TiC增强相对Mo合金力学性能与显微组织的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化物增强钼合金由于具有良好的室温强韧性、高温强度和高的再结晶抗力等优良的力学性能,可在高温、高应力等条件下稳定服役,是应用于新一代高速飞行器动力系统、火箭推进器及其供能系统的一种颇具发展潜力的耐热钼材。
     本论文在Mo-Ti合金的基础上,引入TiC增强相,探索TiC的添加对Mo-Ti合金力学性能及显微组织的影响,同时对碳化物相在钼基体中的强化作用进行讨论。
     由此,本实验采用粉末冶金方法制备TiC成分在0.05-0.25wt.%及2-12wt.%内的Mo-Ti-TiC合金,测试合金的室温及800℃下的拉伸性能,并对合金的显微组织形貌进行表征。研究结果如下:
     (1)微量TiC(0.05-0.25wt.%)的添加使得Mo-Ti合金的强度得到了提高。其中,TiC的添加量为0.05wt.%时,Mo-Ti-TiC合金的强度最高,强度较Mo-Ti合金提高31.7%。
     (2)微量TiC在Mo-Ti-(0.05~0.25wt.%)TiC合金中形成0.5~1.5μm的(Ti,Mo)xOyCz的第二相粒子,起到净化晶界氧及细化晶粒作用,合金的晶粒尺寸随着TiC添加量的增加而降低。
     (3)高TiC含量(2~12wt.%)的Mo-Ti-TiC合金具有更为良好的力学性能,当TiC含量为4wt.%时,1920℃烧结的Mo-Ti-TiC合金的室温及800℃拉伸强度均达到最高,分别为700MPa和476MPa。800℃下拉伸,Mo-Ti-2TiC和Mo-Ti-4TiC合金存在明显屈服现象,屈服强度分别为325MPa及410MPa, TiC含量较高的Mo-Ti-6TiC和Mo-Ti-8TiC合金无屈服现象,为典型的脆断。
     (4)随着TiC含量的提高,Mo-Ti-(2~12wt.%)TiC合金中的碳化物相数量增多,尺寸变大,从而使得合金的晶粒尺寸降低,硬度提高。
Carbide reinforced molybdenum alloys are novel heat-resistance Mo-based materials developed for high temperature applications. Attributed to their high strength and toughness as well as resistance to recrystallization in high temperature, carbide reinforced molybdenum alloys are considered as promising candidate for high temperature structural materials used in future aerospace, nuclear power and military industries.
     This research aims to investigate the effects of TiC content on the mechanical properties and microstructure of TiC reinforced Mo-Ti-TiC molybdenum alloy and discuss the strengthening mechanism of the carbide phase in molybdenum matrix.
     Mo-Ti-TiC alloys were fabricated via Powder Metallurgy methods. The content of TiC was in the rage of 0.05-0.25wt.%and 2~12wt.%. Tensile properties of the alloys were tested and the microstructures of the alloys were characterized in terms of fracture morphology, grain size, as well as distribution and chemical composition of the carbide phase.
     (1) It is indicated in the result that tensile strength of Mo-Ti alloy is effectively enhanced by adding trace TiC (0.05-0.25wt.%). Mo-Ti-TiC with 0.05wt.%TiC in addition exhibits the highest tensile strength, which is 31.7.% higher than Mo-Ti alloy.
     (2) TiC particles form (Ti,Mo)xOyCz second phase particles during high temperature sintering. The number of second phase particles in the alloy increase with the rise of TiC content, which leads to the decrease of grain sizes since the second phase particles can inhibit the grain growth. Additionally, due to the affinity of TiC to oxygen at high temperature, TiC particles can suppress the oxygen segregation to the grain boundary.
     (3) Sintered at the temperature of 1920℃, Mo-Ti-TiC alloys with 2-12wt%TiC in addition show excellent mechanical properties both at room temperature (RT) and at 800℃. The highest tensile strengths of Mo-Ti-(2-12wt.%) TiC are obtained when 4wt.%TiC are added, which are 700MPa (RT) and 476MPa (800℃). The tensile load-displacement curves of Mo-Ti-2TiC and Mo-Ti-4TiC alloys at 800℃show obvious yield point elongation, with the yield strengths of 325MPa and 410MPa respectively. No sign of yielding is observed in Mo-Ti-6wt.%TiC and Mo-Ti-8wt.%TiC alloys which fracture immediately after elastic deformation.
     (4) With the increase of TiC content, the size and quantity of the carbide phases in Mo-Ti-(2-12wt.%)TiC alloy increase, thus leads to the decrease of the grain size and the increase of the hardness of the alloys.
引文
[1]向铁根.钼冶金[M].长沙:中南大学出版社,2002.
    [2]曹维成,刘静,任宜霞.掺杂不同微量元素对钼材性能的影响[J].稀有金属快报,2006,25(8):29-31.
    [3]B.V. Cockeram. The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum-0.5pct titanium-0.1pet zirconium (TZM), and oxide dispersion strengthened (ODS)molybdenum[J]. Materials Science and Engineering A,2006,418:120~136
    [4]韩强,赵宝华.TZCR钼顶头的研制及外形设计[J].中国钼业,2002,26(3):19-21.
    [5]殷为宏.现代高科技中的钼[J].中国钼业,1997,21(2,3):27-33.
    [6]Hui-Ji Shi, Christophe Korn, Guy Pluvinage. High temperature isothermal and the thermoimechanical fatigue on a molybdenum-based alloy[J]. Material Science and Engineering A,1998,247(1-2):180~186
    [7]G. Filacchioni, E. Casagrande, U. De Angelis, G. De Santis, D. Ferrara. Effect of strain rate on the tensile properties of TZM and Mo-5%Re[J]. Journal of Nuclear Materials,2002,307~311 (Part1):705~709
    [8]Jianhui Xu, Todd Leonhardt, John Farrell, Michael Effgen, Tongguang Zhai. Anomalous strain-rate effect on plasticity of a Mo-Re alloy at room temperature[J]. Material Science and Engineering A,2008,479(1~2):76~82
    [9]Joachim H. Schneibel, E.J. Felderman, E.K. Ohriner. Mechanical properties of ternary molybdenum-rhenium alloys at room temperature and 1700K[J]. Scripta Materials,2008,59(2):131~134
    [10]潘叶金.钼、钨及其合金[J].中国钼业,2001,25(2):53-56
    [11]Yutaka Hiraoka, Tetsuji Noda, Masatoshi Okada. Embrittlement of sintered molybdenum predoped with carbon in high temperature oxygen-contaminated helium[J]. Journal of Less-Commmon Metals,1983,91:167~176
    [12]李玉清,陈国胜,张家福,刘锦岩.高温合金中微量元素对晶界的作用[J].自然科学进展,1999,9(12):1173-1182
    [13]Yutaka Hiraoka. Significant effect of carbon content in the low-temperature fracture behavior of molybdenum[J]. Materials Transactions, JIM,1990, 31(10):861~864
    [14]Wang Tan, Mingxing Guo, Lingfei Cao, Kun Shen, Mingpu Wang. The annealing characterization bars manufactured by a modified technique[J]. Journal of alloys and compounds,2007,462(1-2):386~391
    [15]牛荣梅,张国君,孙军,魏建峰,孙院军,赵宝华,杨刘晓,马宝平.纯钼微观断裂过程的扫描电镜原位观察[J].稀有金属材料科学与工程.2006,35(4):559-561
    [16]杨晓青,贺跃辉,罗振中,龙郑易.掺杂La对钼丝组织和性能的影响[J].稀有金属快报,2006,25(3):30-33
    [17]李静,高家诚,王勇.掺杂提高钼丝再结晶温度的研究进展[J].稀有金属与硬质合金,2003,31(1):22-24
    [18]T. Fujii, R. Watanabe, Y. Hiraoka, M. Okada. Preparation of large-scale molybdenum single-crystal sheet by means of secondary recrystallization[J]. Journal of Less-Commmon Metals,1984,96:297~304
    [19]Satoru Yoshimura, Yutaka Hiraoka. Influence of heating in vacuum on low-temperature fracture behavior of carburized Mo-Ti alloys[J]. International Journal of Refractory Metals and Hard Materials,1996,14(5~6):325~333
    [20]Takeshi Inoue, Yutaka Hiraoka, Ei-ichi Sukedai, Masahiro Nagae, Jun Takada. Hardening behavior of dilute Mo-Ti alloys by two-step heat-treatment[J]. International Journal of Refractory Metals and Hard Materials,2007,25(2):138~143
    [21]Yutaka Hiraoka, Satoru Yoshimura. Low-temperature tensile behavior of powder-metallurgy Mo-Ti alloys. International Journal of Refractory Metals and Hard Materials,1993~1994,12(4):211~216
    [22]P. Jehanno, M. Heilmaier, H. Saage, M. Boning, H. Kestler, J. Freudenberger, S. Drawin. Assessment of the high temperature deformation behavior of mol.ybdenum silicide alloys. Material Science and Engineering A,2007,463(3):216~223
    [23]Hiroaki Kurishita, Yuji Kitsunai, Yutaka Hiraoka, Tamaki Shibayama, Hideo Kayano. Development of Molybdenum alloy with high toughness at low temperature [J]. Materials Transactions, JIM,1996,37(1):89~97
    [24]Hiroaki Kurishita, Masahiro Asayama, Osamu Tokunaga' Hideo Yoshinaga. Effect of TiC Addition on the Intergranular Brittleness in Molybdenum[J]. Materials Transactions, JIM,1989,30(12):1009~1015
    [25]Luo A, Park J.J, Jacobson D. L, Tsao B.H, Ramalingam M.L. Creep Behavior of Molybdenum and a Molybdenum-Hafnium Carbide Alloy From 1600 to 2100K[J]. Materials Science and Engineering A,1994,177(1-2):89~94
    [26]Hiroaki Kurishita, Yuji Kitsunai, Tamaki Shibayama, Hideo Kayano, Yutaka Hiraoka. Development of Mo alloys with improved resistance to embrittlement by recrystallization and irradiation[J]. Journal of Nuclear Materials,1996,233-237(part 1):557~564
    [27]Yuji Kitsunai, Hiroaki Kurishita, Minoru Narui, Hideo Kayano, Yutaka Hiraoka. Effect of neutron irradiation on low temperature toughness of TiC-dispersed molybdenum alloys[J]. Journal of Nuclear Materials,1996,239(1):253~260
    [28]Y. Kitsunai, H. Kurishita, T. Kuwabara, M. Narui, M. Hasegawa, T. Takida, K. Takebe. Radiation embrittlement behavior of fine-grained molybdenum alloy with 0.2wt.%TiC addition[J]. Journal of Nuclear Materials,2005,346(2~3):233~243
    [29]Takanori Kadokura, Yutaka Hiraoka, Seiji Nakabayashi, Yoshiharu Yamamoto. Effect of sintering conditions on the properties of sintered molybdenum [Z].2006 Powder Metallurgy World Congress, Bussan.2006
    [30]A. Borruto, T.M.R Borruto, A. Spada. Hydrogen_steel interaction] hydrogen embrittlement in pipes for power former plant effluents[J]. International Journal of Hydrogen Energy,1999,24(7):651~659
    [31]Koji Hirda, Masahiro Nagae, Tetsuo Yoshio, Jun Takada, Yutaka Hiraoka, Tomohiro Takida. Carbon monoxide gas carburization behavior of molybdenum materials[Z].2006 Powder Metallurgy World Congress, Bussan.2006
    [32]Masahiro Nagae, Shigetoshi Okada, Makoto Nakanishi, Jun Takada, Yutaka Hiraoka, Yoshito Takemoto, Moritaka Hida, Hideyuki Kuwahara, Myoun Ki Yoo. Nitriding of dilute Mo-Ti alloys at a low temperature of 1373K[J]. International Journal of Refractory Metals and Hard Materials,1998,16(2):127~132
    [33]P.Y. Park, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto. The corrosion behavior of sutter-deposited Mo-Ti alloys in concentrated hydrochloric acid[J]. Corrosion Science,1996,38(10):1649~1667
    [34]付静波,赵宝华.国内外钼工业发展现状[J].稀有金属,2007,31(专辑):151-154
    [35]董允杰,张金全.国内外钼制品对比及评述[J].中国钼业,2001,25(5):6-9
    [36]王东辉,袁晓波,李中奎,郑欣,张军良,张清,白润.钼及钼合金研究与应用进展[J].稀有金属快报,2006,25(12):1-7
    [37]杨宇锋.钼和钼合金深加工技术进展[J].中国钼业,2001,.25(4):34-37
    [38]B.V. Cockeram, R.W.Smith,L.L.Sead. Tensile properties and fracture mode of wrough ODS molybdenum sheet following fast neutron irradiation[J]. Journal of Nuclear Materials,2005,346:165~184
    [39]J. Ciulik, E.M. Taleff. Power-law creep of powder-metallurgy grade molybdenum sheet[J]. Material Science and Engineering A,2007,463(1-2):197~202
    [40]R.W. Buckman. The creep behavior of refractory metal alloys [J]. International Journal of Refractory metals and hard materials,2000,18(4~5):253~257
    [41]韩强,张相一.纯钼板及钼合金板热轧工艺探讨[J].中国钼业,2001,25(1):39-42
    [42]朱爱辉,吕新矿,王快社.改善钼板轧制工艺,提高钼板轧制质量[J].河南冶金,2006,14(3):13-14
    [43]陈程,尹海清,曲选辉.高纯钼板断口形貌和组织分析[J].稀有金属,2007,31(1):10-13
    [44]王慧芳.掺杂钼板材性能的研究[J].中国钼业,1994,18(6):26-29
    [45]钟培全.钼与钼合金的应用及其加工方法[J].中国钼业,2000,34(5):15-16
    [46]郑欣,张清,张军良,李忠奎.Mo-Ti-Zr棒材加工方法的分析[J].稀有金属快报,2004,23(7):29-32
    [47]詹志洪.钼丝质量影响因素分析及工艺改进措施[J].中国钼业,2006,30(2):28-31
    [48]任宝江,黄晓玲,傅小俊.钼棒在轧制及拉伸过程中出现的劈裂、断丝原因分析[J].稀有金属快报,20054,24(1):21-24
    [49]左羽飞,张常乐,仙彬华.钼合金顶头破坏行为及强韧化分析[J].稀有金属快报,2004,23(1):38-40
    [50]J.C. Zhao, J.H. Westbrook. Ultrahigh-temperature material for jet engines. www.mrs.org/publications/bulletin.
    [51]S. Majumdar, I.G. Sharma, A.K. Suri. Development of oxidation resistant coatings on Mo-30W alloy [J]. International Journal of Refractory Metals and Hard Materials,2008,26(6):549~554
    [52]S. Majumdar, R. Kapoor, S. Raveendra, H. Sinha, I. Samajdar, P. Bhargava, J.K. Chakravartty, I.G. Sharma, A.K. Suri. A study of hot deformation behavior and microstructural characterization of Mo-TZM alloy [J]. Journal of Nuclear Materials, 2009,385(3):545~551
    [53]Mohamed S., El-Genk, Jean-Michel Tournier. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steel for space nuclear power systems. Journal of nuclear materials[J]. Journal of Nuclear Materials,2005, 340(1):93~112
    [54]V. Chakin, V. Kazakov. Radiation embrittlement of low-alloyed Mo alloys[J]. Journal of Nuclear Materials,1996,233-237(part 1):570~572
    [55]卢明园,范景莲,成会朝,刘涛,田家敏,黄伯云.Ti对Mo-Ti合金拉伸强度及显微组织的影响[J].中国有色金属学报,2008,18(3):409-414
    [56]D. Sturm, M. Heilmaier, J.H. Schneibel, P. Jehanno, B. Skrotzki, H. Saage. The influence of silicon on the strength and fracture toughness of molybdenum[J]. Materials Science and Engineering A,2007,463(1-2):107~114
    [57]荣梅,张国君,孙军,魏建峰,孙院军,赵宝华,杨刘晓,马保平.纯钼微观断裂过程的扫描电镜原位观察[J].稀有金属材料科学与工程,2006,35(4):559-561
    [58]T. Mrotzek, A. Hoffmann, U. Martin. Hardening mechanisms and recrystallization behavior of several molybdenum alloys[J]. International Journal of Refractory Metals and Hard Materials,2006,24(4):298~303
    [59]T. Fujii, Watanabe. Preparation of a large-scale molybdenum single-crystal sheet by means of secondary recrystalliztion[J]. Journal of the Less-Common Metals,1984, 96:297-304
    [60]谭栓斌,梁清华,梁静,王艳,郭让民.钼镧合金和TZM合金的高温性能[J].稀有金属,2006,36(专辑):33-38
    [61]Yutaka Hiraoka, Tetsuji Hoshika. Parameter representing low-temperature fracture strength in molybdenum having an elongated and large grain structure[J]. International Journal of Refractory Metals and Hard Materials,1999,17(5):339~344
    [62]张启修,赵秦生.钨铝合金[M].北京:冶金工业出版社,2005
    [63]G.R. Smolik, D.A. Petti, S.T. Schuetz. Oxidation and volatilization of TZM alloy in air[J]. Journal of Nuclear Materials,2000,283-287(part 2):1458~1462
    [64]韩强.钼及其合金的氧化、防护与高温应用[J].中国钼业,2002,26(4):32-34
    [65]Z.M. Yang, Z.G. Zhou, L.M. Zhang. Characteristics of residual stress in Mo-Ti functionally graded material with a continuous change of composition[J]. Material Science and Engineering A,2003,358(1-2):214~218
    [66]P.Y. Park, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto. The corrosion behavior of sutter-deposited Mo-Ti alloys in concentrated hydrochloric acid[J]. Corrosion Science,1996,38(10):1649-1667
    [67]Jinglian Fan, Mingyuan Lu, Huichao Cheng,et al. Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum[J]. International Journal of Refractory Metals & Hard Materials,2009,279(1):78~82
    [68]成会朝,卢明园,范景莲,田佳敏,黄伯云,李勇明.微量合金元素Zr对 Mo合金性能和显微组织的影响[J].粉末冶金技术,2009,27(1):3-5
    [69]Yutaka Hiraoka, Satoru Yoshimura. Effects of complex addition of Re or Ti with C on the strength and Ductility of recrystallized molybdenum[J]. International Journal of Refractory Metals and Hard Materials,1993~1994,12(5):261~268
    [70]沈强,张联盟,谭华,经福谦.Mo-Ti合金体系合金的液相烧结与组织结构[J].武汉理工大学学报,2004,26(2):1-3
    [71]S.P. Chakraborty, S. Banerjee, Kulwant Singh, I.G. Sharma, A.K. Grover, A.K. Suri. Studies on the development of protective coating on TZM alloy and its subsequent characterization [J]. Journal of Materials Processing and Technology,2008, 207(1~3):240~247
    [72]J. Warren. The 700℃ tensile behavior of Mo-0.5Ti-0.08Zr-0.025C(TZM) extruded bar measured transverse and parallel to the billet extrusion[J]. International Journal of Refractory Metals and Hard Materials,1998,16(2):149~157
    [73]I.G. Sharma, S.P. Chakraborty, A.K. Suri. Preparation of TZM alloy by aluminothermic smelting and its characterization [J]. Journal of Alloys and Compounds,2005,393(1-2):122~128
    [74]B.N. Singh, J.H. Evans, A. Horsewell, P. Toft, D.J. Edwards. Microstructure and mechanical behavior of TZM and Mo-5%Re alloys irradiated with fission neutrons[J]. Journal of Nuclear Materials,1995,223(2):95
    [75]S.P. Chakraborty, S. Banerjee, I.G. Sharma, Bhaskar Paul, A.K. Suri. Studies on the synthesis and characterization of a molybdenum-based alloy[J]. Journal of Alloys and Compounds,2009,477(1-2):256-261
    [76]H.J. Shi, L.S. Niu, C. Korn, G. Pluvinage. High temperature fatigue behavior of TZM molybdenum alloy under mechanical and thermomechanical cyclic loads[J]. Journal of Nuclear Materials,2000,278(2~3):328~333
    [77]M. Scibetta, R. Chaouadi, J.L. Puzzolante. Analysis of tensile and fracture toughness results on irradiation molybdnum alloys, TZM and Mo-5%Re[J]. Journal of Nuclear Materials,2000,283-287(part 1):455~460
    [78]王振东,郑剑平,杨启法,宁广胜,张长义,佟振峰.高温退火对TZM合金拉伸性能的影响[J].原子能科学技术,2005,39(增刊):42-45
    [79]张清,郑欣,张军良,李中奎.真空熔炼Mo-Ti-Zr合金中C,O的控制[J].稀有金属快报,2004,23(12):17-19
    [80]梁栓斌,梁清华,梁静,王艳,郭让民.钼镧合金和TZM合金的高温性能[J].稀有金属,2006,30(专辑):33-37
    [81]T.S. Byun, M. Li, B.V. Cockeram, L.L. Snead. Deformation and fracture properties in neutron irradiation pure Mo and Mo alloys[J]. Journal of Nuclear Materials,2008,376(2):240~246
    [82]B.V. Cockeram, R.W. Smith, K.J. Leonard, T.S. Byun, L.L. Snead. Irradiation hardening in unalloyed and ODS molybdenum during low dose neutron irradiation at 300℃ and 600℃[J]. Journal of Nuclear Materials,2008,382(1):1-23
    [83]张国君,孙院军,牛荣梅,孙军,魏建峰,栾永刚,赵宝华,杨刘晓,马保平.稀土氧化镧掺杂钼合金的强化机制研究[J].稀有金属材料科学与工程,2005,34(12):1926-1929
    [84]易永鹏,高积强.Y2O3/CeO2复合强化钼合金(MYC)丝的研究[J].稀有金属材料科学与工程,2005,34(2):271-274
    [85]刘茂生.镧、钇复合稀土钼合金的研究[J].中国钼业,1999,23(6):19-22
    [86]李淑霞,魏光明,王思清.钼镧合金丝的组织及性能[J].稀有金属材料科学与工程,1999,28(3):186-188
    [87]Chen Guo-qin, Wu Gao-hui, Zhu De-zhi, et al. Microstructure and thermal and electric conductivities of high dense Mo/Cu composites[J]. Transactions of Nonferrous Metals Society of China,2005,15:110~114
    [88]吕大铭.钼铜材料的开发和应用[J].粉末冶金工业.2000,10(6):30-33.
    [89]夏扬,宋月清,崔舜,等.Mo-Cu合金研究方法进展[J].粉末冶金技术.2007,25(3):224-227
    [90]牟科强,邝用庚.Mo-Cu材料的性能和应用[J].金属功能材料,2002,9(3):26-29
    [91]Keith J. Leonard, Jeremy T. Busby, Steven J. Zinkle. Aging effects on microstructural and mechanical properties of select refractory metal alloys for space-reactor application[J]. Journal of Nuclear Materials,2007,366(3):336~352
    [92]刘沙,曹昱,舒金波.低铼钼合金高温烧结过程的研究[J].稀有金属与硬质合金,1999,(139):18-21
    [93]黄宇,吕忠.添加碳和铼或钛对再结晶钼强度和塑形的影响[J].中国钼业,1994,18(2):31-34
    [94]钟培全.氧化物弥散强化钼和钼-铼合金的研制[J].中国钼业,2002,26(1):37-39
    [95]Jianhui Xu, Todd Leonhardt, John Farrell, Michael Effgen, Tongguang Zhai. Anomalous strain-rate effect on plasticity of a Mo-Re alloy at room temperature[J]. Materials Science and Engineering A,2008,479(1~2):76~82
    [96]D.J. Edwards, F.A. Garner, D.S. Gelles. The influence of neutron irradiation in FFTF on the microstructural and microchemical development of Mo-41Re at 470-730℃[J]. Journal of Nuclear Materials,2008,375(3):370~381
    [97]J.T. Busby, K.J. Leonard, S.J. Zinkle. Radiation-damage in molybdenum-rhenium alloys for space reactor applications[J]. Journal of Nuclear Materials,2007,366(3):388-406
    [98]N. Sekido, R. Sakidja, J.H. Perpezko. Annealing response of point defects in off-stoichiometric Mo5SiB2 Phase[J]. Intermetallics,2007,15(9):1268~1276
    [99]K.S. Kumar, A.P. Alur. Deformation behavior of two-phase Mo-Si-B alloy[J]. Intermetallic,2007,15(5-6):687~693
    [100]D. Sturm, M. Heilmaier, J.H. Schneibel, P. Jehanno, B. Skrotzki, H. Saage. The influence of silicon on the strength and fracture toughness of molybdenum[J]. Material Science and Engineering A,2007,463(1-2):107~114
    [101]夏斌,张虹,白书欣,陈柯,张家春,钟文丽.Mo合金高温抗氧化涂层的研究[J].金属热处理,2007,32(4):54-57
    [102]M. Kruger, S. Franz, H. Saage, M. Heilmaier, J.H. Schneibel, P. Jehanno, M. Boning, H. Kestler. Mechanically alloyed Mo-Si-B alloys with a continuous α-Mo matrix and improved mechanical properties[J]. Intermetallics,2008,16(7):933~941
    [103]I. Rosales, D, Bahena, J. Colin. Microstructure and mechanical properties of molybdenum silicides with Al addition[J]. Materials Science and Engineering A,2007, 459(1-2):132~136
    [104]Fang Wang, Aidang Shan, Xianping Dong, Jianshen Wu. Microstructure and oxidation behavior of directionally solidified Mo-Mo5SiB2(T2)-Mo3Si alloys[J]. Journal of alloys and compounds.2008,462(1-2):436~441
    [102]R. Sakidja, J.H. Perepezko, S. Kim, N. Sekido. Phase stability and structural defects in High-temperature Mo-Si-B alloys[J]. Acta Meterialia,2008, 56(19):5223~5244
    [103]N. Sekido, R. Sakidja, J.H. Perepezko. Annealing response of point defects in Off-stoichiometric Mo5SiB2 phase[J]. Intermetallics,2007,15(9):1268~1276
    [104]R. Sakidja, J. H. Perepezko. Alloying and microstructure stability in the high-temperature Mo-Si-B system[J]. Journal of Nuclear Materials,2007, 366(3):407~416
    [105]Hiroaki Kurishita, Yuji Kitsunai, Yutaka Hiraoka, Tamaki Shibayama, Hideo Kayano. Development of Molybdenum alloy with high toughness at low temperature[J]. Materials Transactions, JIM,1996,37(1):89~97
    [106]Hiroaki Kurishita, Masahiro Asayama, Osamu Tokunaga' Hideo Yoshinaga. Effect of TiC Addition on the Intergranular Brittleness in Molybdenum[J]. Materials Transactions, JIM,1989,30(12):1009~1015
    [107]Luo A, Park J.J, Jacobson D. L, Tsao B.H, Ramalingam M.L. Creep Behavior of Molybdenum and a Molybdenum-Hafnium Carbide Alloy From 1600 to 2100K[J]. Materials Science and Engineering A,1994,177(1~2):89~94
    [108]Hiroaki Kurishita, Yuji Kitsunai, Tamaki Shibayama, Hideo Kayano, Yutaka Hiraoka. Development of Mo alloys with improved resistance to embrittlement by recrystallization and irradiation [J]. Journal of Nuclear Materials,1996,233-237(part 1):557~564
    [109]Yuji Kitsunai, Hiroaki Kurishita, Minoru Narui, Hideo Kayano, Yutaka Hiraoka. Effect of neutron irradiation on low temperature toughness of TiC-dispersed molybdenum alloys[J]. Journal of Nuclear Materials,1996,239(1):253~260
    [110]Myoung Ki Yoo, Yutaka Hiraoka, Hiroaki Kurishita, Hideo Kyano. Recrystallization of TiC dispersion Mo-alloy [J]. International Journal of Refractory Metals and Hard Materials,1996,14(5-6):355~364
    [111]国外工艺技术集锦.机械合金化制备的细晶弥散颗粒烧结钼合金的力学性能[J].稀有金属快报,2004,23(8):42-43
    [112]国外工艺技术集锦.高温钼合金的蠕变性能与显微组织[J].稀有金属快报,2006,25(8):42-43
    [113]Y. Kitsunai, H. Kurishita, T. Kuwabara, M. Narui, M. Hasegawa, T. Takida, K. Takebe. Radiation embrittlement behavior of fine-grained molybdenum alloy with 0.2wt%TiC addition[J]. Journal of Nuclear Materials,2005,346(2~3):233~243
    [114]K. Tsuya, N. Aritomi. On the effects of vacuum annealing and carburizing on the ductility of coarse-grained molybdenum[J]. Journal of Less-Common Metals, 1968,15(3):245~360
    [115]Yutaka Hiraoka, Masatoshi Okada, Ryoji Watanabe. Effect of aging after carbon doping on the ductility of molybdenum[J]. Journal of Less-Common Metals,1980, 75(1):31~42
    [116]Marion Le Flem, Alexandre Allemand, Stephane Urvoy, Denis Cedat, Colette Rey. Microstructure and thermal conductivity of Mo-TiC cermets processed by hot isostatic pressing[J]. Journal of Nuclear Materials,2008,380:85~92
    [117]Denis Cedat, Maximilien Libert, Marion Le flemb, Olivier Fandeur, Colette Rey, Michel Clavel, Jean-Hubert Schmitt. Experimental characterization and mechanical behaviour modelling of molybdenum-titanium carbide composite for high temperature applications[J]. International Journal of Refractory Metals and Hard Materials,2009,27:267~273
    [118]D. Cedat, C. Rey, M. Clavel, J.H. Schmitt, M. Le Flem A. Allemand. Microstructural characterization of a composite Mo reinforced by 25 at.% TiC[J]. Journal of Nuclear Materials,2009,385:533~537
    [119]Gui-Ming Song, Yu-Jin Wang, Yu Zhou. Thermaomechanical properties of TiC reinforced-tungsten composites for high temperature applications[J]. International Journal of Refractory Metals and Hard Materials,2003,21(1-2):1~12
    [120]Sean E. Landwehr, Gregory E. Hilmas, William G. Fahrenholtz, Inna G. Talmy, Stephen G. Dipietro. Microstructure and mechanical characterization of ZrC-Mo cermets produced by hot isostatic pressing[J]. Materials Science and Engineering A, 2008,497(1-2):79~86
    [121]Yuji Kitsunai, Hiroaki Kurishita, Hideo Kayano, Yutaka Hiraoka, Tadashi Igarashi, Tomohiro Takida. Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC[J]. Journal of Nuclear Materials,1999, 271-272:423-428
    [122]Yutaka Hiraoka. Strengths and ductility of Mo-TiC alloys after secondary recrystallization[J]. International Journal of Refractory Metals and Hard Materials, 2003,21(5-6):265~270
    [123]束德林.金属力学性能[M].北京:机械工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700