基于硬模板表面修饰控制纳米稀土氧化物微晶结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米颗粒在制备过程中极易产生自发的团聚,进而生成粒径较大的二次团聚体,导致纳米颗粒材料的性能严重劣化,影响了其应用效果。目前针对纳米稀土氧化物的研究大部分仅限于对其一次粒径进行表征,未对其团聚现象进行研究和控制,限制了纳米稀土氧化物的应用范围。
     本论文针对纳米稀土氧化物在制备过程中发生的团聚现象,采用成核/晶核隔离法将稀土氢氧化物前驱体的成核和晶化过程进行分离,研究了稀土氧化物在制备不同阶段的晶粒生长特点,发现稀土氢氧化物前驱体的成核过程十分迅速,在短时间内得到了大量纳米晶核,但新生的晶粒极易发生团聚生长,导致其二次粒径处于微米级,进而影响了焙烧得到的稀土氧化物的二次粒径分布。本文针对这一现象开展研究,采用可大规模工业化应用的成核/晶化隔离法制备稀土氧化物纳米材料,并引入经表面修饰的碳黑作为硬模板剂抑制制备过程中晶粒之间的二次团聚,实现均分散纳米稀土氧化物的可控制备。
     本论文针对稀土元素电负性的不同,分别采用浓硝酸和浓硝酸/浓硫酸/过硫酸铵作为改性剂对碳黑进行表面修饰,得到了表面具有-COOH、-SO_4等不同电荷密度基团的改性碳黑模板剂。将La~(3+)、Ce~(3+)和Y~(3+)等金属盐溶液与具有不同表面基团的碳黑模板剂进行混合,加入沉淀剂得到稀土氢氧化物前驱体,经焙烧后得到了均分散纳米稀土氧化物微晶。研究发现:
     1.由于La~(3+)、Ce~(3+)和Y~(3+)能够与改性碳黑表面带负电荷的基团发生静电吸附,在碳黑表面均匀成核得到了均分散稀土氢氧化物前驱体;
     2.由于La和Ce具有较小电负性,对氢氧根的作用较弱,其氢氧化物易发生电离作用而使表面带正电荷,并产生较高的表面正电位,能够与-COO-等具有较低电荷密度的基团发生静电吸附作用,从而避免了氢氧化物晶核在生长过程中的团聚现象;
     3. Y元素具有较大电负性,对氢氧根的作用较强,其氢氧化物不易发生电离作用而使表面带正电荷较少,表面电位较低,需与-SO_4~(2-)等具有较高电荷密度的基团发生静电吸附作用,从而避免氢氧化物晶核在生长过程中的团聚现象;
     4.在焙烧过程中,由于碳黑模板剂能够释放出大量CO_2,可以有效抑制稀土氢氧化物分解过程中的颗粒团聚,从而得到了无明显团聚现象、二次粒径与一次粒径相当的均分散纳米稀土氧化物,并表现出了较好的荧光性能。
     本文还开展了采用碳黑为模板剂制备Eu和Tb掺杂的系列均分散稀土氧化物的研究,结果表明得到的系列掺杂纳米稀土氧化物晶粒大小均匀且无明显团聚现象,其荧光效率与不采用模板剂相比显著提高。
Nanoparticles are susceptible to make a reunion of spontaneous, and thengenerate the reunion body with large second particle size, leading to the loss ofexcellent materials properties and application effect. At present, the study ofnanometer rare earth oxides mostly confined to the primary particle size,however, the research and control of the aggregation phenomenon whichlimited the scope of application of nano rare earth oxide causes little attention.
     This paper focused on the reunion phenomenon of the industrialproduction of rare earth oxides. We intensively studied the growthcharacteristics of the rare earth oxides particle during the different preparationstage using the method involving separate nucleation and aging steps. Then wediscover the nucleation process and the growth of crystal nucleus in thefollowing part are both very fast which leading the second particle size at themicrometer level, thereby affecting the two particle size distribution of rareearth oxide. In view of this phenomenon, we prepared the controllable uniformdispersion nano rare earth oxide by using the large-scale industrial method involving separate nucleation and aging steps, and introducing the surfacemodified carbon black as a hard template agent which can inhibit the reunionof grains in the preparation process.
     In this paper, we obtained the modified carbon black template withdifferent charge density group-COOH,-SO4on surface using the concentratednitric acid, sulfuric acid and ammonium persulfate as modifier according tothe difference electronegativity for rare earth element. The metal salt solutionsof La3+, Ce3+and Y3+are mixed with different surface groups of carbontemplate agent, adding a precipitating agent to obtain the rare earth hydroxideprecursor, then the uniformly dispersed nano rare earth oxide microcrystals isprepared after roasting. Study finds:
     1. The rare earth hydroxide precursor is prepared by the homogeneousnucleation on the surface of modified carbon black, because of theelectrostatic adsorption between the La3+, Ce3+and Y3+and the negativelycharged groups on carbon black surface.
     2. Compared with Y, La and Ce are less electronegative, and the control forhydroxyl is weak, so their hydroxides are prone to ionize and the surfacesare positively charged with higher surface positive potential, then absorbedthe-COO–and the other low charge density groups for modified carbonblack, thus avoiding the reunion phenomenon of hydroxide crystal innucleus growing process.
     3. The control effect for hydroxyl is stronger because of Y element with a higher electronegativity, and the hydroxide is not easy to ionize and thesurface potential is lower, so the higher charge density-SO_4(2-)is needed forthe lectrostatic adsorption, thereby avoiding the agglomeration ofhydroxide crystal nucleus in the growing process.
     4. The template can effectively inhibit the agglomeration of particles of therare earth hydroxides in the decomposition process because the carbonblack can release a large amount of CO2during the baking process. So weobtained monodispersed nanometer rare earth oxides with equivalentparticle diameter and second particle size which showed good fluorescenceproperties.
     We also carried out the research using carbon black as template inpreparation of Eu and Tb doped series dispersed rare earth oxides in this paper.The results showed that the range of grain size distribution for doped nano rareearth oxide was uniform and no agglomeration, and the fluorescent efficiencywas significantly improved comparing with those with no template agent.
引文
[1]汤国虎,叶巧明,连红芳.无机纳米粉体表面改性研究现状[J].材料导报,2003,17(3):33-35
    [2]张平.纳米铝酸锶铕镝光致发光材料的研究[D].河北:河北理工大学,2004
    [3]白正宇.稀土纳米材料的水热溶剂热合成及其机理研究[D].河南:河南师范大学,2007
    [4]张立德,牟季关.纳米材料和纳米结构[M].北京:科学出版社.2001:140-144
    [5]纪守峰,李桂春.超细粉体团聚机理研究进展[J].中国矿业,2006(8):54-56
    [6]雷惠林.以氯化铁和碳酸钠为原料制备纳米氧化铁的工艺研究[D].陕西:西北大学,2006
    [7]张喜梅,李琳,郭祀远,等.用溶胶-凝胶法制备纳米粉体时聚集现象的探讨[J].化学工业与工程,2000,17(3):155-167
    [8]王宝利,朱振峰.无机纳米粉体的团聚与表面改性[J].陶瓷学报,2006,27(1):8-12
    [9]霍建振,魏明真.纳米稀土氧化物的制备与应用[J].中国科技信息,2006,5(9):88-93
    [10]袁慎忠,鞠文鹏,张燕,等.纳米氧化铈的制备及其催化性能的研究[J].中国稀土学报,2003,12(21):82-85
    [11]韩开冬.几种稀土碱式碳酸物和氧化物的合成与发光性质研究[D].安徽:中国科学技术大学,2008
    [12]张少阳.用NH4HCO3沉淀法制备纳米稀土氧化物及性质研究[D].河北:河北大学,2007
    [13]韩慧芳.稀土氧化物催化剂的应用[J].精细石油化工进展,2003,4(2):18-22
    [14]尹小斌.几种稀土纳米材料的合成及性能研究[D].安徽:中国科学技术大学,2010
    [15]施利毅,付红霞,张登松,等.一维纳米稀土氧化物的研究进展[J].功能材料,2006,10(37):1535-1538
    [16]张信.无机功能材料的湿化学法制备工艺[D].大连:大连理工大学,2009
    [17]樊唯镏.水热溶剂热制备低维无机纳米材料[D].山东:山东大学,2005
    [18]朱宝林,李凯荣,张守民,等.一维金属氧化物的制备及其修饰[J].化学进展,2008,20(1):49-53
    [19]华幼卿,章正熙,黄玉强.聚烯烃纳米复合材料研究进展[J].高分子材料科学与工程,2002,18(2):1-5
    [20]张文剑.一维半导体纳米材料的制备与性能研究[D].兰州:兰州大学,2007
    [21]陈艺聪.钛酸纳米管薄膜及负载氧化银纳米粒子的制备与表征[D].福建:厦门大学,2006
    [22]周汉波.电化学方法制备酞菁功能薄膜及其形态调控[D].浙江:浙江大学,2004
    [23]郭盛昌.旋转液膜反应器对沉淀过程的影响作用研究[D].北京:北京化工大学,2009
    [24]冯晶,肖冰,陈敬超.纳米材料对生物体及环境的影响材[J].料科学与工程学,2006,24(3):462-465
    [25]齐卫宏,汪明朴,徐根应.金属纳米微粒的尺寸效应[J].材料导论,2003,17(10):4-6
    [26]张信.无机功能材料的湿化学法制备工艺[D].大连:大连理工大学,2009
    [27]赖珍荃,周斌,王钰.介观体系及其新进展[J].自然杂志,1998,20(5):259-263
    [28]雷水金.锰化合物无机材料的液相控制合成与表征[D].安徽:中国科学技术大学,2006
    [29]答鸿,朱以华.核-壳式单分散二氧化硅磁性微球的制备[J].无机材料学报,2002,17:(4):867-871
    [30]高其标,申屠宝卿,翁志学.纳米改性聚合物材料研究进展[J].化工生产与技术,2006,6:22-26
    [31]张信.无机功能材料的湿化学法制备工艺[D].大连:大连理工大学,2009
    [32]范国利.微结构可控的金属和复合金属氧化物基纳米材料的制备、结构及性能[D].北京:北京化工大学,2011
    [33]杨泳来,徐恒泳,李文钊.纳米粒子催化剂及其研究进展[J].材料导报,2003,17(2):12-14
    [34]邹鸣,牟新东,颜宁.离子液体中离子型共聚高分子保护的铂纳米粒子催化剂催化肉桂醛选择性加氢[J].催化学报,2007,28(5):389-391
    [35]李宇农,何建军,龙小兵.金属纳米粒子研究进展[J].稀有金属与硬质合金,2003,31(4):45-50
    [36]刘小燕.硫属化合物和氧化物纳米材料的化学液相合成与机理研究[D].安徽:中国科学技术大学,2009
    [37] Tsantilis S, Pratsinis S E. Soft-and hard-agglomerate aerosols made at high temperatures[J].Langmuir,2004,20:5933-5939
    [38] Froeschke S, Kohler S, Weber A P, et al. Impact fragmentation of nanoparticle agglomerates[J].Aerosol Science,2003,34:275-287
    [39]张喜梅,李琳,郭祀远,等.用溶胶-凝胶法制备纳米粉体时聚集现象的探讨[J].化学工业与工程,2000,17(3):155-159
    [40] Mackay M E, Tuteja A, Duxbury P M, et al. General strategies for nanoparticle dispersion[J].Science,2006,311:1740-1743
    [41] Rhodes W H. Agglomerate and particle size effect sonsintering yttria stabilized zirconia[J].Journal of American Ceramic Society,1981,64(1):19-22
    [42] Chen F, Zhao X Z, Wang W J. Bubble inflation method for dispersing nanoparticles inpolymers[J]. Journal of Chemical Industry and Engineering(China),2008,59(3):766-772
    [43] Weds L. Industrial application of nanomaterials: chances or risks[J]. Future Technologies,2004,54:11-12
    [44] Ling Y, Cuo L, Zhang L. Research on PbS nanoparticles coated with2,6-O-dially-β-CD[J].Chinese Chemical Letter,1997,8(3):263-266
    [45]酒金婷,葛钥,张涑戎,等.无团聚纳米氧化锆的制备及应用[J].无机材料学报,2001,16(5):867-871
    [46] Gulgun M A, Nguyen M H, Kriven W M. Polymerized organic-inorganic synthesis of mixedoxides[J]. Am. Ceram. Soc.,1999,82(3):556-560
    [47] Nguyen M H, Lee S J, Kriven W M. Synthesis of oxide powders by way of a polymeric stericentrapment precursor route[J]. Mater. Res.,1999,14(8):3417-3426
    [48]酒金婷,李立平,葛钥,等.用高分子保护的纳米MgO的合成[J].无机化学学报,200l,17(3):36l-368
    [49] Sang W, Qian Y, Liu Y. A primary study on the synthesis and characterization of ZnS clusters inchitosan film[J]. Phys. Condens. Mater.,1996,8(36):499-504
    [50] Zou H, Wu S S, Shen J. Polymer/silica nanocomposites: preparation, characterization,properties and applications[J]. Chem. Rev.,2008,108(9):3893-3957
    [51] Bagwe R P, Hilliard L R, Tan W H. Surface modification of silica nanoparticles to reduceaggregation and nonspecific binding[J]. Langmuir,2006,22:4357-4362
    [52] Suzuki T S, Sakka Y, Nakano K, et al. Effect of ultrasonication on the microstructure andtensile elongation of zirconia dispersed alumina ceramics prepared by colloidal processing[J].Journal of American Ceramic Society,2001,84(9):2132-2134
    [53] Xu X Y, Lin Y J, Evans D G. Layered Intercalated Functional Materials Based on EfficientUtilization of Magnesium Resources in China[J]. Sci China Chem.,2010,53(7):1461-1469
    [54]林彦军,周永山,王桂荣.插层结构能材料的组装与产品工程[J].石油化工,2012,41(1):1-8
    [55]段雪,矫庆泽.全返混液膜反应器制备均分散超细纳米层状材料[P].中国专利,00132145.5,2000
    [56]杜以波,何静,李峰,等.微波技术在制备水滑石和柱撑水滑石中的应用[J].应用科学学报,1998,16(3):349-354
    [57] Feng Y J, Li D Q, Li C X, et al. Synthesis of Cu-containing layered double hydroxides with anarrow crystallite-size distribution[J]. Clays Clay Miner.,2003,51(5):566-569
    [58]张海永,景晓燕,张密林,等.一种新型的纳米功能材料:磁性纳米镁铝水滑[J].无机化学学报,2002,18(2):185-190
    [59] Guo S C, Evans D G, Li D Q, et al. Experimental and numerical investigation of theprecipitation of barium sulfate in a rotating liquid film reactor[J]. AIChE J.,2009,55:2024-2034
    [60]史振学.纳米氧化铈的制备及其在橡胶中的应用[D].内蒙古:内蒙古科技大学,2006
    [61]贺海钧,赵英.稀土功能材料与其应用产业群之间的关联和趋势分析[J].稀土,2006,27(6):91-94
    [62]肖颖. Eu原子高激发态光谱及其特性的研究[D].天津:天津理工大学,2009
    [63]王华,洪业汤,朱咏煊.黄磷生产中的稀土元素分布[J].稀土,2002,23(4):25-28
    [64]尹小斌.几种稀土纳米材料的合成及性能研究[D].安徽:中国科学技术大学,2010
    [65]张婷婷.稀土锡酸盐纳米材料的水热合成及结构、性能研究[D].北京:北京工业大学,2008
    [66]魏坤,何地宝,翟建伟.沉淀法制备稀土氧化物纳米粉体的研究[J].稀土,1999,20(2):27-30
    [67]林河成.氧化镨产品的生产发展及其应用[J].四川稀土,2006,4:28-32
    [68]照日格图,嘎日迪,李霞. La2O3纳米晶的制备及表征[J].稀土,2007,28(5):28-31
    [69]祝玮.稀土草酸盐和稀土钼酸盐的合成及性能研究[D].安徽:中国科学技术大学,2011
    [70]吴萍萍. CH4与CO2重整反应镍基催化剂上积碳机理研究[D].北京:中国石油大学,2006
    [71]赵乐. Fischer-Tropsch合成铁基催化剂研究进展[J].浙江工业大学,2008,36(6):642-646
    [72]谢丽英,柳召刚.纳米氧化铈粉体的制备技术研究进展[J].稀土,2007,28(2):70-76
    [73]姜崴.纳米氧化铈制备进展[J].广州化工,2009,37(3):23-27
    [74]刘志强,梁振锋,李杏英.纳米氧化钇的制备及表征[J].矿冶工程,2006,26(3):78-81
    [75]朱文庆,许磊,马瑾,等.粒径可控纳米CeO2的微乳液法合成[J].物理化学学报,2010,26(5):1284-1290
    [76]邓新荣,胡国荣,彭忠东.喷雾热解法合成高性能球形钴蓝的研究[J].无机盐工业,2006,38(8):32-50
    [77]宁英男,董春明,王伟众,等.气相法聚丙烯生产技术进展[J].化工进展,2010,29(12):2220-2227
    [78]舒磊,俞书宏,钱逸泰.半导体硫化物纳米微粒的制备[J].无机化学学报,1995,15(1):1-7
    [79]周媛媛.铌酸盐纳米发光材料的制备与表征[D].山东:山东大学,2008
    [80]洪广言.稀土纳米材料的制备与组装[J].中国稀土学报,2006,24(6):641-648
    [81]岳龙义.纳米GaP材料的光学性质及其聚合物复合薄膜的制备[D].上海:上海大学,2006
    [82]闻雷,孙旭东,王介强,等. Y2O3超微粉及其透明陶瓷的制备[J].东北大学学报,2002,23(12):1151-1154
    [83]何镜泉.纳米氧化钕的均匀沉淀法合成研究[D].广东:广东工业大学,2007
    [84]于吉义.纳米稀土氧化物的盐助溶液燃烧法制备及催化性能研究[D].南京:南京理工大学,2006
    [85]汪应灵,谢友海,耿明江.稀土掺杂纳米发光材料制备方法的研究进展[J].安徽农业科学,2007,35(15):4604-4606
    [86]李秀珍,潘湛昌,肖楚民,等.纳米二氧化铈的制备方法研究[J].化工装备技术,2002,23(6):20-23
    [87]张凤林,潘湛昌,张环华,等.电化学法和沉淀法制备纳米CeO2的微观结构比较[J].稀有金属,2003,27(3):332-334
    [88]邱关明,耿秀娟,陈永杰.纳米稀土发光材料的光学特性及软化学制备[J].2003,21(2):109-114
    [89]王剑波,张景.微乳液法制备纳米TiO2光催化剂的研究现状[J].中国粉体技术,2003,2:36-38
    [90]戴建华.纳米二氧化硅的制备及其复合聚合物乳液的合成[D].天津:天津大学,2005
    [91]唐有根,万伟华,唐仁英.低温液相化学法在合成单分散纳米微粒中的应用[J].材料导报,2006,20(3):138-148
    [92]王汉卫.改性纳米碳黑在修复重金属污染土壤中的应用研究[D].山东:山东师范大学,2009
    [93]陆幸愉.环境中炭黑粉尘收集系统的研究[J].广州化工,2010,38(7):176-228
    [94]董凌波.溶聚丁苯橡胶耐屈挠疲劳性能的研究[D].青岛:青岛科技大学,2010
    [95] Li Q Y, Na Y, Qiu Z X, et al. Preparation of modified carbon black with nano-scale size andenhanced stability in organic solvent by solid state method[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,317:87-92
    [96] Jaramillo J, álvarez P M, Serrano V G. Oxidation of activated carbon by dry and wet methodsSurface chemistry and textu ral modifications[J]. Fuel Processing Technology,2010,9:1168-1775
    [97] Park S J, Seo M K, Nah C. Influence of surface characteristics of carbon blacks on cure andmechanical behaviors of rubber matrix compoundings[J]. Journal of Colloid and InterfaceScience,2005,291:229-235
    [98] Pantea D, Darmstadt H, Kaliaguine S R. Electrical conductivity of conductive carbon blacks:influence of surface chemistry and topology[J]. Applied Surface Science,2003,23:181-193
    [99] Yamazaki S, Siroma Z, Ioroi T, et al. An electrochemical method for determining the number ofcarboxyl groups on carbon black[J]. Journal of Electroanalytical Chemistry,2008,616:64-70
    [100] Park S J, Kim J S. Modifications produced by electrochemical treatments on carbon blacksmicrostructures and mechanical interfacial properties[J]. Carbon,2001,39:2011-2016
    [101] Lin J. Identification of the surface characteristics of carbon blacks by pyrolysis GC-MASS[J].Carbon,2002,40:183-187
    [102] Li S H, Blacher B. Surface morphology of commercial carbon blacks from pyrolysis of usedtyres by small-angle X-ray scattering[J]. Carbon,1996,34:633-637
    [103] Barton S, Evans S, Halliop M J B, et al. Acidic and basic sties on the surface of porouscarbon[J]. Carbon,1997,35:1361-1366
    [104] Chen X, Mark F, Gao Y M. Mechanisms of surfactant adsorption on non-polar, air-oxidized andozone-treated carbon surfaces[J]. Carbon,2003,41:1489-1500
    [105] Vicente G S, Pedro M A, Josefa J, et al. Formation of oxygen complexes by ozonztion ofcarbonaceous materials prepared from cherry stones[J]. Carbon,2002,40:513-522
    [106] Bradley R H, Sutherland I, Sheng E. Carbon surface: area, porosity, chemistry and energy[J].Journal of colloid and interface science,1996,179:561-569
    [107] Kamegawa K, Nishikubo K, Kodama M, et al. Oxidative degradation of carbon blacks withnitric acid II. Formation of water-soluble polynuclear aromatic compounds[J]. Carbon,2002,40:1447-1455
    [108] Aymard L, Delahaye V A, Portemer F, et al. Study of the formation reactions ofsilver-palladium alloys by grinding and post-milling isothermal annealing[J]. Journal of Alloysand Compounds,1996,238:116-127
    [109] Ding J W, Wu Y L, Sun W L, et al. Preparation of La(OH)3and La2O3with rod morphology bysimple hydration of La2O3[J]. Journal of rare earths,2006,24:440-442
    [110] Zhang N, Yi R, Zhou L B, et al. Lanthanide hydroxide nanorods and their thermaldecomposition to lanthanide oxide nanorods[J]. Materials Chemistry and Physics,2009,114:160-167
    [111] Salleres S, Lopez A F, Martinez V, et al. Photophysics of rhodamine6G laser dye in orderedsurfactant C12TMA/clay laponite hybrid films[J]. Journal of Physical Chemistry C.,2009,113:965-970

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700