氧化镧制备含镧变形镁合金的组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文进行了添加稀土氧化镧原矿制备含镧AZ31变形镁合金的研究。采用添加氧化镧原矿的方法制备了镧含量在0-2.0wt.%之间的AZ31变形镁合金,并与采用Mg-La中间合金制得的合金就组织和性能进行了对比。研究发现,添加氧化镧原矿同样可以制得含镧AZ31变形镁合金,并且在相同的镧含量下,其组织和性能与采用Mg-La中间合金制得的合金相近。
     在熔炼时,将La2O3原矿粉末与精炼剂混合后加入到镁溶液中,一边添加一边搅拌,不但能保护熔体、精炼除渣,还能使La2O3与镁溶液的反应更加彻底。通过正交试验,发现搅拌时间对La回收率的影响最为显著,La2O3的添加量次之,熔炼温度影响最小。确定了获得高La回收率的最优方案:La2O3添加量80g、搅拌时间60min、熔炼温度710℃
     添加La203原矿粉末制备的AZ31-La合金在La含量相同时,其晶粒尺寸与添加Mg-La中间合金制得合金的尺寸相近,在La含量为0.95wt.%时,合金的晶粒尺寸达到最细小的10.3μm。添加La2O3原矿粉末制得的AZ31-xLa合金的拉伸性能与相同La含量下添加Mg-La中间合金制得合金的拉伸性能相近,当La含量为0.94wt.%时,合金的抗拉强度最高,为216MPa,相比不含La的AZ31合金提高了56%。添加La2O3原矿粉末制得合金的单道次最大轧制率和多道次最大总轧制率与添加Mg-La中间合金制得的合金相近,当La含量为0.95wt.%时,合金的轧制性能最佳,合金的单道次最大轧制率为41.1%,多道次最大总轧制率为81.9%。
     添加La2O3原矿粉末制得的AZ31-xLa变形镁合金镁屑的起燃点与采用Mg-La中间合金制备合金的燃点相近,在La含量为0.61wt.%时达到最高的571.8℃。同时,450℃下合金的氧化膜与添加Mg-La中间合金制备的AZ31-xLa合金的氧化膜一样致密,抗氧化性能相近。
     通过添加La2O3原矿粉末的方法完全可以代替添加Mg-La中间合金制得性能良好的AZ31-xLa变形镁合金,并且省略了中间合金的制备过程,节约了成本,为稀土变形镁合金的开发提供了新的道路,对工业生产有重要的经济意义。
This article conducted a study of adding rare earth La2O3to prepare wroughtmagnesium alloy containing La. By using the method of adding lanthanum oxide,AZ31wrought alloy containing La content between02.0wt.%was prepared. And themicrostructures and properties was compared with the alloy which prepared byMg La intermediate alloy. This study shows that AZ31wrought alloy containing Lacan be prepared by adding lanthanum oxide. In the same La content, itsmicrostructures and properties is similar to the alloy prepared by Mg La intermediatealloy.
     In the smelting process, lanthanum oxide was mixed with refining agent. Thenadd them into the magnesium solution, stirring while adding. It can not only protectthe melt, remove the slag, but also make the reaction between La2O3and magnesiumsolution thoroughly. According to the orthogonal experiment, it is found that theinfluence of mixing time on the recover rate of La is the most significant, followed theadditive amount of La2O3, melting temperature the least.The optimal solution wasdetermined: additive amount of80g, mixing time of60min, melting temperature of7102). For the alloy prepared by La2O3in the same La content, its grain size is similarto the one prepared by Mg La intermediate alloy. In the La content of0.95wt.%, theminimum grain size of alloy is10.3μm. The tensile strength of the alloy prepared byLa2O3is similar to the one which prepared by Mg La intermediate alloy. In the Lacontent of0.95wt.%, the maximum tensile strength is216MPa, increased by56%.The maximum reduction per rolling pass and maximum total reduction of the alloyprepared by La2O3is similar to the one which prepared by Mg La intermediate alloy.In the La content of0.95wt.%, alloy has the best rolling performance. The maximumreduction per rolling pass is41.1%, the maximum total reduction is81.9%.
     The ignition point of alloy is similar to the alloy prepared by Mg La intermediate alloy. In the La content of0.61wt.%, the maximum ignition point is571.82). At thesame time, under the temperature of4502), the oxide film is as compact as the alloyprepared by Mg La intermediate alloy. The antioxidant performance of these twoalloy is similar.
     By using La2O3powder, instead of Mg La intermediate alloy, high performancewrought alloy containing La can be prepared. This method not only omits thepreparation of Mg La intermediate alloy, but also save the cost. A new path for thedevelopment of rare earth wrought magnesium alloy was provided, it has animportant economic significance for industrial production.
引文
[1]梁艳,黄晓锋,王韬,等.高强镁合金的研究状况及发展趋势[J].中国铸造装备与技术,2009(1):8-12.[2]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展[J].世界科技研究与发展,2004(3):39-46.[3]Ma Y, Zhang J, Yang M. Research on microstructure and alloy phases of AM50magnesium alloy[J]. Journal of Alloys and Compounds,2009,470(1-2):515-521.[4]谢春晓,陈丙璇,刘凯.AZ31变形镁合金的研究与开发[J].金属世界,2006(2):22-26.[5]Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment[J]. Journal of Materials Processing Technology,2001,117(3):381-385.[6]Terada Y, Itoh D, Sato T. Creep rupture properties of die-cast Mg-Al-Ca alloys[J]. Materials Chemistry and Physics,2009,113(2-3):503-506.[7]He S M, Peng L M, Zeng X Q, et al. Comparison of the microstructure and mechanical properties of a ZK60alloy with and without1.3wt.%gadolinium addition[J]. Materials Science and Engineering:A,2006,433(1-2):175-181.[8]Kim W J, Chung S W, Chung C S, et al. Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures [J]. Acta Materialia,2001,49(16):3337-3345.[9]Aghion E, BronfinB. Magnesium alloys development towards the21st century [J]. Mater Sci Forum,2000,350-351:19-29.[10]YANG M, MA Y, PAN F. Effects of little Ce addition on as-cast microstructure and creep properties of Mg-3Sn-2Ca magnesium alloy [J]. Transactions of Nonferrous Metals Society of China,2009,19(5):1087-1092.[11]Fu H M, Zhang M X, Qiu D, et al. Grain refinement by A1N particles in Mg-Al based alloys[J]. Journal of Alloys and Compounds,2009,478(1-2):809-812.[12]XU C, LU B, LU Z, et al. Grain refinement of AZ31magnesium alloy by Al-Ti-C-Y master alloy [J]. Journal of Rare Earths,2008,26(4):604-608.[13]Wang M, Zhou H, Wang L. Effect of Yttrium and Cerium Addition on Microstructure and Mechanical Properties of AM50Magnesium Alloy[J]. Journal of Rare Earths,2007,25(2):233-237.[14]Asm International, Magnesium And Magnesium Alloy[M].OH:Metal Park,1999.1.[15]Jager, P. Luka, V. Gartnerova, J. Bohlen, K. U. Kainer Tensile properties of hot rolled AZ31Mg alloy sheets at elevated temperatures [J]. Journal of Alloys and Compounds,2004,378:184-187.[16]王雪敏,曾小勤,吴国松,等.合金元素对镁合金氧化性能的影响[J].材料导报,2006(11):69-72.[17]赵鸿金,张迎晖,康永林,等.镁合金阻燃元素氧化热力学及氧化物物性分析[J].特种铸造及有色合金,2006(6):340-343.[18]范超,李华基,饶劲松.阻燃镁合金的研究现状和发展趋势[J].冶金丛刊,2005(6):38-40.[19]M. R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Materialia,2004,52:5093-5103.[20]Lim H K, Kim D H, Lee J Y, et al. Effect of grain size on the tensile deformation of wrought Mg-MM-Al-Zn-Sn alloy[J]. Materials Letters,2008,62(15):2271-2274.[21]Polmear I. J. Magnesium alloys and applications[J]. Mater. Sci&Tech,1994,10:1-14.[22]Asm International, Magnesium And Magnesium Alloy[M]. OH:Metal Park,1999.1.[23]Kojima Y. Platform science and technology for advanced magnesium alloy [J]. Mater Sci Forum,2000,350-351:3-12.[24]樊昱,吴国华,高洪涛,等.La对AZ91D镁合金力学性能和腐蚀性能的影响[J].金属学报,2006(1):35-40.[25]张代东,原洪加La Cd元素对镁合金AZ31D组织和性能的影响[A].国际材料??科学与工程学术研讨会论文集(上册),2005:449-452.[26]王社斌,张金玲,祁小叶,等.La对AZ91镁合金铸态组织的影响及其细化机制[J].材料工程,2009:303-307.[27]邓瑶.稀土新政“技术”为王[J].中国民营科技与经济,2010(12):46-47.[28]杨明波,唐丽文,杨慧,等.高强镁合金的研究现状及进展[J].材料导报,2007,21(5A):307-309.[29]Bobby Kannan M, Dietzel W, Blawert C, et al. Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22and Elektron21(EV31A) compared with AZ80[J]. Materials Science and Engineering:A,2008,480(1-2):529-539.[30]兰兴华.镁在汽车上的应用——有竞争力的镁价和生产成本评估[J].世界有色金属,2004(5):38-41.[31]Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Materialia,2004,52(17):5093-5103.[32]余琨.稀土变形镁合金组织性能及加工工艺研究[D].中南大学材料学,2002.[33]Lim H K, Kim D H, Lee J Y, et al. Effect of grain size on the tensile deformation of wrought Mg-MM-Al-Zn-Sn alloy[J]. Materials Letters,2008,62(15):2271-2274.[34]余琨,黎文献,李松瑞.变形镁合金材料的研究进展[J].轻合金加工技术2001(7):6-9.[35]Zhang J, Pei L, Du H, et al. Effect of Mg-based spherical quasicrystals on microstructure and mechanical properties of AZ91alloys[J]. Journal of Alloys and Compounds,2008,453(1-2):309-315.[36]王艳丽,郭学锋,黄丹,等.快速凝固技术在镁合金制备中的应用[J].材料导报,2010(2):505-507.[37]Xu D K, Tang W N, Liu L, et al. Effect of W-phase on the mechanical properties of as-cast Mg-Zn-Y-Zr alloys[J]. Journal of Alloys and Compounds,2008,461(1-2):248-252.[38]Kojima Y, Platform science and technology for advanced magnesium alloys[J].??Materials science Forum.2000,350-351:3.[39]张清,李全安,井晓天,等.钇在耐热镁合金中的应用[J].稀土2011(2):71-75.[40]李杰华,杨光昱.耐热铸造镁合金的研究现状及其发展趋势[J].中国铸造装备与技术,2007(2):2-6.[41]田树科,郭学锋,崔红保,等.耐热镁合金的研究进展[J].铸造技术,2011(8):1174-1177.[42]Ninomiya Rojiro T, Kubot a K. Improved Heat Tesistance of Mg-Al Alloys by the Ca addition[J]. Acta Metallurgica et Materialia,1995,43(2):669-674.[43]Anyanwu I A, Kamado S, Honda T. Heat Resistance of Mg-Zn-Al-Ca Alloy Casings[J] Materials Science Forum,2000,350(7):73-78.[44]Grobner J, Schmid-Tetzer R. Selection of Promising Quaternary Resistant Magnesium Alloys[J] Journal of Alloys and Compounds,2001,320:296-301.[45]刘静安.镁合金加工技术发展趋势与开发应用前景[J].轻合金加工技术2001(11):1-7.[46]Izumi S, Yamasaki M, Kawamura Y. Relation between corrosion behavior and microstructure of Mg-Zn-Y alloys prepared by rapid solidification at various cooling rates[J]. Corrosion Science,2009,51(2):395-402.[47]Zhang E, Yin D, Xu L, et al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application[J]. Materials Science and Engineering:C,2009,29(3):987-993.[48]YIN D, ZHANG E, ZENG S. Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy[J]. Transactions of Nonferrous Metals Society of China,2008,18(4):763-768.[49]Sugamata M, Hanawa S, Kaneko J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys[J]. Materials Science and Engineering:A,1997,226-228(0):861-866.[50]Kawamura Y, Morisaka T, Yamasaki M. Structure and mechanical properties of rapidly solidified Mg97Zn1RE2alloys[J]. Materials Science Forum,2003,419-422:751-756.[51]Koike J, Kawamura Y, Hayashi K, et al. Mechanical properties of rapidly solidified Mg-Zn alloys[J]. Materials Science Forum,2000,350-351:105-110.[52]Hondo K, Sugamata M, Kaneko J, et al. Structures and mechanical properties of rapidly solidified Mg-Ag based alloys[J]. Journal Institute of Light Metals,2002,52(6):276-281.[53]LI J, Yanwen TIAN, Zuoxing GUI, Zhenqi HUANG. Effects of rare earths on the microarc oxidation of a magnesium alloy[J]. Rare Meta Is, Volume27, Issue1, February2008, Pages50-54.[54]Lingjie LI, Jinglei LEI, Shenghai YU, Yujing TIAN, Qiquan JIANG, Fusheng PAN. Formation and characterization of cerium conversion coatings on magnesium alloy [J]. Journal of Rare Earths, Volume26, Issue3, June2008, Pages383-387.[55]Xu Yue, Li Sha. Corrosion Resistance of AZ91D Magnesium Alloy Modified by Rare Earths-Laser Surface Treatment[J]. Journal of Rare Earths, Volume25, Supplement2, June2007, Pages201-203.[56]黎业生,董定乾,吴子平.稀土镁合金的研究现状及应用前景[J].轻合金加工技术,2006(4):1-6.[57]杨素嫒,张丽娟,张堡垒.稀土镁合金的研究现状及应用[J].稀土,2008,29(4):81-86.[58]李姗,王伯健.变形镁合金的研究与开发应用[J].热加工工艺,2007,36(6):65-68.[59]陈孝先,李秋书,范艳艳.AZ31镁合金的研究现状[J].山西冶金,2009,32(1):1-3.[60]赵亚忠,彭建,宋成猛,等.高塑性镁合金的研究现状[J].材料导报,2008(10):66-69.[61]李忠盛,潘复生,张静.AZ31镁合金的研究现状和发展前景[J].金属成形工艺,2004,22(1):54-57.[62]Bae D H, Lee M H, Kim K T, et al. Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys[J]. Journal of Alloys and Compounds,2002,342(1-2):445-450.[63]Fang X Y, Yi D Q, Nie J F, et al. Effect of Zr, Mn and Sc additions on the grain size of Mg-Gd alloy [J]. Journal of Alloys and Compounds,2009,470(1-2):311-316.[64]Dahle A K, Lee Y C, Nave M D, et al. Development of the as-cast microstructure in magnesium-aluminium alloys[J]. Journal of Light Metals,2001,1(1):61-72.[65]Wang S C, Chou C P. Effect of adding Sc and Zr on grain refinement and ductility of AZ31magnesium alloy[J]. Journal of Materials Processing Technology,2008,197(1-3):116-121.[66]李大全,王渠东,丁文江.稀土在变形镁合金中的应用[J].轻合金加工技术,2006(12):9-12.[67]张洪杰,孟健,唐定骧.高性能镁-稀土结构材料的研制开发与应用[J].中国稀土学报,2004,22:40.[68]黎文献,余琨,张世军.稀土对镁及Mg-A1合金晶粒细化的研究[A].第三届有色合金及特种铸造国际会议论文集[C].上海:2003.69.[69]张景怀,唐定骧,张洪杰,等.稀土元素在镁合金中的作用及其应用[J].稀有金属,2008(5):659-667.[70]彭建,吕滨江,潘复生,等.高塑性Mg-Zn系稀土镁合金的研究进展[J].热加工工艺,2010,39(18):15-19.[71]吴玉娟,丁文江,彭立明,等.高性能稀土镁合金的研究进展[J].中国材料进展,2011,30(2):1-9.[72]彭光怀,张小联,邱承洲,等.稀土镁合金的研究进展[J].江西有色金属,2006,20(3):27-30.[73]赵源华,陈云贵,涂铭旌.稀土在镁合金中的作用及研究现状[J].四川稀土2008(4):12-14.[74]杜挺,韩其勇,王常珍.稀土碱土等元素的物理化学及在材料中的应用[M].北京:科学出版社,1995.313.[75]Ju Yeon Lee, Do Hyung Kim, Hyun Kyu Lim, et al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys[J]. Mater Lett2005,59:3801.[76]黄晓锋,周宏,何镇明.AZ91D加铈阻燃镁合金氧化膜结构分析[J].中国稀土学报,2002(1):49-52.[77]周海涛,曾小勤,刘文法,等.稀土铈对AZ61变形镁合金组织和力学性能的影响[J].中国有色金属学报,2004(1):99-104.[78]J.P.Liu, H.J.Li, H.S.Xue, Study on ignition-proof AZ91D mag nesium alloy added with rare earth[J]. Journal of Rare Earth,2004;22:117-121.[79]邹永良,李华基,薛寒松,等.混合稀土对ZM5镁合金熔炼起燃温度的影响[J].重庆大学学报(自然科学版),2003(5):33-36.[80]罗治平,张少卿,鲁立奇,等.热处理对Mg-Nd-Zr挤压合金性能与组织的影响[J].中国稀土学报,1994,6:183.[81]吴安如,夏长清.稀土镁合金铸造和挤压态组织及力学性能研究[J].铸造,2005(11):55-58.[82]Ravi Kumar N V, Blandin J J, Suery M, et al. Effect of alloying elements on the ignition resistance of magnesium alloys[J]. Scripta Materialia,2003,49(3):225-230.[83]Sunghak Lee, Senng Hynk Lee, Do Hyang Kim. Effect of Y、Sr and Nd additions in the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys[J]. Metallurgical and Materials TransactionsA,1998,29A:1221-1235.[84]Singh A, Watanabe M, Kato A, et al. Microstructure and strength of quasi crystal containing extruded Mg-Zn-Y alloys for elevated temperature application[J]. Materials Science and Engineering:A,2004,385(1-2):382-396.[85]郎晓川,于秀兰.我国混合稀土精矿处理方法的研究进展[J].稀有金属与硬质合金,2009(3):43-47.[86]陈振飞.氧化钇与镧系稀土氧化物的火法分离特性[D].河北理工学院钢铁冶金,2004.[87]任守国.稀土冶炼含酸废水处理利用工程化研究[D].西安建筑科技大学环境工程,2006.[88]李西忠.分子组装无机—聚胺材料分离稀土金属离子[D].太原理工大学化??学工程,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700