DCM谐振全桥变换器模型的建立及其控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,开关型功率变换器得到了广泛的应用。科研人员通过分析、研究开关功率变换器的工作原理,设定有效的控制策略,提高变换器性能。研究表明,如果变换器工作在电流连续状态(CCM),将导致轻载时电感电流变负,引起循环能量增大、导通损耗增加、变换效率降低。为提高轻载时的变换效率,必须使变换器工作在电流断续模式(DCM)。DCM的优点是控制简单,成本低廉,且具有自然的零电流关断特性,二极管反向恢复电流所引起的开关关断损耗也较小。一些PFC电路甚至在设计时就让其在整个周期中工作在DCM下,以简化控制。因此研究DCM下工作的变换器模型具有重要的意义。
     首先,对全桥零电压不连续导电模式下变换器电路拓扑进行了工作模态的分析,在此基础上,对电路中各个开关管的零电压条件进行了分析,从而确定出整个电路的零电压实现条件。依照实际技术指标,对电源的主回路、控制回路进行了详尽的设计,对主要元件,如高频变压器,进行设计和参数计算。对移相控制芯片UC3875进行了介绍和应用设计。同时分析了其零电压开关条件、副边占空比丢失以及整流二极管的换流情况。二次侧采用桥式整流方式,在DCM模式下可解决变换器高压输出带来的整流管寄生振荡和电压过冲。
     其次,对不连续导电模式下的移相全桥ZVS DC-DC变换器进行了详细的建模。利用FB ZVS变换器和BUCK变换器的相似性,简化了全桥变换器的建模。通过分析占空比丢失造成的影响,建立了移相全桥ZVS DC-DC变换器的大信号模型和小信号模型。该模型具有比较直观的物理意义,且为下面的分析做好了准备。
     最后,通过仿真软件Orcad建立全桥零电压DC-DC变换器的仿真电路,结果表明该变换器各部分电路工作正常,实现了设计目标,证明了原理分析的正确性,电路主要波形和理论分析保持一致,在轻载时也能实现开关管的零电压导通。根据全桥零电压DC-DC变换器的小信号模型及其传递函数,对闭环系统的补偿网络进行了设计,使变换器具有良好的稳态和暂态性能。
Recently, switch power converters are applied broadly. It is very necessary to analyze switch power converter. It can help us to find out work principium of the switch power converter and enactment effective control strategy to improve the performance. If the converter works in CCM at all times, the inductance current will become negative, circle energy will become more, waste will be more and transform efficiency will be reduced when the load is light. The converter must work in DCM for improving the transform efficiency when the load is light. The advantages of DCM are that the control mode is simple and the cost is low. Otherwise DCM has zero current switch-on characteristic in natural. And it’s waste of breaking off which is evocable by the reverse comeback current of diode is low. Some PFC circuit is designed to work in DCM in the entire cycle to predigest the control mode. So it is important to research the converter model in DCM.
     Firstly, the work mode of FB ZVS-PWM converter in DCM is analyzed. The work process of this circuit topology which works in phase shift mode is known deeply. The ZVS condition of every switch in circuit is analyzed based on the analyses of the work mode. Then ZVS conditions of the whole circuit are confirmed. The main circuit, control circuit, drive circuit and protect circuit are designed exhaustively. The main elements such as high frequency transformer are designed. And their parameters are calculated. UC3875 is introduced and designed. Meanwhile the duty cycle loss of secondary side and the change of current of the commutate diode are analyzed. The secondary side is adopted in bridge commutate mode. Thus it can solve the parasitic oscillation of rectifiers and the clash of voltage by the high voltage output of converter.
     Secondly, FB ZVS-PWM DC-DC converter is modeled exhaustively. The model of FB converter is predigested because of the comparability of the FB ZVS converter and BUCK converter. The small signal model and large signal model of FB ZVS DC-DC converter is set up by analyzing the effect of the duty cycle loss. This model has the intuitionist physics meaning. And it makes the next analyses easy.
     Finally the simulation circuit of FB ZVS DC-DC converter is constituted by Orcad. The simulation results indicate that the whole circuit works in gear. The design target is come true. The correctness of the analyses of principle is proved. The main waveforms are consistent with the analyses of principle. ZVS of switch is come true in light load. The closed loop system is designed Based on the small signal model and the transfer function of FB ZVS DC-DC converter. The closed loop system makes the converter have the well transient and steady performance.
引文
1张克强,瞿文龙,谭瑞民. DARCN全桥变换器的软开关分析与谐振参数设计.电工电能新技术. 2002, 22(2):21~25
    2林海雪.现代电能质量的基本问题.电网技术. 2001, 25(10):5~12
    3杨德刚,赵良炳.软开关技术回顾与展望.电力电子技术. 1998,31(3):15~19
    4 GuiChao Hua, Fred C Lee. Soft-Switching Techniques in PWM Converters. IEEE Trans. On Industrial Electronics. 1995, 42(6): 595~603
    5王旭光,张来亮. Boost电路交流应用的主电路分析.电工电能新技术. 1999, (1):21~24
    6 D. M. Sahle and F. C. Lee. The Operation Of a Full-Bridge, Zero-Voltage-Switched PWM Converter. in Proc. VPEC. 1989:92~97
    7 A. Satiate, V Vlatkovic, R. B. Ridley, R C. Lee and B. H. Cho. Design Considerations for High-Voltage, high Power Full-Bridge Zero-Voltage-Switched PWM Converter. in Proc. IEEE APEC. 1990:275~284
    8王凤岩,许建平.不连续导电模式V~2控制Buck变换器分析.电工技术学报. 2005, (20):35~40
    9黄宇清.软开关技术发展现状评述.中国电工技术学会电力电子技术学会第七次全国学术会议. 2002, (5):471~442
    10彭力等.新型大功率升一降型DC-DC变换器控制研究.电力电子技术. 1999, 33(5):26~28
    11丁志刚,胡育文. ZVS DC-DC全桥变换器的研究.电力电子技术. 2003, (6):15~19
    12刘福鑫.高压直流电源系统中DC-DC变换器的研究.南京航天航空大学硕士论文. 2000, (2):32~35
    13 Xinbo Ruan, Fuxin Liu. An Improved ZVS-PWM Full-bridge Converter with Clamping Diodes. IEEE PESC 2004:1476~1481
    14刘福鑫,阮新波.加箝位二极管的零电压全桥变换器改进研究.电力系统自动化. 2004, 28(17):64~69
    15徐晓峰,连级三,赵建明.移相控制ZVS全桥变换器滞后臂死区时间分析.电力电子技术. 1999, (1):15~17
    16罗志军. 2.5KW自冷式高频开关电源研究与开发.河海大学硕士论文. 2005.4
    17 Milan M. Jovanovic, Resonant, Quasi-Resonant, Multi-Resonant and Soft-Switching Techniques-Merits and Limitations. Computer & Telecommunications Power Supplies. Vol.l, Delta Electronics. INC. 3(20):453 ~455
    18丁洛等.谐振直流环节逆变器的发展趋势.电力电子技术. 1996(1):79-84
    19 Maria D.Bellar et al. A Review of soft-switched DC-AC Converters. IEEE Trems,Ind.Vol38,N0.3:635~646
    20 Zhou Xunwei, Wang T G, Lee F C. Optimizing design for low voltage DC-DC converters. Proceedings of the Twelfth Annual Applied Power Electronics Conference and Exposition. APEC'97. 1997, (2):612~616
    21吴良美,洪乃刚.移相式FB-ZVS-PWM变换器的仿真研究.安徽工业大学学报. 2002, 19(3):212~215
    22 Vlatko Vlatkovic. Small-Signal Analysis of the Phase-Shifted PWM Converter. Power Electronics, IEEE Transactions on. 1992, (1):128~135
    23 C. M. Liaw, Electronics Industrial Modeling and Controller Design of a Current-Mode Controlled Converter. IEEE Transactions on. 1994, (4):231~240
    24 J. A.Sabate, Design Considerations For High-Voltage High-Power Full-Bridge Zero-Voltage-Switched PWM Converter. IEEE APEC. 1990:452~462
    25 W. Chen, A Comparative Study of a Class of Full Bridge Zero-Voltage-Switched PWM Converters. IEEE APEC. 1995:893~899
    26 N.G. Hingorani. Introducing Custom Power. IEEE Spectrum. 1995, 32(6):41-48
    27阮新波,严仰光.软开关PWM DC-DC全桥变换器的实现策略.电工技术学报. 1999, 14(6): 27~30
    28马宁,陈莉.开关电源电路的仿真.计算机与数字工程. 2005, (11):32~33
    29 Shumin Li, Moschopoulos. G.Soft-switching in single-stage AC-DC PWM Full-Bridge Converters. Telecommunications Energy Conference. 2004. INTELEC 2004. 26th Annual International. 2004:51~58
    30 Moschopoulos,G.. A simple AC-DC PWM Full-bridge Converter with integrated Power-Factor correction. Industrial Electronics. IEEE Transactions on. 2003:1290~1297
    31 Moschopoulos, G, Shah, J. A comparative study of simple AC-DC PWM Full-Bridge Current-Fed and Voltage-Fed Converters. Electrical and ComputerEngineering. 2004.Canadian Conference on. 2004:583~586 Vol.l
    32欧阳长莲. DC-DC开关变换器的建模分析与研究.南京航天航空大学博士毕业论文. 2004
    33 Ayyanar, R., Mohan, N. A novel full-bridge DC-DC converter for battery charging using secondary-side control combines soft switching over the full load range and low magnetics requirement. Industry Applications. IEEE Transactions on. 2001:559~565
    34王建冈等.改进型倍流整流电路ZVS-PWM全桥变换器.电力电子技术. 2001, (6):27~33
    35 Abedinpour, S., Liu, R., Fasullo, G., Shenai, K. Small-signal analysis of a new asymmetrical half-bridge DC-DC converter. Power Electronics Specialists Conference. 2000:843 ~847.
    36 S. Mori, K. Matsuno, T. Hasegawa, et al. Development of A Large Static VAr Generator Using Self-commutated Inverters for Improving Power System Stability. IEEE Trans. On Power Systems. 1993, 8(1):371~377
    37 K. Li, J.J. Liu, B. Wei, Z. Wang. Comparison of Two Control Approaches of Static VAr Generators for Compensating Source Voltage Unbalance in Three-phase Three-wire Systems. Int. Conf. on Power Electronics and Motion Control.. 2004, (3):1213-1218
    38 K. Li, J.J. Liu, Z. Wang, B. Wei. Static VAr Generator Control Strategy for Unbalanced Systems in Medium Voltage Applications. IEEE Conf. Power Electronics Specialists. 2004, (6):4257~4262
    39肖国春,刘进军,王兆安.电能质量及其控制技术的研究进展.电力电子技术. 2000, (6):1~3
    40 T. Ahmed, K. Nishida, K. Soushin, and M. Nakaoka. Static VAr Compensator-Based Voltage Control Implementation of Single-Phase Self-Excited Induction Generator. IEE Proc.-Gener. Transm. Distrib. 2005, 152(2):145~156
    41 T. Ahmed, O. Noro, and E. Hiraki. Terminal Voltage Regulation Characteristics by Static Var Compensator for A Three-Phase Self-Excited Induction Generator. IEEE Transaction on Industry Applications. 2004, 40(4):978~988
    42 A. Draou, M. Benghanem, A. Tahri. Control and Dynamic Analysis of A Static VAr Compensator Using A Three Level Inverter Topology. Int. Conf, on Microelectronics. 2000:353~356
    43 J.X. Devotta. Simulation of Static Var Compensation for A Predominantly EHV Cable Transmission System. In Proceedings of 1995 International Conference on Power Electronics and Drive Systems, Singapore, 1995, (2):713~718

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700