Tm~(3+)/Yb~(3+)共掺材料制备与激光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是信息时代,建立高速、大容量的全光通信网络成为新的研究目标。波分复用(WDM)技术的发明以及20世纪90年代研制成功的掺铒光纤放大器(EDFA),使得信息大容量、超长距离传输成为可能。传统的EDFA以石英为基质材料,主要工作在C波段(1530-1560nm)。但随着互联网不断的发展,目前已不能满足系统要求。新一代光纤通信网络对S波段(1450nm-1520nm)光放大的需求日渐升高,但是以Er3+离子为发光中心的EDFA无法完成这一波段的光放大,因此研究其他稀土元素的发光特性,进而研制新型S波段的光纤放大器显得尤为重要。
     现有的光纤主要以硅化物做为基质材料。相比于硅化物材料,碲化物材料在稳定性、耐腐蚀性和稀土离子可溶性等多方面具有优势,然而此方面的研究还相对较少。本研究首先制备了多种掺Tm以及Tm与其他稀土离子共掺的碲化物材料,通过实验获得了Tm3+离子在Tm与其他稀土离子共掺材料中的光谱特性,并对其进行了理论分析。随后制备了Tm/Yb共掺光纤,测试了其光学性能,并搭建了谐振腔增强型光纤放大器平台,为进一步研制高性能掺铥光纤激光器和放大器奠定了基础。并且在研究中发现Tm/Yb共掺材料具有成为优秀蓝光激光材料的潜质,研究了Tm/Yb共掺材料的激光性能。论文的主要研究工作概括如下:
     (1)制备了单掺Tm的碲化物玻璃,制备了多种组分不同的Tm与Yb,Er, Nd等稀土元素共掺的碲化物玻璃,制备了Tm/Yb共掺的碲化物光纤。为测试Tm在稀土元素掺杂的碲化物材料中的特性做好了准备。
     (2)对制备的碲化物材料进行了荧光光谱研究。分别采用980nm、808nm半导体激光器为泵浦源,泵浦稀土掺杂的碲化物材料,测得了不同稀土离子掺杂的碲化物材料的荧光光谱。首次发现了Tm在Tm/Yb共掺材料中890nm荧光发射,1370nm荧光产生同时原本属于Tm特征谱线的1470nm荧光消失的现象。对产生的谱线进行了分析。并且在Tm/Yb共掺的碲化物玻璃中观察到明显的蓝光,证实了能级的上转换。
     (3)利用J-O理论计算了掺Tm碲化物玻璃与不同组分的Tm/Yb共掺碲化物玻璃的光谱特性。首次得到了Tm/Yb共掺碲化物玻璃的光谱参数。通过理论计算,分析解释了在Tm/Yb共掺玻璃的荧光测试中出现的各种现象,表明Yb离子在共掺材料中比例十分重要,会影响到材料中Tm离子的发光特性,这对实现S波段光放大至关重要。
     (4)研究了Tm/Yb共掺碲化物光纤的特性,通过合理设计解决了碲化物光纤易断裂以及不能与普通硅光纤直接熔接的问题。搭建了Tm/Yb共掺谐振腔增强型光纤放大器平台,进行了谐振腔增强型光纤放大器的研究。
     (5)对Tm/Yb共掺碲化物材料激光特性进行了研究,进行了Tm/Yb共掺材料蓝光激光实验,研究表明Tm/Yb共掺晶体材料有望成为优秀的蓝光激光材料和人眼安全的1.5-2μm激光材料。开始进行生长Tm,Yb:KLu(WO4)2晶体。
     本论文主要创新点如下:
     1:制备了多种组分不同的Tm与Yb,Er, Nd等稀土元素共掺的碲化物玻璃,制备了Tm/Yb共掺的碲化物光纤。对Tm在稀土元素掺杂的碲化物材料中的特性进行了研究。
     2:首次发现了Tm离子在Tm/Yb共掺材料中890nm和1370nm处发射的明显荧光,并且发现在1370nm荧光产生同时原本属于Tm离子本征发射谱线的1470nm荧光的消失,根据Tm,Yb能级结构对此现象进行了分析解释。
     3:首次理论计算了Tm离子在Tm/Yb共掺材料中的光谱参数,发现共掺材料中Yb离子的存在影响了Tm离子的能级结构,并印证了Tm离子新荧光产生和原有本征谱线消失这一现象。
     4:首次发现Tm在Tm/Yb共掺碲化物材料中的发光特性会随材料中Tm,Yb掺杂比例不同而发生改变,并对此进行了解释。
     5:准备加工了Tm/Yb共掺碲化物光纤器件,搭建了谐振腔增强型光纤放大器平台,并进行S波段光放大的测试。
     6:荧光测试得到了Tm/Yb共掺材料的480nm上转换蓝色荧光,首次提出了将Tm/Yb共掺钨酸盐晶体作为蓝光激光介质,并开始生长Tm/Yb共掺钨酸盐晶体。
The 21 st century is the era of optical communication, high-speed, high-capacity optical communications networks has become a new research target. The invention of wavelength-division multiplexing (WDM) and the Erbium-doped fiber amplifier (EDFA), which is invented in 21st nineties, make the transmission of information in long distance and great capacity possible. Conventional Erbium-doped fiber amplifiers is silica-based, which work in the C-band (1530nm-1565nm). However, with the further development of the internet, they cannot meet the requirement of the system any more. New generation fiber communication system has been paid more attention to light amplification in the S-band (1450nm-1520nm). But it is impractical to achieve the optical amplification in this Band by EDFA. Consequently, investigating other rare earth ions'luminescence properties to develop the new S-Band fiber amplifier is becoming increasing important.
     Nowadays, most fibers are silica-based. Compared with the silica-based materieals, telluride materieals are more stable; more corrosion-resistant; and have higher ions solution. However, there is little research in this field. In this paper, Tm-doped telluride materieals and codoped Tm with other rare earth ions materieals are prepared. The luminescence properties of Tm ions in the codoped Tm with other rare earth ions materieals are got by experiment, and the theoretical analysis is taken. Tm/Yb codoped fiber is prepared; optial properties of the fiber are analyzed. Moreover, a fiber amplifier, which in cavity resonator form, is set up. This work has laid a solid foundation for the future research of high performance Tm doped fiber laser and fiber amplifier. In this work, Tm/Yb co-doped material show its good potential in blue laser, the laser performance of Tm/Yb co-doped material also been investigated. Main works of the paper are summarized as follows:
     (1) Tm-doped telluride glass and codoped Tm with other rare earth ions telluride glass are prepared; Tm/Yb codoped telluride fiber is prepared. That is the foundation of properties test of Tm in codoped Tm with other rare earth ions telluride glass.
     (2) The luminescence properties of the telluride materials have been investigated. 808nm and 980nm diode laser are used as pumping source, respectively. Under the laser pumping, the luminescence spectrums of the telluride materials in different codoped ions are record.890nm fluorescence is the first time found in Tm/Yb co-doped material, and 1370nm fluorescence is also found in Tm/Yb co-doped material with the dispearence of 1470nm fluorescence, which is the characteristic fluorescence of Tm ion. The resulting spectrums are analyzed. Obvious blue light is generated in Tm/Yb codoped glass and upper level energy conversion is confirmed.
     (3) Using J-0 theory theoretically analyzed the optical properties of Tm-doped telluride materieals and Tm/Yb co-doped telluride materieals. The optiacl parameters of Tm/Yb co-doped telluride glass have been got for the first time. The fluorescence performance of Tm/Yb co-doped telluride glass has been explained through the theoretical calculation. The calculation indicates the ratio of Yb in materieal is very important. This conclusion is very important to achieve S-band amplification.
     (4) The properties of Tm/Yb co-doped telluride fibers have been investigated. Approaches are suggested for solving frailty of telluride-based fibers and difficulty of splicing with conventional silica-based fibers. Besides, the placement and connection of telluride-based fibers is investigated. A fiber amplifier, which in cavity resonator form is set up. The experiment of S-band fiber amplifier is taken.
     (5) The laser properties of Tm/Yb co-doped telluride materieals have been investigated. The experiment indicates the Tm/Yb co-doped crystal could be a good laser materieal in blue color and inl.5-2^,m eye safe laser. The Tm,Yb:KLu(WO4)2 crystal is growing.
     The main innovations of this dissertation are as follows:
     1. Tm-doped telluride glass and codoped Tm with other rare earth ions telluride glass are prepared; Tm/Yb codoped telluride fiber is prepared. Properties of Tm in codoped Tm with other rare earth ions telluride materials are investigated.
     2. For the first time,890nm fluorescence and 1370nm fluorescence are found obviously in Tm/Yb co-doped materials. Furthermore, with the appearance of 1370nm fluorescence, the 1470nm fluorescence, which is the characteristic fluorescence of Tm ion, is dispeared. The reasons of these phenomenons are analyzed based on Tm, Yb energy structure.
     3. For the first time, the optiacl parameters of Tm ions in Tm/Yb co-doped telluride glass are calculated. The calculation indicate the Yb ions in Tm/Yb co-doped glass affect the energy structure of Tm ions, this is confirmed with the new fluorescence appeared and the characteristic fluorescence of Tm ion disappeared.
     4. For the first time, it is found the fluorescence properties of Tm in Tm/Yb codoped telluride materieals will change with the Tm, Yb ratio diffenence, and this phenomenon is analyzed.
     5. Tm/Yb codoped telluride fiber is prepared. A fiber amplifier, which in cavity resonator form, is set up. The experiment of S-band fiber amplifier is taken.
     6.480nm blue up-convertion fluorescence is recored in fluorescence test on Tm/Yb co-doped material. For the first time, Tm,Yb:KLu(WO4)2 crystal is choscen as the blue laser material, and the Tm, Yb:KLu(WO4)2 crystal is under growing.
引文
[1]李玉权,朱勇,王江平编著,《光通信原理与技术》,科学出版社,2006
    [2]K.C.Kao, G.A.Hockham, Dielectric—fiber surface waveguides for optical frequencies.Proeeedings of the Institution of Electrical Engineers,113(7), 1966:1151—1155.
    [3]张伟刚编著,《光纤光学原理与应用》,南开大学出版社,2008
    [4]刘德明,向清,黄德修,《光纤光学》,国防工业出版社,1995
    [5]廖延彪,《光纤光学》,清华大学出版社,2000
    [6]Jun Chang, Qing-Pu Wang, Xingyu Zhang, Zhejin Liu, Zhaojun Liu, S-bnad optical amplification by an internally generated pump in thulium ytterbium codoped fiber, Optics Express, vol,13, P3902,2005
    [7]Jun Chang, Qing-Pu Wang and Gang-Ding Peng, Optical amplification in Yb3+-codoped thulium doped silica fiber Optical Material, vol.28, p1088-1094, 2006
    [8]李振华,范琦康.氩离子激光泵浦的Nd:YAG单晶光纤激光器[J].中国激光,1990,17(8):455-458
    [9]RUSSELL P.Photonic Crystal Fibers[J].Science,2003,299(12):358-362.
    [10]MANGAB J,KNIGHT JC,BIKST A,et al.Experimental study of dual-core photonic crystal fiber[J].Electron.Lett,2000,36(16):1358-1359.
    [11]MAPI A,MOLONEY J V.Phase locking in passive multi-core photonic crystal fiber[J].Opt.Soc.Am.B,2004,21(5):897-902.
    [12]MORTENSEN N A,NIELSEN M D,FOLKENBERG J R.et al.Improved large-mode-area endlessly single-mode photonic crystal fibers[J].Opt.Lett,2003,28(6):393-395.
    [13]TSUCHIDA Y,SAITOH K,KOSHIBA M,et al.Design of single-mod holey fibers with large-mode-area and low bending losses:The significance of the ring-core region[J].Opt,Exp,2007,15(4):1794-1803.
    [14]FURUSAWA K,MONRO T M,PETOPOULOS P,et al.Mode locked laser based on ytterbium doped holey fibers[J].Elee.Lett,2001,37(9):560-561.
    [15]林浩佳,阮双琛,程超,等,掺Yb3+双包层大模面积光子晶体光纤激光器的研究[J].光子学报,2004,7,33(7):797-799.
    [16]WADSWORTH W J,RERCIVA R M,BOUWMANS Qet al.High power air-clad photonic crystal fiber laser[J].Opt.Exp,2003,11(1):48-53.
    [17]LIMPER T J,SCHREIBER T,NOLTE S,et al.High-power air-clad large-mode-area photonic crystal fiber laser[J].Opt.Exp,2003,11(7):818-823
    [19]杨祥林.光放大器及其应用.电子工业出版社,2000
    [20]Desurvire.Erbium-doped amplifiers:principles and applications [J].A Wiley-Interscience.1985.
    [21]Willima J.Miniscalco, Erbium-doped glasses for fiber amplifiers at 1500,IEEE J.Lightwave Technology,9(1991),234.
    [22]Michel J.F.Digonnet, Rare earth doped fiber lasers and amplifiers,1993
    [23]Ohishi Y, et al.Gain Characteristics of tellurite-based fiber amplifier for 1.5um boradbnad amplification[J].optic lett,1998,23(4):274-276.
    [24]P.Peterka, B.Faure, W.Blanc, M.Karasek, B.Dussardier"Theoertical modelling of S-bnad thulium-doped silica fiber amplifiers, "Optical and Quantum Electronics 36,201-212(2004)
    [25]Mira Naftaly shaoxiong Shen, and Animesh Jha, "Tm3+-doped tellurite glass for a broadband amplifier at 1.47um, "Appl Opt 39,4979-4984(2000)
    [26]Mira Naftaly,Shaoxiong Shen, and Animesh Jha, "Tm3+-doped tellurite glass for a broadband amplifier at 1.47um,,, Appl Opt 39,4979—4984(2000)
    [27]Shaoxiong Shen, Mira Naftaly, and Animesh Jha. Tungsten-tellurite—host glass for broadband EDFA[j]. Optics Communications.205(2002) pp101-105
    [28]Thomas D Chen, Anuradha M Agarwal, Annalena Thilderkvist, Jurgen Michel, Lionel C Kimerling. Journal of Electronic Materials. Warrendale:Jul 2000.vol.29.iss.7;P.973
    [29]周亚训,陈芬,杨高波.宽带碲基掺铒光纤放大器上能级粒子数反转比[J].量 子电子学报,2005年22卷6期,pp:942—945.
    [30]XiaHaiping, ZhangJianli, wangJinhao zhang.Optieal Spectroscopy of Er3+, Er3+/Yb3+Co-doped Bi2O3—GeO2—B2O3—ZnO Glasses[J] Journal of RareEarths2005年23卷5期,pp:550—550.
    [31]Wang J S, Vogel E M, Snitzer E.Tellurite glass:a new candidate for fiber deviees[J].Optmat,1994,3:187-203.
    [32]Wang J S, Machewirth D P, et al.Nd-doped tellurite single-mode fiber laser[J].Optics lett,1994,19(18):1448-1449.
    [33]Gandy H..W.,R.J.Ginther,J.F., weller, stimulated emission of Tm3+ radiation in silicate glass, J.Appl.Phys.38,3030,1967
    [34]Spector N. Reisfeld R.boehm L Eigenstates and radiative transition probability for Tm3+ in phosphate and tellurite glasses, Chem.Phys.Lett.49,49,1977.
    [35]Guery, C, J.L.Adam, J.Lucas, Optical properties of Tm3+ions in indium-based fluoride glasses, J.Lumin.,42,181,1988.
    [36]Snaz, J.R.Cases, R.Alcala, Optical properties of Tm3+ in fluorozirconate glass, J.Non-Cryst.Solids 93,377,1987.
    [37]T.Sakamoto, M.Shimizu,.T.Kanamori, et al,1.4μm band gain characteristics of a Tm-Ho-doped ZBLYAN fiber amplifier pumped in the 0.8 um bnad.IEEE Photon.Technol.Lett.7(1995),983.
    [38]王勇超,夏海平,章践立,张勤远,Tm3+和Ho3+双掺锗铌酸盐玻璃的中红外发光性质,硅酸盐学报,2010,38(11)
    [39]蒙红云,武志刚,高伟清,张昊,袁树忠,董孝义,1064nm抽运掺铥光纤放大器增益特性的理论研究,中国激光,30,783,2003
    [40]Claudio Floridia, M.T.Carvalho, S.R.Luthi, and A.S.L, Gomes, Modeling the distributed gain of single-(1050 or 1410 nm)and dual-wavelength(800+1050 nm or 800+1410nm)pumped thulium-doped fiber amplifiers, Opt.Letter 29(2004), 1983.
    [41]T.Kasamatsu, Y.Yano, and T.Ono, Lase-diode pumping(1.4 and 1.56μm)of gain-shitfed thulium-doped fiber amplifier, Electron.Lett.,36,1607-1609, (2000)
    [42]D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, "Broadband Tm-doped superfluorescent fibersource with 11 W single-ended output power," OPTICS EXPRESS.16,11021(2008).
    [43]T.Komukai, T.Yamamoto, T.Sugawa, Y.Miyajima.1.47um BANDTm3+ Doped fluoride fiber amplifier using a 1.064μm upconversion pumping schemet. ELECTRONICS LETTERS.1993.29(1).110—112
    [44]S.Aozasa, T.Sakamoto, T.Kanamori, K.Hoshino, K.Kobayashi, M.Shimizu.Tm — Doped Fiber Amplifiers for 1470-nm-Band WDM Signals.IEEE PHOTONICS TECHNOLOGY LETTERS.2000.12(10).1331—1333
    [45]T.Kasmaatsu, Y.Yano, T.Ono.Laser-diode Pumping(1.4 and1.56 μm)of gain-shifte thulium — doped fiber amplifier, Electronics Letters.2000.36(19).1067-1069
    [46]Tadashi Kasamatsu, Yutaka Yano, Takashi Ono.1.49-μm-Band Gain-Shifted Thulium—Doped Fiber AmPlifier for WDM Transmission Systems.JOURNAL OF LIGHTWAVE TECHNOLOGY 2002.20(19).1826 — 1837
    [47]Scott S.-H. Yam, Youichi Akasaka, Yoshinori Kubota, Hiroyuki Inoue, Krishnan Parameswaran.Novel Pumping Schelnes for Fluoride-Based Thulium-Doped Fiber Amplifier at 690 and 1050nm (or1400nm). IEEE PHOTONICS TECHNOLOGY LETTERS.2005.17(5).1001-1003
    [48]戴世勋,杨建虎,柳祝平,姜中宏TDFA最新研究进展.光纤与电缆及其应用技术.2000.(3).12-17
    [49]魏瑞.掺铥光纤激光器研究[学位论文].北京交通大学.北京交通大学.2009.3-5
    [50]戴世勋,杨建虎,柳祝平,温磊,胡丽丽,姜中宏.970nm抽运下Tm3+/Er3+/Yb3+共掺碲酸盐玻璃的发光特性.物理学报.2003.52(3).729-734
    [51]Jun Chang, Qingpu Wang, Xingyu Zhang, Zhejin Liu, "Modeling S and C-band optical amplification in thulium and erbium codoped fluoride fiber", Optics Communications, vol.263, p84-90,2006.
    [52]王丽丽Eu3+、Tm3+、Er3+和yb3+共掺杂氟化物纳米晶上转换发光及其动力学 的研究[学位论文].吉林大学.吉林大学.2009.12-14
    [53]P. peterka, B.faure, W. blanc, M. karasek, and B. dussardier, "Theoretical modelling of S-band thulium-doped silica fibre amplifiers," Optical and Quantum Electronics.36,201-212(2004).
    [54]J.Kani,T.Sakamoto,M.Jinno,T.Kanamori,M.Yamada,K.Oguchi.1470nm band wavelength division multiplexing transmission.Electronics Letters.1998.34(11).1118-1119
    [55]Tadashi Kasamatsu,Yutaka Yano,Takashi Ono. Gain-Shifted Dual- Wavelength-Pumped Thulium-Doped Fiber Amplifier for WDM Signals in the 1.48μm-1.51 μm Wavelength Region.IEEE PHOTONICS TECHNOLOGY LETTERS.2001.13(1).31-33
    [56]E.Snitzer.ProPosed fiber cavities for optical masers. Journal of Applied Physics, 32(1),1961:36-39
    [57]E.snitzer. Optical maser action of Nd3+ in a barium crown glass.Physical Review Letters,7(12),1961:444-446
    [58]C.J.Koester, E.SnitZer.AmPlification in a fiber laser.APPIied Optics 3 (10), 1964:1182—1186
    [59]J.Stone, C.A.Burrus.Neodymium — doped silical lasers in end—pumped fiber geometry.Applied Physics Letters,23(7),1973:388 — 389.
    [60]J.Stone, C.A.Burrus.Neodymium—doped fiber lasers:room—temperature cw operation with an injection laser pump.Applied Optics,13(6),1974:1256--1258.
    [61]L.Reekie, R.J.Mears, S.B.Poole, etal., IEEEJ.LightwaveTeehnol.4, PP956, 1986
    [62]I.M.Jauncey, L.Reekie, R.J.Mears, et al., Electron.Lett.22, PP987,1986
    [63]I.P.Aleoek, A.I.Ferguson, D.C.Hanna, andA.C.TroPPer, Opt.Lett.11, PP709, 1986
    [64]Hanna, D.C., R.M.Percival, R.G.Smart, A.C.Tropper, Efficient and tunable operation of a Tm3+ doped fiber laser, Opt commun,75,283,1990
    [65]Bmaes, W.L., J.E.Townsend, Highly tunble and efficient diode Pumped operation of Tm3+ doped fiber lasers.Electron.Lett.26,746,1990
    [66]Y. L. Ju, C. T. Wu, Z. G. Wang, Y. F. Li, and Y. Z. Wang, "High-Efficiency Composite Tm:YAG Laser", Laser Physics,2008, Vol.18, No.11, pp.1316-1318
    [67]J. Tao, Z. Yunjun, and W. Hanbin, "LD-Clad-Pumped Nanosecond Tm3+ Doped Silica Fiber Amplifier at 1.99μm", Laser Physics,2008, Vol.18, No.8, pp. 996-998
    [68]Esterowitz, L., R.Allen, I.Aggarwal, Pulsed laser emission at 2.3μm in a thulium-doped fluorozirconate fiber Electron.Lett,24,1104,1988.
    [69]J.Y.Allain, M.Monerie, H.Poigant, Tunable cw lasing around 0.82,1.48,1.88, and 2.35 μm in thulium-doped fiuorozirconate fiber Electronic Letters,2(1990), 422
    [70]H M Pask, R J Carman, D C Hanna et al..Ytterbium — doped silica fiber lasers:versatile sources for the 1-1.2μm region [J].IEEE Journal of Select Topics Quantum Electronics,1995,1(1):2-13.
    [71]周俊,董淑福,周义建,陈婉,陈国夫.2μm光纤激光器的研究进展.激光杂志.2008.29(3).1-3
    [72]GGalzerano, E.Sani and A,Toncelli. Frequency and Intensity-Noise Measurement of a Widely Tunable 2 um Tm-Ho:KYF laser [J].IEEE,2006,55(1):128-131
    [73]L.F.Johnson, J.E.Geusic and L.GVanUitert. Coherent Oscillations from Tm3+,Ho3+,Yb3+,and Er3+ in Yttrium Aluminum Garnet [J].Appl.Phy.Lett, 1965,7(5):127-129
    [74]B.M.Antipenko,A.S.Glebov,T.I.Kseleva,et al, A 2.12 um Holmium:YAG laser[J].Sov.Tech.Phy.Lett.,1985,11:284
    [75]A. Taniguchi,T.Kuwyama,A.Shirakawa, et al,1212nm pumping of 2um Tm-Ho-codoped silica fiber laser[J]. Appl.Phy.Lett,2002,81(20):3725-3725
    [76]B.Q.Yao,Y.Z.Wang and Y.I.Ju, Performance of AO Q-switched Tm,Ho:GdVO4 laser pumped by 794nm laser diode [J].Optics Express,2005,13(13):5157
    [77]姚育成,李正佳,黄楚云等,Cr, Tm, Ho:YAG激光器的研究及设计[J],应用激光,2006,26(4):239-242
    [78]陈慧敏,粟苹,闫晓鹏等,多路高功率Cr, Tm, Ho:YAG激光器技术[J].激光与红外,2006,36(10):925-926
    [79]董淑福, 陈国夫,赵尚弘等,1180nm激光抽运Tm, Ho石英光纤激光器理论研究[J].激光技术,2006,30(2):138-141
    [1]徐叙瑢,苏勉曾主编,《发光学与发光材料》,化学工业出版社,2004
    [2]杨祥林.光放大器及其应用.电子工业出版社,2000
    [3]罗遵度,黄艺东著,《固体激光材料光谱物理学》,福建科学技术出版社,2003
    [4]徐军,徐晓东,苏良碧编著,《掺镱激光晶体材料》,上海科学普及出版社,2005
    [5]W.克希耐尔著,孙文,江泽文,程国祥译,《固体激光工程》,科学出版社,2002
    [6]A.A.卡明斯基著,《激光晶体》,科学出版社,1981
    [7]Willima J.Miniscalco, Erbium-doped glasses for fiber amplifiers at 1500,IEEE J.Lightwave Technology,9(1991),234.
    [8]Michel J.F.Digonnet, Rare earth doped fiber lasers and amplifiers,
    [9]MeCumber,D.E.Theory of phonon-terminated optical masers. Phys. Rev.134:A299-A306,1964.
    [10]Wang J S, Vogel E M, Snitzer E.Tellurite glass:a new candidate for fiber deviees[J].Optmat,1994,3:187-203.
    [11]Wang J s Machewirth D P, et al.Nd-doped tellurite single-mode fiber laser[J].Optics lett,1994,19(18):1448-1449.
    [12]Ohishi Y, et al.Gain Characteristics of tellurite-based fiber amplifier for 1.5μm boradbnad amplification[J].optic lett,1998,23(4):274-276.
    [13]Jun Chang, Qingpu Wang, Xingyu Zhang, Zhejin Liu, "Modeling S and C-band optical amplification in thulium and erbium codoped fluoride fiber", Optics Communications, vol.263, p84-90,2006.
    [14]T.Kasamatsu, Y.Yano, and T.Ono, Lase-diode pumping(1.4 and 1.56μm)of gain-shitfed thulium-doped fiber amplifier, Electron.Lett.,36,1607-1609, (2000)
    [15]Jun Chang, Qing-Pu Wang, Xingyu Zhang, Zhejin Liu, Zhaojun Liu, S-bnad optical amplification by an internally generated pump in thulium ytterbium codoped fiber, Optics Express, vol,13, P3902,2005
    [16]P.Peterka, B.Faure, W.Blanc, M.Karasek, B.Dussardier"Theoertical modelling of S-bnad thulium-doped silica fiber amplifiers, "Optical and Quantum Electronics 36,201-212(2004)
    [17]Mira Naftaly shaoxiong Shen, and Animesh Jha, "Tm3+ -doped tellurite glass for a broadband amplifier at 1.47um, "Appl Opt 39,4979-4984(2000)
    [18]Hanna, D.C., R.M.Percival, R.G.Smart, A.C.Tropper, Efficient and tunable operation of a Tm3+ doped fiber laser, Opt commun,75,283,1990
    [19]Bmaes, W.L., J.E.Townsend, Highly tunble and efficient diode Pumped operation of Tm3+ doped fiber lasers.Electron.Lett.26,746,1990
    [20]Gandy H..W.,R.J.Ginther,J.F., weller, stimulated emission of Tm3+ radiation in silicate glass, J.Appl.Phys.38,3030,1967
    [21]MiraNaftaly, Shaoxiong Shen, and Animesh Jha, "Tm3+-doped tellurite glass for a broadband amplifier at 1.47um,,, Appl Opt 39,4979 — 4984(2000)
    [22]Spector, N.R.Reisfeld L boehm Eigenstates and radiative transition probability for Tm3+ in phosphate and tellurite glasses, Chem.Phys.Lett.49,49,1977.
    [23]Guery, C., J.L.Adam, J.Lucas, Optical properties of Tm3+ ions in indium-based fluoride glasses, J.Lumin.,42,181,1988.
    [24]Snaz, J.R.Cases, R.Alcala, Optical properties of Tm3+ in fluorozirconate glass, J.Non-Cryst.Solids93,377,1987.
    [22]Esterowitz, L., R.Allen, I.Aggarwal, Pulsed laser emission at 2.3μm in a thulium-doped fluorozirconate fiber Electron.Lett,24,1104,1988.
    [23]J.Y.Allain, M.Monerie, H.Poigant, Tunable cw lasing around 0.82,1.48,1.88, and 2.35μm in thulium-doped fluorozirconate fiber Electronic Letters,2(1990), 422
    [24]T.Sakamoto, M.Shimizu,.T.Kanamori, etal,1.4μm.m band gain characteristics of a Tm-Ho-doped ZBLYAN fiber amplifier pumped in the 0.8μm bnad.IEEE Photon.Technol.Lett.7(1995),983.
    [25]蒙红云,武志刚,高伟清,张昊,袁树忠,董孝义,1064m抽运掺铥光纤 放大器增益特性的理论研究,中国激光,30,783,2003
    [26]Claudio Floridia, M.T.Carvalho, S.R.Luthi, and A.S.L, Gomes, Modeling the distributed gain of single-(1050 or 1410 nm)and dual-wavelength(800+1050 nm or 800+1410nm)pumped thulium-doped fiber amplifiers, Opt.Letter 29(2004), 1983.
    [1]徐叙瑢,苏勉曾主编,《发光学与发光材料》,化学工业出版社,2004
    [2]罗遵度,黄艺东著,《固体激光材料光谱物理学》,福建科学技术出版社,2003
    [3]徐军,徐晓东,苏良碧编著,《掺镱激光晶体材料》,上海科学普及出版社,2005
    [4]W.克希耐尔著,孙文,江泽文,程国祥译,《固体激光工程》,科学出版社,2002
    [5]Bloembergen N. Phys Rev Lett,1959,2:84
    [6]Auzel F. C R Acad Sci Paris,1966,262:1016
    [7]Auzel F. C R Acad Sci Paris,1966,263:819
    [8]Auzel F.Upconversion and Anti-Stokes Processes with f and d Ions in Solids [J].Chem.Rev.,2004,104:139.
    [9]Nakazawa E, Shionoya S. Phys Rev Lett,1970,25:1710
    [10]Auzel F, Meichenin D, Pelle F, et al. Opt Mater,1994,4:35
    [11]Montoya E, Espeso O, Bausa L E, J Lummin,2000,87-89:1036
    [12]Chivian J S, Case W E, Eden D D. Appl Phys Lett,1979,35:124
    [13]Kueny A W, Case W E, Koch M E. J Opt Soc Am B,1989,6:539
    [14]王丽丽Eu3+、Tm3+、Er3+和Yb3+共掺杂氟化物纳米晶上转换发光及其动力学的研究[学位论文].吉林大学.吉林大学.2009.12-14
    [15]Shaoxiong Shen, Animesh Jha, Lihui Huang, Purushottam Joshi, "980-nmdiode-pumped Tm3+/Yb3+-codopedtellurite fiber for S-band amplification," Opt. Lett.30,1437(2005).
    [16]Jun Chang, Qingpu Wang, Xingyu Zhang, Zhejin Liu, "Modeling S and C-band optical amplification in thulium and erbium codoped fluoride fiber", Optics Communications, vol.263, p84-90,2006.
    [17]Mira Naftaly shaoxiong Shen, and Animesh Jha, "Tm3+-doped tellurite glass for a broadband amplifier at 1.47um, "Appl Opt 39,4979-4984(2000)
    [18]Wang Xunsi, Nie Qiuhua, Xu Tiefeng,Shen Xiang, Dai shixun,Gai Na, "Tm3+-doped tellurite glass with Yb3+ enengy sensitized for broadband amplifier at 1400-1700nm bands", Journal of Rare Earths, Vol 26,No.6, Dec 2008,P.907
    [19]Jun Chang, Qing-Pu Wang, Xingyu Zhang, Zhejin Liu, Zhaojun Liu, S-bnad optical amplification by an internally generated pump in thulium ytterbium codoped fiber, Optics Express, vol,13, P3902,2005
    [20]Jun Chang, Qing-Pu Wang and Gang-Ding Peng, Optical amplification in Yb3+-codoped thulium doped silica fiber Optical Material, vol.28, p1088-1094, 2006
    [21]Gandy H..W.,R.J.Ginther,J.F., weller, stimulated emission of Tm3+ radiation in silicate glass, J.Appl.Phys.38,3030,1967
    [22]Spector N. Reisfeld R.boehm L Eigenstates and radiative transition probability for Tm3+in phosphate and tellurite glasses, Chem.Phys.Lett.49,49,1977.
    [23]Guery, C., J.L.Adam, J.Lucas, Optical properties of Tm3+ ions in indium-based fluoride glasses, J.Lumin.,42,181,1988.
    [1]B.R.Judd. "Optical Absorption Intensities of Rare-Earth Ions," Phys. Rev.1962, 127.750.
    [2]G.S.Ofelt, "Intensities of Crystal Spectra of Rare-Earth Ions," J. Chem. Phys.1962, 37 (3):511.
    [3]A.A.卡明斯基著,《激光晶体》,科学出版社,1981
    [4]赵敏光,余万伦,《晶体场理论》,四川教育出版社,1988
    [5]吴光照,"Judd-Ofelt模型及其应用”,上海光机所,1994
    [6]林良书,薛燕陵,蒋器成,‘'Judd-Ofelt理论的分析与计算”,华东师范大学学报,No.3,May 2008
    [7]杨志勇,罗澜,陈玮,“稀土掺杂固体发光材料的光谱分析[J]”,光学学报,2007,27(4):598-602
    [8]张思远,毕宪章,稀土光谱理论[M],长春:吉林科学技术出社,1991:1552186.
    [9]BAI Xiaoyan, ZHANG Guochun,FU Peizhen, "Growth and Optica 1 Properties of Nd3+:NaLa9O3(BO3)8 Crystal"JOURNAL OF SYNTHETIC CRYSTALS, Vol.37,No.6,December,2008
    [10]TANABE S T,OHYAGI T,SOGA N, "Compositional dependence of Judd_Ofelt parameters of Er3+ ions in alkali-metal borate glasses [J],Phys Rev B,1992, 46(6):3305-3310,
    [11]MA KUS P, NIGEL J C,GOSNELL T R, "Spectroscopic properties of Er3+and Yb3+doped soda-lime silicate and aluminosilicate glasses [J],Phys Rev B,1997,56(15):9302-9318
    [12]TANABE S. "Optical transitions of rare earth ions for amplifiers:How the local structure works in glass [J] Journal of Non-Crystalline Solids",1999,259:1-9.
    [13]杨建虎,戴世勋,胡丽丽,等.Er3+和Yb3+共掺碲酸盐玻璃的光谱性质[J].光学学报,2003,23(2):210-215
    [14]DESURTVE E. "Erbium-Doped Fiber Amplifiers.'Principles and Applications [M]",New York:A Wiley-Interscience Publication,1994:244-247.
    [15]WEBER M J,"Probabilities for radiative and nonradiative decay of Er3+in LaF3[J]",J Phys Rev,1967,157 (2):262-272.
    [16]SEEBER W,DOWNING E A,HESSEL IN K L,"Pr3+doped fluoride glasses[J]", J Non-Crystal Solids,1995,189:218-226
    [17]DESURTVE E,"Study of the complex atomic susceptibility of erbium-doped fiber amplifiers[J].J Lightwave Technology,1990,8(10):1517-1527.
    [18]W.T.Carnall, P. R. Fields, K. Rajnak, "Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions.I.Pr3+,Nd3+,Pm3+,Sm3+,Dy3+,Ho3+,Er3+,and Tm3+, J.Chem.Phys.49 (1968) 4424-4442
    [19]N.Spector, R.Reisfeld, L.Boehm, "Eigenstates and radiative transition probabilities for Tm3+(4f12) in phosphate and tellurite glasses," Chem.Phys.Lett. 49(1) (1977) 49-53
    [1]杨祥林.光放大器及其应用.电子工业出版社,2000
    [2]Desurvire.Erbium-doped amplifiers:principles and applications[J].A Wiley-Interscience.1985.
    [3]Willima J.Miniscalco, Erbium-doped glasses for fiber amplifiers at 1500,IEEE J.Lightwave Technology,9(1991),234.
    [4]Michel J.F.Digonnet, Rare earth doped fiber lasers and amplifiers,1993
    [5]Ohishi Y, et al.Gain Characteristics of tellurite-based fiber amplifier for 1.5μm boradbnad amplification[J].optic lett,1998,23(4):274-276.
    [6]P.Peterka, B.Faure, W.Blanc, M.Karasek, B.Dussardier "Theoertical modelling of S-bnad thulium-doped silica fiber amplifiers, "Optical and Quantum Electronics 36,201-212(2004)
    [7]Mira Naftaly shaoxiong Shen, and Animesh Jha, "Tm3+ -doped tellurite glass for a broadband amplifier at 1.47μm, "Appl Opt 39,4979-4984(2000)
    [8]Auzel F. Proc. IEEE,1973,61:758
    [9]Huang S, Lai S T, Lou L, Jia W, Yen W M, Phys. Rev.,1981.B24:59
    [10]Thrash R J, Johnson L F.J. Opt.Soc.Am.,1994,B11:881
    [11]Hongyang Zhao, Jiyang Wang, Jing Li, Jianxiu Zhang, Huaijin Zhang, Minhua Jiang, "Growth, optical and thermal properties of Yb,Tm:KLu(WO4)2", Journal of Crystal Growth 293(2006)223-227
    [12]Martha Segura,Xavier Mateos,Maria Cinta Pujol.Joan Josep Carvajal,Valentin Petrov, "CW laser operation around 2-um in (Tm,Yb):KLu(WO4)2", Physics Procedia 8 (2010)157-161
    [13]G.Galzerano, E.Sani and A,Toncelli. Frequency and Intensity-Noise Measurement of a Widely Tunable 2 μm Tm-Ho:KYF laser [J].IEEE,2006,55(1):128-131
    [14]L.F. Johnson, J.E.Geusic and L.G.VanUitert. Coherent Oscillations from Tm3+,Ho3+,Yb3+,and Er3+ in Yttrium Aluminum Garnet[J].Appl.Phy.Lett,1965,7(5):127-129
    [15]B.M.Antipenko,A-S.Glebov,T.I.Kseleva,et al, A 2.12μm HolmiumrYAG laser[J].Sov.Tech.Phy.Lett.,1985,11:284
    [16]A. Taniguchi,T.Kuwyama,A.Shirakawa, et al,1212nm pumping of 2p.m Tm-Ho-codoped silica fiber laser[J]. Appl.Phy.Lett,2002,81(20):3725-3725
    [17]B.Q.Yao,Y.Z.Wang and Y.I.Ju, Performance of AO Q-switched Tm,Ho:GdVO4 laser pumped by 794nm laser diode [J].Optics Express,2005,13(13):5157
    [18]姚育成,李正佳,黄楚云等,Cr, Tm, Ho:YAG激光器的研究及设计[J],应用激光,2006,26(4):239-242
    [19]陈慧敏,粟苹,闫晓鹏等,多路高功率Cr, Tm, Ho:YAG激光器技术[J].激光与红外,2006,36(10):925-926
    [20]董淑福, 陈国夫,赵尚弘等,1180nm激光抽运Tm, Ho石英光纤激光器理论研究[J].激光技术,2006,30(2):138-141
    [21]周俊,董淑福,周义建,陈婉,陈国夫.2μm光纤激光器的研究进展.激光杂志.2008.29(3).1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700