稀土铌酸盐和钽酸盐的制备以及发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于用不同的合成方法制备稀土铌酸盐和钽酸盐荧光粉,并且提高其发光效率。具体内容如下:
     第一章为绪论,阐述了发光的基础知识、理论以及材料合成方法;第二章我们采用改进的熔碱方法,通过在反应体系中加入一定量的水,在刚玉坩埚中合成了LaKNaTaO_5以及稀土离子掺杂的LaKNaTaO_5单晶;第三章我们采用温和的水热方法首次成功合成了Lu_3TaO_7、 Lu_3NbO_7和Y_3TaO_7纳米荧光粉,由透射电镜照片得到纳米荧光粉的尺寸分别为7.5nm、5.9nm和4.0nm;第四章我们采用传统的高温固相方法合成了钙钛矿型稀土铌酸盐La_(1/3)NbO_3,并通过在La位掺杂Eu~(3+)和Sm~(3+,得到了优异的近紫外激发的发红光的荧光粉;第五章为结论与展望。
     本论文对稀土铌酸盐和钽酸盐的合成以及发光性质做了详细的研究与讨论,为该体系的进一步研究奠定了基础。
Owing to the growing importance of energy storage and environmentalfriendliness, much attention has been paid to the solid-state lightings (SSL) as thealternative to the existing lighting technologies. The white lighting emitting diodes(WLEDs) have many advantages, such as high energy efficiency, long life, goodreliability and excellent performance at low temperature. Generally, WLEDs areproduced by mixing red, green and blue (RGB) LEDs, or combining the blue LEDand yellow phosphor (Y,Gd)_3(Al,Ga)_5O_(12):Ce~(3+)or using an ultraviolet (UV)LED-stimulated RGB phosphors. By means of the three methods, WLEDs withhigh efficiency, high chromatic stability and tunable color temperature, can befabricated by UV-LED chips coated with RGB phosphors. However, the lack ofefficient red phosphors drastically hinders the development of the UV WLEDs.
     1. Pure and rare-earth-doped LaKNaTaO_5single crystals have been prepared inopen corundum crucible by adding additional water in the system. It is proved thatthe addition of water can maintain the equilibrium concentration of H_2O and O~(2-)inthe hydroxide melts and increase the solubility of the metal oxide. SEM and EDSresults of single crystals demonstrate the feasibility of the method. Compared withthe silver tube, corundum crucible is a simple and low-cost alternative to meet theidea of green chemistry. Furthermore, samples doped with Eu~(3+)and Tb~(3+)showstrong red and green PL respectively at room temperature and the PL will bestrengthened with the decrease of temperature. Besides, for samples doped withTb~(3+), the PL intensity reaches a maximum when the mole ratio of Tb~(3+)is5%. And the absolute quantum efficiencies of Eu~(3+)and Tb~(3+)doped LaKNaTaO_5are2.1%and22.9%, respectively. The excellent PL properties of LaKNaTaO_5doped withEu~(3+)and Tb~(3+)make them prospective for practical applications of red and greencomponent of WLEDs.
     2. We have successfully synthesized Lu_3TaO_7, Lu_3NbO_7and Y_3TaO_7nanophosphors by the hydrothermal method. According to the statistic analysis ofTEM images, the average size is7.5nm,5.9nm and4.0nm, respectively.Furthermore, we investigated the photoluminescence properties of Eu~(3+)-dopednanophosphors. Our results demonstrate they could be excellent red phosphorcandidate of WLEDs. The optimum doping concentration for Eu~(3+)doped Lu_3TaO_7,Lu_3NbO_7and Y_3TaO_7nanophosphors is5%,10%and5%, with the quantum yield4.3%,2.5%and1.4%, respectively. In comparison with those of Lu3MO7:Eu~(3+)(M=Ta, Nb) nanophosphors, the emission intensities of Lu3MO7:Eu~(3+)/Sr2+(M=Ta,Nb) are enhanced.
     3. Novel red-emitting Eu~(3+)-activated La_(1/3)NbO_3phosphors in the NUV regionhave been prepared by a solid-state method at high temperature. Eu~(3+)-activatedLa_(1/3)NbO_3shows red emission peak at616nm when the excitation wavelength is394nm and the CIE chromaticity coordinates locates at (0.64,0.36), which is veryclose to the standard red chromaticity for the NTSC system. We have exploredthree co-doping methods to extend the excitation bands in the NUV region, i.e. toco-doping with (1) Bi3+, for the6s→6p excitation of the bismuth ion can be used toharvest the NUV light;(2) Ca2+or Ba2+, by lowering the site symmetry of Eu~(3+)andmaking the transition parity partially permitted and (3) Sm~(3+, for the~6H_(5/2)→~4K_(11/2)transition of Sm~(3+is in the NUV region ca404nm. The high absorption and strongexcitation bands of a family of Eu~(3+)-activated La_(1/3)NbO_3phosphors in the range of370-410nm are very favorable properties for the applications as red component oftricolor NUV WLEDs.
     La_(1/3)NbO_3:Sm~(3+phosphor was synthesized by solid state reaction at hightemperature and its photoluminescence properties were investigated. Its strongestexcitation band is centered at406nm, ascribed to~6H_(5/2)→~4K_(11/2)transition of Sm~(3+,in the range of near-Ultraviolet region (NUV,365-410nm). And its strongest emission peak is at596nm, attributed to4~G_(5/2)→~6H_(7/2)transition of Sm~(3+. As a result,La_(1/3)NbO_3:Sm~(3+)phosphor shows great potential for future application as alternativered-emitting NUV-based white LEDs. The luminescence intensity can be stronglyenhanced by co-doping cation in the La-site, namely Sr~(2+), Ba~(2+)and Bi~(3+).
引文
[1] Q.F. Zhang, C.S. Dandeneau, X.Y. Zhou, G.Z. Cao, Adv. Mater.2009,21,4087.
    [2] R.J. Xie and N. Hirosaki, Sci. Technol. Adv. Mater.2007,8,588.
    [3] G. Fasol, S. Nakamura, The Blue Laser Diode: GaN Based Blue Light Emittersand Lasers, Springer, Berlin,1997.
    [4]刘坚斌,李培咸,郝跃,量子电子学报,2005,22,673.
    [5] M. Nyman, M.A. Rodriguez, L.E.S. Rohwer, J.E. Martin, M. Waller, F.E.Osterloh, Chem. Mater.2009,21,4731.
    [6] R. Abe, M. Higashi, K. Sayama, Y. Abe, H. Sugihara, J. Phys. Chem. B2006,110,2219.
    [7] R. Abe, M. Higashi, Z.G. Zou, K. Sayama, Y. Abe, H. Arakawa, J. Phys. Chem.B2004,108,811.
    [8] M. Machida, J. Yabunaka, T. Kijima, Chem. Mater.2000,12,812.
    [9] R. Haugsrud, T. Norby, Nat. Mater.2006,5,193.
    [10] E. N. Harvey, A History of Luminescence. From the Earliest Times Until1900,American Philosophical Society, Philadelphia,1957.
    [11] J-C. G. Bunzli and C. Piguet, Chem. Soc. Rev.2005,34,1048.
    [12] S.V. Eliseeva, J-C G. Bunzli, Chem. Soc. Rev.2010,39,189.
    [13] J. Rocha, L.D. Carlos, F.A.A. Paz, D. Anaias, Chem. Soc. Rev.2011,40,926.
    [14] C.M. Zhang, J. Lin, Chem. Soc. Rev.2012,41,7938.
    [15] C. Feldmann, T. Justel, C.R. Ronda, P.J. Schmidt, Adv. Funct. Mater.2003,13,511.
    [16] A. Huignard, T. Gacoin, J-P Boilot, Chem. Mater.2000,12,1090.
    [17] D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J.Ludowise, P.S. Martin and S.L. Rudaz, IEEE J. Sel. Top. Quant.2002,8,310.
    [18] J.K. Sheu, S.J. Chang, C.H. Kuo, Y.K. Su, L.W. Wu, Y.C. Lin, W.C. Lai, J.M.Tsai, G.C.Chi and R.K. Wu, IEEE Photonic Tech. Lett.2003,15,18.
    [19] M.S. Shur and A. Zukauskas, Proc. IEEE2005,93,1691.
    [20] J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, S.I. Mho and G.C. Kim, Appl. Phys.Lett.2004,84,2931.
    [21] W.J. Yang and T.M. Chen, Appl. Phys. Lett.2006,88,101903.
    [22] W.J. Yang, L.Y. Luo, T.M. Chen and N.S. Wang, Chem. Mater.2005,17,3883.
    [23] S.K. Jong, T.L. Kwon, S.J. Yong, E.J. Pyung, C.C. Jin and L.P. Hong, SolidState Commun.2005,135,21.
    [24] M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G.Harbers and M.G. Craford, J. Display Technol.2007,3,160.
    [25] W.M.Y. Shigeo Shionoya, Phosphor Handbook, CRC Press, Boca Raton,1999.
    [26] K. Mayes, A. Yasan, R. McClintock, D. Shiell, S.R. Darvish, P. Kung and M.Razeghi, Appl. Phys. Lett.2004,84,1046.
    [27] T. Wang, P.J. Parbrook, C.N. Harrison, J.P. Ao and Y. Ohno, J. Cryst. Growth2004,267,583.
    [28] S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T.Koyama, P.T.I. Vurgaftman, J.R. Meyer and L.R. Ram-Mohan, J. Appl. Phys.2001,89,5815.
    [29] Y.Q. Li, A. Delsing, G. de With and H.T. Hintzen, Chem. Mater.2005,17,3242.
    [30] J.G. Wang, X.P. Jing, C.H. Yan, J.H. Lin and F.H. Liao, J. Lumin.2006,121,57.
    [31] S. Ye, C.H. Wang, Z.S. Liu, J. Lu and X.P. Jing, Appl. Phys. B2008,91,551.
    [32] S. Ye, Z.S. Liu, X.T. Wang, J.G. Wang, L.X. Wang and X.P. Jing, J. Lumin.2009,129,50.
    [33] P. Dorenbos, Phys. Rev. B2002,65,235110.
    [34] C. Benelli, D. Gatteschi, Chem. Rev.,2002,102(6),2369.
    [35] P. Dorenbos, J.Lumin.,2000,91,155.
    [36] W. Crookes, Philos. Trans. R. Soc. London, Ser. A,1885,176,691.
    [37] G. Urbain, Ann. Chim. Phys., Ser.,1909,18,222.
    [38] G. Blassed, A. Bril, J. Chem. Phys.,1968,48,3652.
    [39] L.X. Yu, H.W. Song, S.Z. Lu, Z.X. Liu, L.M. Yang, X.G. Kong, J. Phys. Chem.B2004,108,16697.
    [40] N. Yocom, R.S. Meltzer, K.W. Jang, M. Grimm, Jounal of the SID,1996,4,169.
    [41] N. Dubnikova, E. Garskaite, A.Beganskiene, A.Kareiva, Opt. Mater.,2011,33,1179.
    [42] E.G. Moore, A.P.S. Samuel, K.N. Raymond, Acc. Chem. Res.,2009,42(4),542.
    [43] Cox, P. A. The Elements, Their Origin, Abundance and Distribution; OxfordUniversity Press: Oxford, U.K.,1989.
    [44] M. Seitz, A.G. Oliver, K.N. Raymond, J. Am.Chem. Soc.,2007,129,11153.
    [45] F.S. Richardson, Chem. Rev.1982.82.541.
    [46] G.B. Giovenzana, Z. Baranyai, S. Aime, C. Cavallotti, D. Imperio, G.Palmisano, Polyhedron2008,27,3683.
    [47] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.,1968,49,4450.
    [48] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.,1968,49,4424.
    [49] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.,1968,49,4447
    [50] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.,1968,49,4443.
    [51] L. Ozawa, M. Itoh, Chem. Rev.,2003,103,3835.
    [52] R. T. Wegh, H. Donker, K. D. Oskam and A. Meijerink, Science,1999,283,663.
    [53] Z.Q Zhang, H. Liang, H. Ming, Q.J. Zhang, X.H. Han, G.Z. Wang, J.P. Xie,Chin.Phys.Lett.,2004,21,291.
    [54] M.A. Aebersold, H.U. Gudel, A. Furrer, H. Blank, Inorg. Chem.,1994,33,1133.
    [55] M. Nikl, A.M. Begnamin, V. Jary, D. Niznansky, E. Mihokova, Phys. StatusSolidi RRL3,2009,9,293.
    [56] V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, J.A. Capobianco, Adv.Mater.2009,21,4025.
    [57] W.K. Wong, H.Z. Liang, J.P. Guo, W.Y. Wong, W.K. Lo, K.F. Li, K.W.Cheah, Z.Y. Zhou, W.T. Wong, Eur. J. Inorg. Chem.,2004,829.
    [58] N. Guo, Y. J. Huang, H. P. You, M. Yang, Y. H. Song, K. Liu, Y. H. Zheng,Inorg. Chem.2010,49,10907.
    [59] C. H. Huang, W. R. Liu, T. M. Chen, J. Phys. Chem. C2010,114,18698.
    [60] N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, H.J. Zhang, J. Mater. Chem.2010,20,9061.
    [61] C. F. Guo, J. Yu, X. Ding, M. Li, Z. Y. Ren, J. T. Bai, J. Electrochem. Soc.2011,158(2), J42.
    [62] C. H. Huang, T. M. Chen, J. Phys. Chem. C2011,115(5),2349.
    [63] G. G. Zhang, J. Wang, Y. Chen, Q. Su, Opt. Lett.2010,35,2382.
    [64] H. Y. Jiao, Y. H. Wang, J. Electrochem. Soc.2009,156(5), J117.
    [65] A.G.Macedo, R. A. S. Ferreira, D. Ananias, M. S. Reis, V. S. Amaral, L. D.Carlos, J. Rocha, Adv. Funct. Mater.2010,20,624634.
    [66] G. H. Jia, P. A. Tanner, J. Alloys Compd.2009,471,557.
    [67] M.M. Shang, D.L. Geng, X.J. Kang, D.M. Yang, Y. Zhang, J. Lin, Inorg.Chem.2012,51,11106.
    [68] L. Yang, G.G. Li, C. Peng, C.X. Li, C.M. Zhang, Y. Fan,Z.H. Xu, Z.Y. Cheng,J. Lin, J.Solid State Chem.2010,183,451–457.
    [69] G. Blasse, Philips Res. Rep.1969,24,131144.
    [70] R. Reisfeld, E. Greenberg, R. Velapoldi, B. Barnett, J. Chem. Phys.1972,56,1698.
    [71] C. H. Huang, T. W. Kuo, T. M. Chen, ACS Appl. Mater. Interfaces2010,2,1395.
    [72] M. Machida, J. Yabunaka,;T. Kijima, Chem. Mater.2000,12,812.
    [73] K.Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato, K. Toda, Chem. Mater.2005,17,5161.
    [74] F. E. Osterloh, Chem. Mater.2008,20,35.
    [75] R. Abe, M. Higashi, Z. G. Zou, K. Sayama, Y. Abe, H. Arakawa, J. Phys.Chem. B2004,108,811.
    [76] R. Haugsrud, T. Norby, Nat. Mater.2006,5,193.
    [77] T. Mokkelbost,. Andersen, R. A. Strom, K. Wiik, T. Grande, M. Einarsrud, J.Am. Ceram. Soc.2007,90,3395.
    [78] G. Blasse, M. J. J. Lammers, H. C. G. Verhaar, J. Solid State Chem.1985,60,258.
    [79] Graham, J. Am. Mineral.1974,59,1045.
    [80] L. H. Brixner, H. Chen, J. Electrochem. Soc.1983,130,2435.
    [81] Y. J. Hsiao, T. H. Fang, Y. S Chang, Y. H. Chang, C. H. Liu, L.W. Ji, W. Y.Jywe, J. Lumin.2007,126,866.
    [82] K. Toda, M. Honda, Y. Ishimoto, M. Sato, Ceram. Soc. Jpn.2000,181-182,217.
    [83] B.Yan, X. J. Xiao, Alloys Compd.2007,433,251.
    [84] B. Yan, X. Z. Xiao, Opt. Mater.2006,28,498.
    [85] I. P.Roof, S. Park, T. Vogt, V. Rassolov, M. D. Smith, S. Omar, J. Nino, H. C.zur Loye, Chem. Mater.2008,20,3327.
    [86] M. Machida, J-I. Yabunaka, T. Kijima, Chem. Mater.2000,12,812.
    [87] M. Machida, M. Murakami, S. Kijima, T. J.Phys. Chem. B2001,105,3289.
    [88]A. I. KomLov. Dokl. Akad. Nauk. SSSR1959,126,853.
    [89] A. Kudo, Chem. Mater.1997,9,664.
    [90] D. Elwell, H.J. Scheel, Crystal Growth from High-Temperature Solutions,Academic Press, New York,1975.
    [91] S.J. Mugavero III, M.D. Smith, H.C. zur Loye, Solid State Sci.2007,9,555.
    [92] S.J. Mugavero III, W.R. Gemmill, I.P. Roof, H.C. zur Loye, J. Solid StateChem.2009,182,1950.
    [93] W. Sundermeyer, Angew. Chem.1965,77.241.
    [94] H.-C. zur Loye, T.J. Hansen, Q. Zhao, S.J. Mugavero III, R.L. Withers, M.D.Smith, Inorg. Chem.2009,48,414.
    [95] H.Z. Lux, Electrochem. Angew. Phys. Chem.1939,45,303.
    [96] B. Tremillon, R.G. Doisneau, J. Chim. Phys. Phys. Chim. Biol.1974,71,1379.
    [97] B. Tremillon, Pure Appl. Chem.1971,25,395.
    [98] I.P. Roof, T.C. Jagau, W.G. Zeier, M.D. Smith, H.C. zur Loye, Chem. Mater.2009,21,1955.
    [99] I.P. Roof, M.D. Smith, H.C. zur Loye, J. Solid State Chem.2010,12,759.
    [100] I.P. Roof, M.D. Smith, S. Park, H.C. zur Loye, J. Am. Chem. Soc.2009,131,4202.
    [101] I.P. Roof, S. Park, T. Vogt, V. Rassolov, M.D. Smith, S. Omar, J. Nino, H.C.zur Loye, Chem. Mater.2008,20,3327.
    [102] I.P. Roof, M.D. Smith, H.C. zur Loye, J. Crystal Growth.2008,310,240.
    [103] M. Nyman, T.M. Anderson, P.P. Provencio, Cryst. Growth Des.2009,8,1036.
    [104] T. M. Anderson, M. A. Rodriguez, F. Bonhomme, J. Bixler, T. M. Alam, M.Nyman, Dalton Trans.2007,4517.
    [105] M. Nyman, M.A. Rodriguez, T.M. Alam, T.M. Anderson, A. Amnrosini,Chem. Mater,2009,21,2201.
    [106] M. Nyman, M.A. Rodriguez, L.E. Shea-Rohwer, J.E. Martin, P.P. Provencio,J. Am.Chem.Soc.2009,131,11652.
    [107] M. Nyman, Dalton Trans.,2011,40,8049.
    [108] M. Nyman, M.A. Rodriguez, L.E.S. Rohwer, J.E. Martin, M. Waller, F.E.Osterloh, Chem. Mater.2009,21,4731.
    [109] R. Haugsrud, T. Norby, Nat. Mater.2006,5,193.
    [110] Y. J. Hsiao, T. H. Fang, Y. S. Chang, Y. H. Chang, C. H. Liu, L. W. Ji, W. Y.Jywe, J. Lumin.2007,126,866.
    [111] V. Thangadurai, S. Adams, W. Weppner, Chem. Mater.2004,16,2998.
    [1] I.P. Roof, M.D. Smith, S. Park and H.-C. zur Loye, J.Am.Chem.Soc.2009,131,4202-4203.
    [2] T.C. Ozara, K. Fukuda, K. Akatsuka, Y. Ebina and T. Sasaki, Chem. Mater.2007,19,6575-6580.
    [3] A. Kudo, Chem. Mater.1997,9,664-669.
    [4] G.L. Frey, K. J. Reynolds and R.H. Friend, Adv. Mater.2002,14,265-268.
    [5] K.I. Shimizu, Y. Tsuji, T. Hatanachi, K. Toda, T. Kodama, M. Sato and Y.Kitayama, Phys.Chem.Chem.Phys.2004,6,1064-1069.
    [6] M.A. Bizeto, R.L. Constantino Vero and H.F. Brito, J.Alloys.Compd.2000,311,159-168.
    [7] A.M. Srivastava and W.W. Beers, J. Lumin.1999,81,293-300.
    [8] A.M. Srivastava, Mater. Res. Bull.2002,37,745-751.
    [9] M. Bharathy, V.A. Rassolov and H.-C. zur Loye, Chem. Mater.2008,20,2268-2273.
    [10] S. Ida, C. Ogata, U. Unal, K. Izawa, T. Inoue, O. Altuntasoglu and Y.Matsumoto, J.Am.Chem.Soc.2007,129,8956-8957.
    [11] S. Ida, C. Ogata, M. Eguchi, W.J. Youngblood, T.E. Mallouk and Y.Matsumoto, J. Am. Chem. Soc.2008,130,7052-7059.
    [12] I.P. Roof, T.-C. Jagau, W.G. Zeier, M.D. Smith and H.-C. zur Loye, Chem.Mater.2009,21,1955-1961.
    [13] I.P. Roof, S. Park, T. Vogt, V. Rassolov, M.D. Smith, S. Omar, J. Nino and.-C.zur Loye, Chem. Mater.2008,20,3327-3335.
    [14] R.J. Cavazos and R.E. Schaak, Mater. Res. Bull.2004,39,1209-1214.
    [15] K. Toda, T. Teranishi, Z.-G. Ye, M. Sato and Y. Hinatsu, Mater. Res. Bull.1999,34,971-982.
    [16] C.Y. Xu, L. Zhen, R. Yang and Z.L. Wang, J.Am.Chem.Soc.2007,129,15444-15445.
    [17] J.-H. Liao and M.-C. Tsai, Cryst. Growth Des.2002,2,83-85.
    [18] S.J. Mugavero III, W.R. Gemmill, I.P. Roof and H.-C. zur Loye, J. Solid. State.Chem.2009,182,1950-1953.
    [19] T.-C. Jagau, I.P. Roof, M.D. Smith and H.-C. zur Loye, Inorg. Chem.2009,48,8220-8226.
    [20] W.R. Gemmill, M.D. Smith and H.-C. zur Loye, Inorg. Chem.2007,46,2132-2138.
    [21] I. P. Roof, M.D. Smith and H.-C. zur Loye, Solid State Sciences.2010,12,759-764.
    [22] G. Blasse and L.G. De Haart, J. Mater. Chem. Phys.1986,14,481-484.
    [23] G. Blasse and L.H. Brixner, Mater. Res. Bull.1989,24,363-366.
    [24] K.I. Shimizu, S.Itoh, T. Hatamachi, T. Kodama, M. Sato and K. Toda,Chem.Mater.2005,17,5161-5166.
    [25] G. Gasparotto, S.A.M. Lima, M.R. Davolos, J.A. Varela, E. Longo and M.A.Zaghete, J.Lumin.2008,128,1606-1610.
    [26] H.H. Huang and B. Yan, Inorg. Chem. Comm.2004,7,919-922.
    [27] Y.P. Naik, M. Mohapatra, N.D. Dahale, T.K. Seshagiri, V. Natarajan and S.V.Godbole, J. Lumin.2009,129,1225-1229.
    [28] B. Grobelna, J. Alloys. Compd.2007,440,265-269.
    [29] A. Chakhovskoi, C. Hunt, M. Malinowski, T. Felter,A. Talin, J. Vac. Sci.Technol. B1997,15,507.
    [1] S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Materials Science andEngineering R.2010,71,1.
    [2] T. Silu, L. Lu, Y. Junsheng, J. Yadong, Z. Yechun, L. Chun-Sing, L.Shuit-Tong, Z. Xiaohong, K. Ohyun, Chem. Mater.2009,21,1284.
    [3] T. Kohsei, H. Naoto, X. Rong-Jun,; Masamichi, H.; Ken-ichi, Y. Appl. Phys.Lett.2007,91,091923.
    [4] L. Lihong, X. Rong-Jun, H. Naoto, T. Takashi, L. Jiguang, S. Xudong, J. Am.Ceram. Soc.2009,92,2668.
    [5] X. Rong-Jun, H. Nanto, Science and Technology of Advanced Materials2007,8,588.
    [6] J. Zhenghua, W. Ruiping, G. Xiuping, L. Weisheng, P. Chaoran, Opt. Mater.2011,33,909.
    [7] Y.Q. Li, A.C.A. Delsing, G. de With, H.T. Hintzen, Chem. Mater.2005,17,3242.
    [8] X.Y. Yang, J. Liu, H. Yang, X.B. Yu, Y.Z. Guo, Y.Q. Zhao, J.Y. Liu, J. Mater.Chem.2009,19,3771.
    [9] A.A. Setlur, W.J. Heward, M.E. Hannah, U.Happek, Chem. Mater.2008,20,6277.
    [10] T. Grzyb, A. Szczeszak, J. Rozowska, J. Legendziewicz,; Lis, S. J. Phys. Chem.C2012,116,3219.
    [11] X.Z. Xiao, B. Yan, Y.S. Song, Crystal Growth&Design2009,9,136.
    [12] J. Lin, Q. Su, J. Mater. Chem.1995,5,1151.
    [13] H-S. Qian, Y. Zhang, Langmuir2008,24,12123.
    [14] H. Tong, J.H. Ye, Eur. J. Inorg. Chem.2010,1473.
    [15] P.Y. Jia, X.M. Liu, G.Z. Li, M. Yu, J. Fang, J. Lin, Nanotechnology.2006,17,734.
    [16] M.M. Haque, D.K. Kim, Mater. Lett.2009,63,793.
    [17] L.R. Matthews, E.T. Knobbe, Chem. Mater.1993,5,1697.
    [18] C.X. Li, X.M. Liu, P.P. Yang, C.M. Zhang, H.Z. Lian, J. Lin, J. Phys. Chem. C2008,112,2904.
    [19] J. Yang, Z.W. Quan, D.Y. Kong, X.M. Liu, J. Lin, Crystal Growth&Design,2007,7,730.
    [20] Y. Tian, X.H. Qi, X.W. Wu, R.N. Hua, B.J. Chen, J. Phys. Chem. C2009,113,10767.
    [21] C.T. Reimann, R.E. Johnson, Phys. Review Lett.1984,53,600.
    [22] B. Ludolph, M.A. Malij, Chem. Commun.1998,0,1849.
    [23] G.C. Bleier, M. Nyman, L.E.S. Rohwer, M.A. Rodriguez, J. Solid State Chem.2011,184,3221.
    [24] M. Nyman, M.A. Rodriguez, T.M. Alam, T.M. Anderson, A. Ambrosini, Chem.Mater.2009,21,2201.
    [25] M. Nyman, M.A. Rodriguez, L.E. Shea-Rohwer, J.E. Martin, P.P. Provencio, J.Am. Chem. Soc.2009,131,11652.
    [26] T.M. Anderson, M.A. Rodriguez, F. Bonhomme, J.N. Bixler, T.M. Alam, M.Nyman, Dolton Trans.2007,4515.
    [27] M. Filowitz, R.K.C. Ho, W.G. Klemperper, W. Shun, Inorg. Chem.1979,18,93.
    [28] G. Gasparotto, S.A.M. Lima, M.R. Davolos, J.A. Varela, E. Longo, M.A.Zaghete, J. Lumin.2008,128,1606.
    [29] S.C. Qu, W.H. Zhou, F.Q. Liu, N.F. Chen, Z.G. Wang, Appl. Phys. Lett.2002,80,3605.
    [30] G.F. Wang, Q. Peng, J.Solid State. Chem.2011,184,59.
    [31] G.F. Wang, W.P. Qin, D.S. Zhang, L.L. Wang, G.D. Wei, P.F. Zhu, R.J. Kim,J. Phys. Chem. C2008,112,17042.
    [1] Q. F. Zhang, C. S. Dandeneau, X. Y. Zhou,G. Z. Cao, Adv. Mater.,2009,21,4087-4108.
    [2] R. J. Xie,N. Hirosaki, Sci. Technol. Adv. Mater.,2007,8,588-600.
    [3]杨志平,杨广伟,王少丽,田晶,李盼来,李旭.高等学校化学学报,2007,28(9),1631-1633.
    [4] M. P. Saradhi,U. V. Varadaraju, Chem. Mater.,2006,18,5267-5272.
    [5] B. W. D. Andrade,S. R. Forrest, Adv. Mater.,2004,16(18),1585-1595.
    [6] C. J. Humphreys, MRS BULLETIN,2008,33,459-470.
    [7] S. Neeraj, N. Kijima,A. K. Cheetham, Chem.Phys.Lett.,2004,387,2-6
    [8]杨雄发,杨琳琳,曹诚,朱小飚,华西林,郑群亮,宋广鑫,吴连斌,来国桥.高等学校化学学报,2012,33(5),1078-1083
    [9] S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma and Q.Y. Zhang, Materials Science andEngineering R.2010,71,1–34.
    [10] J.G. Wang, X.P. Jing, C.H. Yan, J.H. Lin and F.H. Liao, J. Lumin.2006,121,57-61.
    [11] S. Ye, Z.S. Liu, J.G. Wang and X.P. Jing, Mater. Res. Bull.2008,43,1057-1065.
    [12] K.S. Sohn, D.H. Park, S.H. Cho, J.S. Kwak and J.S. Kim, Chem. Mater.2006,18,1768-1772.
    [13] R. Selomulya, S. Ski, K. Pita, C. H. Kam, Q. Y. Zhang,S. Buddhudu, Mater.Sci. Eng. B,2003,100,136-141.
    [14] A. Xie, X. M. Yuan, S. J. Hai, J. J. Wang, F. X. Wang, L. Li, J. Phys. D: Appl.Phys,2009,42,105107-105109.
    [15] C. J. Duan, A. C. A. Delsing,H. T. Hintzen, Chem. Mater.,2009,21,1010-1016.
    [16] P. Y. Jia, X. M. Liu, G. Z. Li, M. Yu, J. Fang,J. Lin, Nanotechnology,2006,17,734–742.
    [17] M. M. Haque,D. K. Kim, Mater. Lett,2009,63,793–796.
    [18] R. Selomulya, S. Ski, K. Pita, C.H. Kam, Q.Y. Zhang and S. Buddhudu, Mater.Sci. Eng. B.2003,100,136-141.
    [19] C.J. Duan, A.C.A. Delsing and H.T. Hintzen, Chem. Mater.2009,21,1010-1016.
    [20] A. Xie, X.M. Yuan, S.J. Hai, J.J. Wang, F.X. Wang and L. Li, J. Phys. D: Appl.Phys.2009,42,105107.
    [21] P.Y. Jia, X.M. Liu, G.Z. Li, M. Yu, J. Fang and J. Lin, Nanotechnology.2006,17,734–742.
    [22] M.M. Haque and D.K. Kim, Mater. Lett.2009,63,793–796.
    [23] Y. Xiao, Z.Y. Gao, D.P. Wu, Y. Jiang, N. Liu, K. Jiang, Chem. Res. ChineseUniversities,2011,27(6),919-923.
    [24] Z. L. Wang, H. B. Liang, L.Y. Zhou, H. Wu, M. L. Gong, Q. Su,Chem.Phys.Lett.,2005,412,313-316.
    [25] M. Thomas, P. P. Rao, M. Deepa, M. R. Chandran, P. Koshy, J. Solid StateChem.,2009,182,203-207.
    [26] S. Ye, Z. S. Liu, X. T. Wang, J.G. Wang, L. X. Wang, X. P. Jing, J. Lumin.,2009,129,50-54.
    [27] S. L. Yuan, Y. X. Yang, X. H. Zhang, F. Tessier, F. Chevire, Adam Jean-Luc,B. Moine, G. R. Chen, Opt.Lett.,2008,33(23),2865-2867.
    [28] S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, X. J. Wang, J. Appl.Phys.,2007,101,033513-033515.
    [29] C.B. Liu, L. Wang, M. Liu, C.B. Li, C.M. Li, G.B. Che, B. Su, Chem. Res.Chinese Universities,2012,28(3),503-506.
    [30] G. H. Lee, T. H. Kim, C. Yoon, S. Kang, J. Lumin.,2008,128,1922-1926.
    [31] Z. L. Wang, H. B. Liang, L.Y. Zhou, J. Wang, M. L. Gong, Q. Su, J. Lumin.,2008,128,147-154.
    [32] A. Kudo, Chem. Mater.1997,9,664-669.
    [33] T.C. Ozawa, K. Fukuda, K. Akatsuka, Y. Ebina and T. Sasaki, Chem. Mater.2007,19,6575-6580.
    [34] M.A. Bizeto, V.R.L. Constantino and H.F. Brito, J. Alloys Compd.2000,311,159–168.
    [35] Y.Y. Zhou, Z.F. Qiu, M.K. Lv, Q. Ma, A.Y. Zhang, G.J. Zhou, H.P. Zhang andZ.S. Yang, J. Phys. Chem. C.2007,111,10190-10193.
    [36] I.P. Roof, T.C. Jagau, W.G. Zeier, M.D. Smith and H-C zur Loye, Chem.Mater.2009,21,1955-1961.
    [37] J.H. Hong, Z.G. Zhang, C.J. Cong and K.L. Zhang, J. Non-Cryst. Solids.2007,353,2431–2435.
    [38] S. Ye, C. H. Wang and X.P. Jing, J. Electrochem. Soc.2009,156, J121-J124.
    [39] F.B. Cao, Y.W. Tian, Y.J. Chen, L.J. Xiao and Q. Wu, J. Lumin.2009,129,585–588.
    [40] G-H. Lee, T-H. Kim, C. Yoon and S. Kang, J. Lumin.2008,128,1922-1926.
    [41] Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata and D.Mori, Inorg. Chem.2011,50,5389-5395.
    [42] J.Y. Park, H.C. Jung, G.S.R. Raju, B.K. Moon, J.H. Jeong and J.H. Kim, SolidState Sciences.2010,12,719-724.
    [43] R. Hord, H.Luetkens, G. Pascua, A. Buckow, K. Hofmann, Y. Krockenberger,J. Kurian, H. Maeter, H.-H Klauss, V. Pomjakushin, A. Suter, B. Albert and L.Alff, Physical Review B.2010,82,180508-1—180508-4.
    [44] Y. Jin, J.H. Zhang, S.Z. Lv, H.F. Zhao, X. Zhang and X.J. Wang, J. Phys.Chem. C.2008,112,5860-5864.
    [45] X.Y. Wu, Y.J. Liang, M.Y. Liu, R. Chen and Y.Z. Li, J. Rare Earths.2010,28,688-691.
    [46] B.C. Cheng, S.C. Qu, H.Y. Zhou and Z.G. Wang, Nanotechnology.2006,17,2982-2987.
    [47] C-H. Liang, Y-C. Chang and Y-S. Chang, Appl. Phys. Lett.2008,93,211902-211904.
    [48] J-C. Park and H-K. Moon, Appl. Phys. Lett.2000,77,2162-2164.
    [49] Z.Y. Mao, D.J. Wang, Q.F. Lu, W.H. Yu and Z.H. Yuan, Chem.Commun.2009,346-348.
    [50] P. Boutinaud, E. Cavalli and M. Bettinelli, J. Phys.: Condens. Matter.2007,19,386230(11pp).
    [51] G.F. Wang, W.P. Qin, D.S. Zhang, L.L. Wang, G.D. Wei, P.F. Zhu and R. Kim,J. Phys. Chem. C,2008,112,17042-17045.
    [52] P.R. Biju, G.A. Kumar, G. Jose and N.V. Unnikrishnan, Bull. Mater. Sci.1998,21,415-419.
    [53] Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, Y. J. Lin, J. Alloys. Compd.,2007,439,367-375.
    [54] S. Ye, C. H. Wang, X. P. Jing, J. Electrochem. Soc.,2009,156(6): J121-J124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700