镍锡磷化学镀层的制备及其在微电子中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将锡引入到化学镀Ni-P合金中形成Ni-Sn-P合金镀层是改善其耐蚀性、耐热性和可焊性等的有效方法。本文主要探讨了工艺条件和镀液组分对化学镀Ni-Sn-P合金镀速、组成、表面形貌的影响,并考察了锡对镀层的耐蚀性和可焊性的影响。在此基础上向镀液中加入稀土元素,考察了稀土元素对镀层组成和耐蚀性的影响,并探讨了化学镀Ni-Sn-P的沉积机理。
     论文首先考察了四价锡和二价锡化学镀Ni-Sn-P中还原剂、配位剂、pH、锡盐浓度对镀速、镀层组成、表面形貌的影响,以及不同Sn含量的Ni-Sn-P合金镀层的耐腐蚀性能和可焊性。实验结果表明:化学镀Ni-Sn-P中,镀速随着镀液中还原剂的增加而增加,镀层中P含量随还原剂的增加而增加,Sn含量随还原剂的增加而有所降低,四价锡中还原剂含量为35g/L时,镀层的表面形貌最佳,二价锡中,还原剂含量为20g/L时,镀层的表面形貌最佳;化学镀Ni-Sn-P中,镀速随着镀液中配位剂含量的增加而降低,镀层中P、Sn含量均随配位剂柠檬酸的增加而增加。随着配位剂浓度的增加镀层的表面形貌结晶细化,四价锡中,30g/L时镀层最致密,性能最好;二价锡中40g/L时,镀层最致密。化学镀Ni-Sn-P中,镀速随着镀液中锡盐含量的增加而降低,5g/L时,镀速最佳,Sn含量随着锡盐含量增加而增加,P含量随着镀液中锡盐含量增加而减小。镀层的表面形貌,随镀层中锡含量的增加逐渐细化;四价锡化学镀Ni-Sn-P中,镀速随着温度的升高而升高, P、Sn含量均随温度的升高而有所升高,88℃-90℃时镀速、表面形貌最佳;化学镀Ni-Sn-P中,镀速均随着pH值升高而升高,镀层中的P、Sn含量随pH变化,上下波动,四价锡中,pH值4.5时,表面形貌最佳,二价锡中pH 9-10时,表面形貌最佳;化学镀Ni-Sn-P的耐蚀性相对于化学镀Ni-P镀层更好,并且锡含量为20g/L时耐蚀性最好。第五章研究了化学镀Ni-Sn-P技术在微电子领域中的应用,并成功地在引线框架上制备了具有良好可焊性的Ni-Sn-P镀层,所用镀层P含量11-13%,Sn含量1-2%左右。第六章探讨了二价锡和四价锡化学镀Ni-Sn-P沉积机理的不同。
     第七章在化学镀Ni-Sn-P工艺基础上加入稀土元素,制备了Ni-Sn-P-RE复合镀层,讨论了稀土元素对镀速、镀层组成、表面形貌和镀层耐蚀性的影响。实验结果表明:添加稀土铈后镀层的耐蚀性比未加入稀土铈的Ni-Sn-P镀层耐蚀性增加。当碳酸铈浓度为0.03g/时,耐蚀性最好。添加稀土元素的镀层与未加入稀土的Ni-Sn-P镀层相比,镀层中Sn的含量增加,P的含量降低。添加稀土氧化镧和碳酸铈后,镀速随着镀液中稀土含量的增加而逐渐减小。添加稀土氧化钕后,镀层的沉积速率随着镀液中稀土含量的增加,先增大后降低,在0.03g/L时达到最高点。添加稀土元素后镀层的表面形貌变得平整,光滑,胞状结构趋于消失。
This is a effect method that tin will be introduced to the electroless Ni-P alloy platings forming Ni-Sn-P alloy coatings. Ni-Sn-P coatings will have good properties in the corrosion resistance, heat resistance and weldability, etc. This paper mainly discussed the effect of process conditions and elements on the deposition rate, composition and surface morphology, and the effects of tin concentration in bath on corrosion resistance and weldability of the coatings. Then the rare earth elements were introduced to Ni-Sn-P alloy. The effect of rare earth on corrosion resistance and composition of the plating layer were discussed. The mechanism of electroless Ni-Sn-P were analysed.
     Firstly, the effect of concentrations of reducing agent, coordination agent and tin in bath on deposition rate, composition of plating layer and surface morphology, and the effects of tin concentration in bath on corrosion resistance and weldability of the coatings were studied on the four valence tin and bivalent tin of electroless Ni-Sn-P. The results showed that:the tin content in the deposit decreased with an increase in reducing agent concentration in the bath, the phosphorus content in the deposit increased with an increase in reducing agent concentration in the bath, when the reducing agent concentration was 35 g/L,the surface appearance is best in the four valence tin electroless Ni-Sn-P. when the reducing agent concentration was 20 g/L, the surface appearance is best in the bivalent tin electroless Ni-Sn-P. The tin content and phosphorus content in the deposit increased with an increase in coordination agent concentration in bath, when the coordination agent concentration was 30 g/L, the surface appearance is best in the four valence tin electroless Ni-Sn-P. when the coordination agent concentration was 40 g/L, the surface appearance is best in the bivalent tin electroless Ni-Sn-P. The tin content in the deposit increased with an increase in tin concentration in the bath, the phosphorus content in the deposit decreased with an increase in tin concentration in the bath, when the in concentration was 5 g/L, the deposition rate is best. The deposition rate increased with an increase in pH value, the four valence tin of electroless Ni-Sn-P, the phosphorus content in the deposit increased with an increase in pH value, the tin content in the deposit decreased at first and then increased.The bivalent tin of electroless Ni-Sn-P, when the pH value is 9-10, the surface morphology is best.When the pH value is 4.5, the surface morphology is best.The phosphorus content and the tin content in the deposit is mutual inhibition. Electroless Ni-Sn-P plating has better corrosion resistance than electroless Ni-P plating.The fifth chapter electroless Ni-Sn-P alloy platings of application in microelectronics were studied and succsessfully applied in leadframe with good weldbility,the the tin content in the deposit is 1-2%,the phosphorus content in the deposit is 11-13%.The sixth chapter discussed the difference of bivalent tin and four valence of electroless Ni-Sn-P depositional mechanism.
     The seventh chapter discussed that the rare earth elements were introduced into Ni-Sn-P alloy by electroless deposition to obtain Ni-Sn-P-RE composite coatings. The effect of rare earth on the deposition rate, composition of the platings, surface morphology and the corrosion resistance were discussed. The results showed that theNi-Sn-P-Ce coatings have better corrosion resistance than Ni-Sn-P coatings, when the Carbonated cerium concentration is 0.03g/L, the corrosion resistance is best and the tin content in Ni-Sn-P-RE coatings is higher than in Ni-Sn-P coatings, the phosphorus content in Ni-Sn-P-RE coatings is lower than in Ni-Sn-P coatings.The rate of deoposition decreased with the increase of lanthanide oxide and Carbonated cerium concentration in bath. The rate of deoposition increased at first and then decreased with the increase of Neodymium oxide concentration, when Neodymium oxide concentration in bath is 0.03 g/L, the rate of deoposition is fastest. The surface morphology of Ni-Sn-P-RE coating is flater, smoother than Ni-Sn-P coatings and cellular structures tend to disappear.
引文
[1]李宁.化学镀实用技术[M].北京:化学工业出版社,2004:1-14.
    [2]姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,2000:3-4.
    [3]常林法,程建增,夏俊杰.化学镀镍液的维护和管理[J],电镀与环保,2003,23(1):36-37.
    [4]A.Maleeki, A.Mieek-Ilnieka. EleetrolessniekelPlatingfromaeidbath[J]. Surfaceand CoatingsTechnology,2000,123(1):72-77.
    [5]JuanHajdu, StauleyZabrocky. TheFutureofElectrolessNiekel[J]. MetalFinishing,2000, 98(5):42.
    [6]郭忠诚,刘洪康,王志英.化学镀层应用现状与展望[J].电镀与环保,1996,16(5):8-13.
    [7]A.Malecki, A.Micek-Ilnicka. ElectrolessNickelPlatingrfomAcidBath. Surf.Coat. Tech[J].2000,123(1):72-77.
    [8]李宁,袁国伟,黎德育.化学镀镍基合金理论与技术[M].哈尔滨,哈尔滨工业大学出版社,2000:11-13.
    [9]崔国峰.化学镀镍磷合金过程中磷的析出及其对镀层性能的影响[D].哈尔滨:哈尔滨工业大学,2006.
    [10]方信贤,白允强,王章忠.J4不锈钢及化学镀Ni-P和Ni-Cu-P镀层在液-固两相流中的冲刷腐蚀行为[J].金属学报,2010,46(2):240-243.
    [11]黄伟九,薛燕.表面活性剂对镁合金化学复合镀Ni-P-SiC的影响[J].材料工程,2010,(1):23-27.
    [12]吴春,刘祥萱,黄浩.化学镀在电磁屏蔽中的应用[J].电镀与环保,2010,30(2):8-10.
    [13]冯义威.化学镀涤纶织物的研究现状[J].纺织科技进展,2010,(1):24-26.
    [14]余志兵,廖一峰.化学镀镍工艺在汽车节温器上的应用[J].汽车工艺与材料,2010,(3):33-34.
    [15]刘玉岭,李薇薇,周建伟.微电子化学技术基础[M].北京:化学工业出版社,2005:387-392.
    [16]吴宜勇,李桂芝,姚枚.多元化学镀镍[J].电镀与环保,1993,13(1):10.
    [17]闫洪.三元化学镀镍合金层的性能研究[J].新技术新工艺,1995,17(6):4.
    [18]叶栩青,罗守福.化学镀Ni-Cu-P合金工艺研究[J].腐蚀与防护,2000,21(3):126-128.
    [19]葛圣松,邵谦,孙宏飞.高锡化学镀Ni-Sn-P合金工艺[J].功能材料,2004,35:3235-3237.
    [20]王宏智,彭海波,陈君,王津生.化学镀Ni-Sn-P合金的研究进展[J].电镀与涂饰,2007,26(6):51-54.
    [21]彭海波.化学镀Ni-Sn-P合金及其复合镀层的研究[D].天津:天津大学,2006.
    [22]司秀丽,吴丰,褚松竹.化学镀Ni-Sn-P三元合金的工艺和性能的研究[J].功能材料,1995,26(2):189-192.
    [23]林忠华,林琳,杜金辉,吕元振.镍-锡-磷三元合金镀层及其应用[J].经验交流,2005,22(6):51-54.
    [24]于金库,冯皓,刑广忠等.大冷变形对化学镀Ni-Sn-P非晶态合金晶化的影响[J].人工晶体学报,1998,27(2):169-172.
    [25]于金库,窦连福,沈德久等.非晶态化学镀Ni-Sn-P合金镀层变温晶化的研究[J].电镀与精饰,1995,17(3):8-9.
    [26]于金库,王玉林.化学镀非晶态Ni-Sn-P合金耐蚀性的研究[J].表面技术,1995,24(4):13-16.
    [27]闫洪.陶瓷表面化学镀Ni-Sn-P合金[J].上海微电子技术和应用,1996,24(2):36-39.
    [28]宋长生,王国荣.化学镀Ni-Sn-P合金的工艺研究(Ⅰ)[J].电镀与精饰,1996,18(4):10-12.
    [29]宋长生,王国荣.化学镀Ni-Sn-P合金镀层耐蚀性的研究[J].电镀与精饰,1996,18(5):15-17.
    [30]宋长生,王国荣.热处理对化学镀Ni-Sn-P镀层结构和性能的影响[J].电镀与精饰,2000,22(1):9-11.
    [31]任志华.乳酸络合剂化学镀镍锡磷合金的研究[J].中国表面程,1998,4:34-36.
    [32]卞清泉,李学洪,张强华.Sn含量对Ni-Sn-P合金镀层耐腐蚀性能的影响[J].化学工程师,2009,7:65-66.
    [33]魏雪,冯立明,盖腾.不同锡含量Ni-Sn-P化学镀层的制备及性能[J].材料保护,2010,1:31-33.
    [34]蔡积庆.化学镀Ni-Sn系合金[J].电镀与环保,1996,16(6):18-21.
    [35]J. Georgieva, S. Kawashima, S. Armyanov, etal. Electroless Deposition of Ni-Sn-P and Ni-Sn-Cu-P Coatings[J]. Journal of The Electrochemical Society,2005,152 (11):783-788.
    [36]J. Georgieva, S. Armyanov. Electroless deposition and some properties of Ni-Cu-P and Ni-Sn-P coatings[J]. Solid State Electrochem,2007,11:869-876.
    [37]J.N.Balaraju, S.Millath Jahan, Anjana Jain, etal. Structure and transformation behavior of electroless Ni-P alloys containing tin and tungsten[J]. Journal of Alloys and Compounds,2007,436:319-327.
    [38]Hidenori Shimauchi, Susumu Ozawa, Keiu Tamura, etal. Preparation of Ni-Sn Alloys by an Electroless-Deposition Method[J]. Electrochem,1994,141(6):1471-1476.
    [39]张若桦.稀土元素化学[M].天津:天津科学技术出版社,1987.
    [40]王学正.稀土元素的特殊性质及其应用[J].上海有色金属,1994,15(1):47-51.
    [41]刘光华.稀土固体材料学[M].北京:机械工业出版社,1997.
    [42]稀土编写组.稀土(上,下)[M].北京:冶金出版社,1978.
    [43]王仲山,朱庆纲,谈荣生等.稀土元素在国民经济中的应用极其前景[J].科技情报开发与经济,2004,(5):28-31.
    [44]江静华,方峰,淡淑泳等.稀土元素及稀土新材料[J].江苏机械制造与自动化,2000,(3):45-48.
    [45]孔薇,张秀英.稀土元素在医药上的应用[J].微量元素与健康研究,2004,2(1):67-69.
    [46]陈占恒.稀土新材料及其在高技术领域的应用[J].稀土,2004,(1):53-57.
    [47]许崇海,艾兴,邓建新等.稀土元素在氧-碳-硼化物陶瓷材料中的应用研究[J].硅酸欲通报,1998,(3):64-68.
    [48]杜挺.稀土元素在金属材料中的一些物理化学作用[J].金属学报,1997,(1):69-77.
    [49]胥继华,路岩.稀土元素对耐热钢热强性能影响的研究[J].金属热处理,1999,(8):1-2.
    [50]沈利群.稀土元素对金属材料性能的影响[J].兵器材料科学与工程,2004,2(17):19-22.
    [51]李光第.稀土元素在有色金属合金中的形态、功能及稀土耐磨铜合金研制的初探[J].有色冶炼,2004,(6):37-39.
    [52]刘志儒.稀土化学热处理的研究与生产应用前景[J].材料保护,2004,23(2):112-114.
    [53]王龙妹,杜挺,卢先利等.微量稀土元素在钢中的作用机理与应用研究[J].稀土2004,22(4):37-40.
    [54]徐国宝,姚士冰,周绍民.稀土合金电沉积研究进展[J].材料保护,1995,8(11):4-6.
    [55]崔春翔,吴人洁,王浩伟.稀土元素的热力学特性及在金属基复合材料中的应用[J].稀有金属材料与工程,2004,26(3):53-55.
    [56]刘铁虎,王毅坚,孙东.氧化稀土对Ni-P化学镀及其复合镀工艺及镀层组织成分的影响[J].化工机械,1999,26(4):211-214.
    [57]孙雅茹,于锦,周凯.稀土元素在化学镀Ni-P中作用的研究[J].沈阳工业大学学报,2001,23(4):293-294.
    [58]黄庆荣,蒋柏泉等.稀土在化学镀中应用研究现状[J].稀土,2007,28(1):103-105.
    [59]贾韦.稀土铈介入化学沉积钻-镍-磷合金薄膜的研究[M].合肥:合肥工业大学, 2007.
    [60]张桂敏等.ZrO2陶瓷表面化学镀镍沉积机理分析[J].兵器材料科学与工程,2007,30(1):52-55.
    [61]胡茂圃,沈卓身等.化学镀镍诱发过程催化活性的电化学本质[J].中国有色金属学报,1998,8(4):674-676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700