, Y. Wang, E. Bella, C. S. D. Lee, C. Migliaresi, Z. Schwartz, et al., Silk fibroin-based 3-D porous scaffolds for cartilage tissue engineering, Tissue Engineering Part A 14(2008) 776-776.
    [100]S. Hofmann, S. Knecht, R. Langer, D. L. Kaplan, G. Vunjak-Novakovic, H. P. Merkle, et al., Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells, Tissue Engineering 12(2006) 2729-2738.
    [101]M. Haider, J. Cappello, H. Ghandehari and K. W. Leong, In vitro chondrogenesis of mesenchymal stem cells in recombinant silk-elastinlike hydrogels, Pharmaceutical Research 25(2008) 692-699.
    [102]D. Eyrich, F. Brandl, B. Appel, H. Wiese, G. Maier, M. Wenzel, et al., Long-term stable fibrin gels for cartilage engineering, Biomaterials 28(2007) 55-65.
    [103]S. Munirah, O. C. Samsudin, H. C. Chen, S. H. Salmah, B. S. Aminuddin and B. H. Ruszymah, Articular cartilage restoration in load-bearing osteochondral defects by implantation of autologous chondrocyte-fibrin constructs:an experimental study in sheep, J Bone Joint Surg Br 89(2007) 1099-109.
    [104]R. M. Capito, H. S. Azevedo, Y. S. Velichko, A. Mata and S. I. Stupp, Self-assembly of large and small molecules into hierarchically ordered sacs and membranes, Science 319(2008) 1812-6.
    [105]D. A. Harrington, E. Y. Cheng, M. O. Guler, L. K. Lee, J. L. Donovan, R. C. Claussen, et al., Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds, Journal of Biomedical Materials Research Part A 78A(2006) 157-167.
    [106]T. A. Holland, Y. Tabata and A. G. Mikos, In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels, Journal of Controlled Release 91(2003) 299-313.
    [107]X. H. Hu, J. Zhou, N. Zhang, H. P. Tan and C. Y. Gao, Preparation and properties of an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan hydrogel, Journal of the Mechanical Behavior of Biomedical Materials 1(2008) 352-359.
    [108]C. G. Williams, T. K. Kim, A. Taboas, A. Malik, P. Manson and J. Elisseeff, In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel, Tissue Engineering 9(2003) 679-688.
    [109]S. H. M. Sontjens, D. L. Nettles, M. A. Carnahan, L. A. Setton and M. W. Grinstaff, Biodendrimer-based hydrogel scaffolds for cartilage tissue repair, Biomacromolecules 7(2006) 310-316.
    [110]H. J. Lee, C. Yu, T. Chansakul, N. S. Hwang, S. Varghese, S. M. Yu, et al., Enhanced Chondrogenesis of Mesenchymal Stem Cells in Collagen Mimetic Peptide-Mediated Microenvironment, Tissue Engineering Part A 14(2008) 1843-1851.
    [111]M. W. Kessler, G. Ackerman, J. S. Dines and D. Grande, Emerging Technologies and Fourth Generation Issues in Cartilage Repair, Sports Medicine and Arthroscopy Review 16(2008) 246-254.
    [112]C. R. Lee, S. Grad, K. Gorna, S. Gogolewski, A. Goessl and M. Alini, Fibrin-polyurethane composites for articular cartilage tissue engineering:a preliminary analysis, Tissue Eng 11(2005) 1562-73.
    [113]H. Zhao, L. Ma, Y. Gong, C. Gao and J. Shen, A polylactide/fibrin gel composite scaffold for cartilage tissue engineering:fabrication and an in vitro evaluation, J Mater Sci Mater Med 20(2009) 135-43.
    [114]S. B. Cohen, C. M. Meirisch, H. A. Wilson and D. R. Diduch, The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits, Biomaterials 24(2003) 2653-2660.
    [115]M. Sha'ban, S. H. Kim, R. B. Idrus and G. Khang, Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes:an in vitro study, J Orthop Surg 3(2008) 17.
    [116]C. H. Chou, W. T. K. Cheng, T. F. Kuo, J. S. Sun, F. H. Lin and J. C. Tsai, Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering:The results of real-time polymerase chain reaction, Journal of Biomedical Materials Research Part A 82A(2007) 757-767.
    [117]D. Eyrich, H. Wiese, G. Maier, D. Skodacek, B. Appel, H. Sarhan, et al., In vitro and in vivo cartilage engineering using a combination of chondrocyte-seeded long-term stable fibrin gels and polycaprolactone-based polyurethane scaffolds, Tissue Eng 13(2007) 2207-18.
    [118]S. Munirah, S. H. Kim, B. H. Ruszymah and G. Khang, The use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis, Eur Cell Mater 15(2008) 41-52.
    [119]T. Watabe and K. Miyazono, Roles of TGF-beta family signaling in stem cell renewal and differentiation, Cell Research 19(2009) 103-115.
    [120]M. B. Sporn, The early history of TGF-beta, and a brief glimpse of its future, Cytokine & Growth Factor Reviews 17(2006) 3-7.
    [121]陈惠黎,生物大分子的结构和功能.上海:上海医科大学出版社,1999.
    [122]E. Grimaud, D. Heymann and F. Redini, Recent advances in TGF-beta effects on chondrocyte metabolism-Potential therapeutic roles of TGF-beta in cartilage disorders, Cytokine & Growth Factor Reviews 13(2002) 241-257.
    [123]傅小兵,生长因子与创伤修复.北京:人民军医出版社,1991.
    [124]詹正嵩,细胞因子临床安全合理应用.背景:化学工业出版社,2005.
    [125]K. Athanasiou, D. Korvick and R. Schenck, Biodegradable implants for the treatment of osteochondral defects in a goat model, Tissue Engineering 3(1997) 363-373.
    [126]A. Saraf and A. G. Mikos, Gene delivery strategies for cartilage tissue engineering, Adv Drug Deliv Rev 58(2006) 592-603.
    [127]J. W. Lee, W. N. Qi and S. P. Scully, The involvement of beta 1 integrin in the modulation by collagen of chondrocyte-response to transforming growth factor-beta 1, Journal of Orthopaedic Research 20(2002) 66-75.
    [128]B. D. Brower-Toland, R. A. Saxer, L. R. Goodrich, Z. Mi, P. D. Robbins, C. H. Evans, et al., Direct adenovirus-mediated insulin-like growth factor I gene transfer enhances transplant chondrocyte function, Hum Gene Ther 12(2001) 117-29.
    [129]K. Gelse and H. Schneider, Ex vivo gene therapy approaches to cartilage repair, Adv Drug Deliv Rev 58(2006) 259-84.
    [130]N. D. Miljkovic, G. M. Cooper and K. G. Marra, Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells, Osteoarthritis and Cartilage 16(2008)1121-1130.
    [131]P. C. Bessa, M. Casal and R. L. Reis, Bone morphogenetic proteins in tissue engineering:the road from laboratory to clinic, part Ⅱ (BMP delivery), Journal of Tissue Engineering and Regenerative Medicine 2(2008) 81-96.
    [132]P. C. Bessa, M. Casal and R. L. Reis, Bone morphogenetic proteins in tissue engineering:the road from the laboratory to the clinic, part I (basic concepts), Journal of Tissue Engineering and Regenerative Medicine 2(2008) 1-13.
    [133]S. Trippel, M. Cucchiarini, H. Madry, S. Shi and C. Wang, Gene therapy for articular cartilage repair, Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine 221(2007) 451-459.
    [134]E. Fujimoto, M. Ochi, Y. Kato, Y. Mochizuki, Y. Sumen and Y. Ikuta, Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage, Archives of Orthopaedic and Trauma Surgery 119(1999)139-145.
    [135]A. Fukuda, K. Kato, M. Hasegawa, H. Hirata, A. Sudo, K. Okazaki, et al., Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor, Biomaterials 26(2005) 4301-4308.
    [136]S. M. Richardson, J. A. Hoyland, R. Mobasheri, C. Csaki, M. Shakibaei and A. Mobasheri, Mesenchymal Stem Cells in Regenerative Medicine:Opportunities and Challenges for Articular Cartilage and Intervertebral Disc Tissue Engineering, Journal of Cellular Physiology 222(2010) 23-32.
    [137]J. Gao, J. Q. Yao and A. I. Caplan, Stem cells for tissue engineering of articular cartilage, Proc Inst Mech Eng H 221(2007) 441-50.
    [138]H. Tanaka, H. Mizokami, E. Shiigi, H. Murata, H. Ogasa, T. Mine, et al., Effects of basic fibroblast growth factor on the repair of large osteochondral defects of articular cartilage in rabbits:Dose-response effects and long-term outcomes, Tissue Engineering 10(2004) 633-641.
    [139]H. Park, J. S. Temenoff, Y. Tabata, A. I. Caplan, R. M. Raphael, J. A. Jansen, et al.; Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem-cells encapsulated in injectable hydrogel composites, Journal of Biomedical Materials Research Part A 88A(2009) 889-897.
    [140]B. D. Elder and K. A. Athanasiou, Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs, Osteoarthritis and Cartilage 17(2009) 114-123.
    [141]S. Kubo, G. M. Cooper, T. Matsumoto, J. A. Phillippi, K. A. Corsi, A. Usas, et al., Blocking Vascular Endothelial Growth Factor With Soluble Flt-1 Improves the Chondrogenic Potential of Mouse Skeletal Muscle-Derived Stem Cells, Arthritis and Rheumatism 60(2009) 155-165.
    [142]T. Friedmann, Progress toward Human-Gene Therapy, Science 244(1989) 1275-1281.
    [143]F. Watson, Human Gene-Therapy-Progress on All Fronts, Trends in Biotechnology 11(1993) 114-117.
    [144]C. H. Evans, S. C. Ghivizzani and P. D. Robbins, Gene therapy of the rheumatic diseases:1998 to 2008, Arthritis Research & Therapy 11(2009)-
    [145]J. M. Wilson, Gendicine:The first commercial gene therapy product, Human Gene Therapy 16(2005) 1014-1014.
    [146]K. Kawamura, C. R. Chu, S. Sobajima, P. D. Robbins, F. H. Fu, N. J. Izzo, et al., Adenoviral-mediated transfer of TGF-betal but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures, Exp Hematol 33(2005) 865-72.
    [147]C. H. Evans, S. C. Ghivizzani and P. D. Robbins, Gene therapy for arthritis: what next?, Arthritis Rheum 54(2006) 1714-29.
    [148]S. N. Redman, S. F. Oldfield and C. W. Archer, Current strategies for articular cartilage repair, Eur Cell Mater 9(2005) 23-32; discussion 23-32.
    [149]K. Gelse, K. von der Mark, T. Aigner, J. Park and H. Schneider, Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells, Arthritis Rheum 48(2003) 430-41.
    [150]H. Madry, R. Padera, J. Seidel, R. Langer, L. E. Freed, S. B. Trippel, et al., Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage, Human Gene Therapy 13(2002) 1621-1630.
    [151]I. Izal, C. A. Acosta, P. Ripalda, M. Zaratiegui, J. Ruiz and F. Forriol, IGF-1 gene therapy to protect articular cartilage in a rat model of joint damage, Archives of Orthopaedic and Trauma Surgery 128(2008) 239-247.
    [152]A. Pascher, G. D. Palmer, A. Steinert, T. Oligino, E. Gouze, J. N. Gouze, et al., Gene delivery to cartilage defects using coagulated bone marrow aspirate, Gene Ther 11(2004)133-41.
    [153]J. M. Mason, D. A. Grande, M. Barcia, R. Grant, R. G. Pergolizzi and A. S. Breitbart, Expression of human bone morphogenic protein 7 in primary rabbit periosteal cells:potential utility in gene therapy for osteochondral repair, Gene Therapy 5(1998) 1098-1104.
    [154]M. R. Pagnotto, Z. Wang, J. C. Karpie, M. Ferretti, X. Xiao and C. R. Chu, Adeno-associated viral gene transfer of transforming growth factor-beta 1 to human mesenchymal stem cells improves cartilage repair, Gene Therapy 14(2007) 804-813.
    [155]A. F. Steinert, U. Noth and R. S. Tuan, Concepts in gene therapy for cartilage repair, Injury-International Journal of the Care of the Injured 39(2008) S97-S113.
    [156]T. Guo, J. Zhao, J. Chang, Z. Ding, H. Hong, J. Chen, et al., Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-betal for chondrocytes proliferation, Biomaterials 27(2006) 1095-103.
    [157]毛峥伟,浙江大学2007年博士学位论文,
    [158]孙树汉,基因工程原理和方法.北京:人民军医出版社,2001.
    [159]陈金中,载体学与基因操作.北京:科学出版社,2007.
    [160]H. Q. Mao, K. Roy, V. L. Troung-Le, K. A. Janes, K. Y. Lin, Y. Wang, et al., Chitosan-DNA nanoparticles as gene carriers:synthesis, characterization and transfection efficiency, J Control Release 70(2001) 399-421.
    [161]K. Corsi, F. Chellat, L. Yahia and J. C. Fernandes, Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles, Biomaterials 24(2003) 1255-64.
    [162]X. Zhang, C. Yu, Xushi, C. Zhang, T. Tang and K. Dai, Direct chitosan-mediated gene delivery to the rabbit knee joints in vitro and in vivo, Biochem Biophys Res Commun 341(2006) 202-8.
    [163]M. Thanou, B. I. Florea, M. Geldof, H. E. Junginger and G. Borchard, Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines, Biomaterials 23(2002) 153-9.
    [164]J. C. Babister, R. S. Tare, D. W. Green, S. Inglis, S. Mann and R. O. C. Oreffo, Genetic manipulation of human mesenchymal progenitors to promote chondrogenesis using "bead-in-bead" polysaccharide capsules, Biomaterials 29(2008) 58-65.
    [165]C. H. Evans, P. D. Robbins, S. C. Ghivizzani, M. C. Wasko, M. M. Tomaino, R. Kang, et al., Gene transfer to human joints:progress toward a gene therapy of arthritis, Proc Natl Acad Sci U S A 102(2005) 8698-703.
    [166]P. Wehling, J. Reinecke, A. W. A. Baltzer, M. Granrath, K. P. Schulitz, C. Schultz, et al., Clinical Responses to Gene Therapy in Joints of Two Subjects with Rheumatoid Arthritis, Human Gene Therapy 20(2009) 97-101.
    [167]C. A. Gersbach, J. E. Phillips and A. J. Garcia, Genetic engineering for skeletal regenerative medicine, Annu Rev Biomed Eng 9(2007) 87-119.
    [168]M. Cucchiarini, E. F. Terwilliger, D. Kohn and H. Madry, Remodelling of human osteoarthritic cartilage by FGF-2, alone or combined with Sox9 via rAAV gene transfer, Journal of Cellular and Molecular Medicine 13(2009) 2476-2488.
    [169]Z. Mi, S. C. Ghivizzani, E. Lechman, J. C. Glorioso, C. H. Evans and P. D. Robbins, Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees, Arthritis Research & Therapy 5(2003) R132-R139.
    [170]K. Gelse, Q. J. Jiang, T. Aigner, T. Ritter, K. Wagner, E. Poschl, et al., Fibroblast-mediated delivery of growth factor complementary DNA into mouse joints induces chondrogenesis but avoids the disadvantages of direct viral gene transfer, Arthritis Rheum 44(2001) 1943-53.
    [171]U. Hansen, M. Schunke, C. Domm, N. Ioannidis, J. Hassenpflug, T. Gehrke, et al., Combination of reduced oxygen tension and intermittent hydrostatic pressure:a useful tool in articular cartilage tissue engineering, Journal of Biomechanics 34(2001) 941-949.
    [172]J. C. Hu and K. A. Athanasiou, The effects of intermittent hydrostatic pressure on self-assembled articular cartilage constructs, Tissue Engineering 12(2006) 1337-1344.
    [173]K. Miyanishi, M. C. D. Trindade, D. P. Lindsey, G. S. Beaupre, D. R. Carter, S. B. Goodman, et al., Dose-and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-beta 3-induced chondrogenesis by adult human mesenchymal stem cells in vitro, Tissue Engineering 12(2006) 2253-2262.
    [174]S. Concaro, F. Gustavson and P. Gatenholm, Bioreactors for Tissue Engineering of Cartilage, Bioreactor Systems for Tissue Engineering 112(2009) 125-143.
    [175]L. E. Freed, J. C. Marquis, G. Vunjaknovakovic, J. Emmanual and R. Langer, Composition of Cell-Polymer Cartilage Implants, Biotechnology and Bioengineering 43(1994)605-614.
    [176]X. Xu, J. P. G. Urban, U. Tirlapur, M. H. Wu, Z. Cui and Z. F. Cui, Influence of perfusion on metabolism and matrix production by bovine articular chondrocytes in hydrogel scaffolds, Biotechnology and Bioengineering 93(2006) 1103-1111.
    [177]Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, et al., Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering, J Biomed Mater Res B Appl Biomater 82(2007) 192-204.
    [178]O. Pulliainen, A. I. Vasara, M. M. Hyttinen, V. Tiitu, P. Valonen, M. Kellomaki, et al., Poly-L-D-lactic acid scaffold in the repair of porcine knee cartilage lesions, Tissue Eng 13(2007) 1347-55.
    [179]X. Liu, Y. Won and P. X. Ma, Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering, Biomaterials 27(2006) 3980-7.
    [180]Q. L. Zhou, Y. H. Gong and C. Y. Gao, Microstructure and mechanical properties of poly(L-lactide) scaffolds fabricated by gelatin particle leaching method, Journal of Applied Polymer Science 98(2005) 1373-1379.
    [181]V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26(2005) 5474-91.
    [182]A. Dresdale, E. A. Rose, V. Jeevanandam, K. Reemtsma, F. O. Bowman and J. R. Malm, Preparation of fibrin glue from single-donor fresh-frozen plasma, Surgery 97(1985) 750-5.
    [183]H. Zhao, L. Ma, J. Zhou, Z. Mao, C. Gao and J. Shen, Fabrication and physical and biological properties of fibrin gel derived from human plasma, Biomed Mater 3(2008) 15001.
    [184]W. Bensaid, J. T. Triffitt, C. Blanchat, K. Oudina, L. Sedel and H. Petite, A biodegradable fibrin scaffold for mesenchymal stem cell transplantation, Biomaterials 24(2003) 2497-502.
    [185]E. W. Gold, A simple spectrophotometric method for estimating glycosaminoglycan concentrations, Anal Biochem 99(1979) 183-8.
    [186]B. D. Lake, The histochemical evaluation of the glycogen storage diseases. A review of techniques and their limitations, Histochem J 2(1970) 441-50.
    [187]I. Kiviranta, M. Tammi, J. Jurvelin, A. M. Saamanen and H. J. Helminen, Demonstration of chondroitin sulphate and glycoproteins in articular cartilage matrix using periodic acid-Schiff (PAS) method, Histochemistry 83(1985) 303-6.
    [188]Y. Gong, Q. Zhou, C. Gao and J. Shen, In vitro and in vivo degradability and cytocompatibility of poly(1-lactic acid) scaffold fabricated by a gelatin particle leaching method, Acta Biomater 3(2007) 531-40.
    [189]Y. Gong, Z. Ma, Q. Zhou, J. Li, C. Gao and J. Shen, Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis, J Biomater Sci Polym Ed 19(2008) 207-21.
    [190]F. T. Moutos, L. E. Freed and F. Guilak, A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage, Nature Materials 6(2007) 162-167.
    [191]A. Hokugo, T. Takamoto and Y. Tabata, Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber, Biomaterials 27(2006) 61-67.
    [192]E. Malicev, D. Radosavljevic and N. K. Velikonja, Fibrin gel improved the spatial uniformity and phenotype of human chondrocytes seeded on collagen scaffolds, Biotechnology and Bioengineering 96(2007) 364-370.
    [193]M. Lind, A. Larsen, C. Clausen, K. Osther and H. Everland, Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold:an in vivo study in goats, Knee Surgery Sports Traumatology Arthroscopy 16(2008) 690-698.
    [194]E. B. Hunziker, Articular cartilage repair:basic science and clinical progress. A review of the current status and prospects, Osteoarthritis Cartilage 10(2002) 432-63.
    [195]M. Schnabel, S. Marlovits, G. Eckhoff, I. Fichtel, L. Gotzen, V. Vecsei, et al., Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture, Osteoarthritis Cartilage 10(2002) 62-70.
    [196]U. Noth, A. F. Steinert and R. S. Tuan, Technology insight:adult mesenchymal stem cells for osteoarthritis therapy, Nat Clin Pract Rheumatol 4(2008) 371-80.
    [197]A. Caplan, Why are MSCs therapeutic? New data:new insight, Journal of Pathology 217(2009) 318-324.
    [198]L. C. van den Berk, C. G. Figdor and R. Torensma, Mesenchymal stromal cells: tissue engineers and immune response modulators, Arch Immunol Ther Exp (Warsz) 56(2008) 325-9.
    [199]K. Bartsch, H. Al-Ali, A. Reinhardt, C. Franke, M. Hudecek, M. Kamprad, et al., Mesenchymal stem cells remain host-derived independent of the source of the stem-cell graft and conditioning regimen used, Transplantation 87(2009) 217-21.
    [200]M. J. Stoddart, S. Grad, D. Eglin and M. Alini, Cells and biomaterials in cartilage tissue engineering, Regen Med 4(2009) 81-98.
    [201]M. C. Kruyt, J. De Bruijn, M. Veenhof, F. C. Oner, C. A. Van Blitterswijk, A. J. Verbout, et al., Application and limitations of chloromethyl-benzamidodialkylcarbocyanine for tracing cells used in bone Tissue engineering, Tissue Eng 9(2003) 105-15.
    [202]K. Liu, G. D. Zhou, W. Liu, W. H. Zhang, L. Cui, X. Liu, et al., The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro, Biomaterials 29(2008) 2183-2192.
    [203]H. B. Fan, Y. Y. Hu, L. Qin, X. S. Li, H. Wu and R. Lv, Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta 1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair, Journal of Biomedical Materials Research Part A 77A(2006) 785-794.
    [204]K. Uematsu, K. Hattori, Y. Ishimoto, J. Yamauchi, T. Habata, Y. Takakura, et al., Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold, Biomaterials 26(2005) 4273-9.
    [205]G. P. Chen, T. Sato, T. Ushida, N. Ochiai and T. Tateishi, Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen, Tissue Engineering 10(2004) 323-330.
    [206]H. Fan, Y. Hu, C. Zhang, X. Li, R. Lv, L. Qin, et al, Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold, Biomaterials 27(2006) 4573-80.
    [207]P. A. Janmey, J. P. Winer and J. W. Weisel, Fibrin gels and their clinical and bioengineering applications, J R Soc Interface 6(2009) 1-10.
    [208]T. A. Ahmed, E. V. Dare and M. Hincke, Fibrin:a versatile scaffold for tissue engineering applications, Tissue Eng Part B Rev 14(2008) 199-215.
    [209]C. D. Sims, P. E. M. Butler, Y. L. Cao, R. Casanova, M. A. Randolph, A. Black, et al., Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes, Plastic and Reconstructive Surgery 101(1998) 1580-1585.
    [210]V. Ting, C. D. Sims, L. E. Brecht, J. G. McCarthy, A. K. Kasabian, P. R. Connelly, et al., In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes, Annals of Plastic Surgery 40(1998) 413-420.
    [211]W. Bensaid, J. T. Triffitt, C. Blanchat, K. Oudina, L. Sedel and H. Petite, A biodegradable fibrin scaffold for mesenchymal stem cell transplantation, Biomaterials 24(2003) 2497-2502.
    [212]M. Fussenegger, J. Meinhart, W. Hobling, W. Kullich, S. Funk and G. Bernatzky, Stabilized autologous fibrin-chondrocyte constructs for cartilage repair in vivo, Annals of Plastic Surgery 51(2003) 493-498.
    [213]M. Brittberg, E. Sjogren-Jansson, A. Lindahl and L. Peterson, Influence of fibrin sealant (Tisseel) on osteochondral defect repair in the rabbit knee, Biomaterials 18(1997)235-42.
    [214]L. Wu and J. Ding, Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering, J Biomed Mater Res A 75(2005) 767-77.
    [215]L. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, et al., In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams, Biomaterials 21(2000) 1837-45.
    [216]C. E. Holy, S. M. Dang, J. E. Davies and M. S. Shoichet, In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam, Biomaterials 20(1999) 1177-85.
    [217]T. Yoshioka, N. Kawazoe, T. Tateishi and G. Chen, In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges, Biomaterials 29(2008) 3438-43.
    [218]C. Shangkai, T. Naohide, Y. Koji, H. Yasuji, N. Masaaki, T. Tomohiro, et al., Transplantation of allogeneic chondrocytes cultured in fibroin sponge and stirring chamber to promote cartilage regeneration, Tissue Eng 13(2007) 483-92.
    [219]P. J. Emans, J. Pieper, M. M. Hulsbosch, M. Koenders, E. Kreijveld, D. A. M. Surtel, et al., Differential cell viability of chondrocytes and progenitor cells in tissue-engineered constructs following implantation into osteochondral defects, Tissue Engineering 12(2006) 1699-1709.
    [220]M. S. Ponticiello, R. M. Schinagl, S. Kadiyala and F. P. Barry, Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy, Journal of Biomedical Materials Research 52(2000) 246-255.
    [221]P. Godement, J. Vanselow, S. Thanos and F. Bonhoeffer, A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue, Development 101(1987) 697-713.
    [222]Y. Oshima, F. L. Harwood, R. D. Coutts, T. Kubo and D. Amiel, Variation of mesenchymal cells in polylactic acid scaffold in an osteochondral repair model, Tissue Eng Part C Methods 15(2009) 595-604.
    [223]C. Jorgensen, J. Gordeladze and D. Noel, Tissue engineering through autologous mesenchymal stem cells, Curr Opin Biotechnol 15(2004) 406-10.
    [224]S. B. Trippel, S. C. Ghivizzani and A. J. Nixon, Gene-based approaches for the repair of articular cartilage, Gene Ther 11(2004) 351-9.
    [225]P. M. van der Kraan, F. A. J. van de Loo and W. B. van den Berg, Role of gene therapy in tissue engineering procedures in rheumatology:the use of animal models, Biomaterials 25(2004) 1497-1504.
    [226]H. Koga, T. Muneta, Y. J. Ju, T. Nagase, A. Nimura, T. Mochizuki, et al., Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration, Stem Cells 25(2007) 689-96.
    [227]J. B. Allen, C. L. Manthey, A. R. Hand, K. Ohura, L. Ellingsworth and S. M. Wahl, Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor beta, J Exp Med 171(1990) 231-47.
    [228]H. L. Glansbeek, H. M. van Beuningen, E. L. Vitters, P. M. van der Kraan and W. B. van den Berg, Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints, Lab Invest 78(1998) 133-42.
    [229]H. M. van Beuningen, H. L. Glansbeek, P. M. van der Kraan and W. B. van den Berg, Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation, Osteoarthritis Cartilage 6(1998)306-17.
    [230]X. D. Guo, Q. X. Zheng, S. H. Yang, Z. W. Shao, Q. Yuan, Z. Q. Pan, et al., Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta(1) gene, Biomedical Materials 1(2006)206-215.
    [231]R. M. Capito and M. Spector, Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering, Gene Ther 14(2007) 721-32.
    [232]H. Diao, J. Wang, C. Shen, S. Xia, T. Guo, L. Dong, et al., Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-betal gene-activated scaffolds, Tissue Eng Part A 15(2009) 2687-98.
    [233]Z. Mao, L. Ma, Y. Jiang, M. Yan, C. Gao and J. Shen, N,N,N-Trimethylchitosan chloride as a gene vector:synthesis and application, Macromol Biosci 7(2007) 855-63.
    [234]Z. Mao, H. Shi, R. Guo, L. Ma, C. Gao, C. Han, et al., Enhanced angiogenesis of porous collagen scaffolds by incorporation of TMC/DNA complexes encoding vascular endothelial growth factor, Acta Biomater 5(2009) 2983-94.
    [235]Z. Mao, H. Shi, R. Guo, L. Ma, C. Gao, C. Han, et al., Enhanced angiogenesis of porous collagen scaffolds by incorporation of TMC/DNA complexes encoding vascular endothelial growth factor, Acta Biomater (2009)
    [236]J. H. Lee, G. Khang, J. W. Lee and H. B. Lee, Interaction of different types of cells on polymer surfaces with wettability gradient, Journal of Colloid and Interface Science 205(1998) 323-330.
    [237]S. Wakitani, T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, et al., Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage, J Bone Joint Surg Am 76(1994) 579-92.
    [238]P. M. Quinton and C. W. Philpott, Role for Anionic Sites in Epithelial Architecture-Effects of Cationic Polymers on Cell-Membrane Structure, Journal of Cell Biology 56(1973) 787-796.
    [239]S. R. Mao, X. T. Shuai, F. Unger, M. Wittmar, X. L. Xie and T. Kissel, Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers, Biomaterials 26(2005) 6343-6356.
    [240]E. G. Nabel, Z. Yang, S. Liptay, H. San, D. Gordon, C. C. Haudenschild, et al., Recombinant platelet-derived growth factor B gene expression in porcine arteries induce intimal hyperplasia in vivo, J Clin Invest 91(1993) 1822-9.
    [241]S. J. Eastman, C. Siegel, J. Tousignant, A. E. Smith, S. H. Cheng and R. K. Scheule, Biophysical characterization of cationic lipid:DNA complexes, Biochim Biophys Acta 1325(1997) 41-62.
    [242]H. Madry and S. B. Trippel, Efficient lipid-mediated gene transfer to articular chondrocytes, Gene Ther 7(2000) 286-91.
    [243]C. Erggelet, M. Endres, K. Neumann, L. Morawietz, J. Ringe, K. Haberstroh, et al., Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants, J Orthop Res 27(2009) 1353-60.
    [244]C. Erggelet, K. Neumann, M. Endres, K. Haberstroh, M. Sittinger and C. Kaps, Regeneration of ovine articular cartilage defects by cell-free polymer-based implants, Biomaterials 28(2007) 5570-80.
    [245]Z. Mi, S. C. Ghivizzani, E. R. Lechman, D. Jaffurs, J. C. Glorioso, C. H. Evans, et al., Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints, Arthritis Rheum 43(2000) 2563-70.
    [246]A. C. Bakker, F. A. van de Loo, H. M. van Beuningen, P. Sime, P. L. van Lent, P. M. van der Kraan, et al., Overexpression of active TGF-beta-1 in the murine knee joint:evidence for synovial-layer-dependent chondro-osteophyte formation, Osteoarthritis Cartilage 9(2001) 128-36.
    [247]X. Y. Song, M. Gu, W. W. Jin, D. M. Klinman and S. M. Wahl, Plasmid DNA encoding transforming growth factor-beta 1 suppresses chronic disease in a streptococcal cell wall-induced arthritis model, J Clin Invest 101(1998) 2615-21.
    [248]L. Cui, Y. Wu, L. Cen, H. Zhou, S. Yin, G. Liu, et al., Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh, Biomaterials 30(2009) 2683-93.
    [249]H. C. Chen, Y. H. Chang, C. K. Chuang, C. Y. Lin, L. Y. Sung, Y. H. Wang, et al., The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture, Biomaterials 30(2009) 674-81.
    [250]T. Mimura, S. Imai, M. Kubo, E. Isoya, K. Ando, N. Okumura, et al., A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair, Osteoarthritis Cartilage 16(2008) 1083-91.
    [251]Y. Ito, N. Adachi, A. Nakamae, S. Yanada and M. Ochi, Transplantation of tissue-engineered osteochondral plug using cultured chondrocytes and interconnected porous calcium hydroxyapatite ceramic cylindrical plugs to treat osteochondral defects in a rabbit model, Artif Organs 32(2008) 36-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700