基于芳香多羧酸或杂多酸的配位化合物的合成、结构与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以设计和开发结构新颖的有机-无机杂化物为目标,基于芳香多羧酸或杂多酸,利用水热合成技术合成了一系列新的化合物。从分子水平上探讨了配体的构型和反应条件对化合物结构的影响,总结合成规律。比较同系列化合物的性质差异。通过单晶X-射线衍射、元素分析、红外光谱分析和热稳定性对晶体结构进行表征,对化合物的荧光性质进行了初步研究。
     1.以均苯四甲酸(H4bta)为有机配体,水热反应条件下合成了7个具有三维(3D)结构的稀土配位化合物。化合物5和6的结构中含有二维(2D)的金属-氧层,而化合物7的结构中含有一维(1D)的金属-氧链。首次报道了H4bta的三种新的配位模式。
     [Pr(bta)0.5(H2bta)0.5(H2O)](1)
     [Eu2(bta)1.5(H2O)2](2)
     [Ln2(bta)1.5(H2O)4]3H2O (Ln=La(3), Ce(4))
     [Ln2(bta)1.5(H2O)2] H2O (Ln=Ce(5), Pr(6))
     [Pr(bta)0.5(H2bta)0.5]5H2O (7)
     2.基于均苯四甲酸(偏苯三甲酸)与水合肼之间的原位酰胺化反应,合成了8个化合物。首次报道了均苯四甲酸与水合肼之间按1:1进行的原位酰胺化反应获得的4,5-苯二甲酸-1,2-酰肼(H4bbch)配体。
     [Cu(H3bbch)(H2O)]2·2H2O (8)
     [Fe3(Hbbch)2(H2O)2(H2O)2]·2H2O (9)
     [Zn(H2bbh)(N2H4)1/2(H2O)]·2H2O (10)
     [Cd(H2bch)2(2,2'-bpy)(H2O)2][Cd(H2bch)(2,2'-bpy)(H2O)2](H2bch)(11)
     [Cd2(Hbch)2(phen)2]·H2O (12)
     [Zn2(Hbch)2(phen)2]·H2O (13)
     [Zn(Hbch)(2,2'-bpy)](14)
     [Cd(bta)1/2(N2H4)(H2O)]·H2O (15)
     3.利用4,4-联吡啶(bipy)作为有机配体,合成了6种基于Keggin型多酸的配合物;另外,也合成了1种含有1,10-邻菲罗啉(phen)以及1种含1,6-二(咪唑-1-氢)己烷(bbi)的基于Keggin型多酸的配合物。在合成中,pH和La(NO3)3对化合物16-21的最终结构起到关键的作用。
     (SiMo12O40)(H2bipy)2·2H2O (16)
     [Cu(Hbipy)4(HSiMo12O40)(SiMo12O40)](H2bipy)0.5·7H2O (17)
     [Cu2(Hbipy)6(bipy)(SiMo12O40)3](Hbipy)2·6H2O (18)
     [Cu2(bipy)2(SiMo12O40)](H2bipy)·2H2O (19)
     [Cu2(bipy)4(H2O)4](SiMo12O40)·13H2O (20)
     [Cu(bipy)]2(SiMo12O40)(H2bipy)·2H2O (21)
     [SiMo12O40](H2bbi)2·2H2O (22)
     [Cu2(phen)4(SiMo12O40)](23)(H4bta=benzene-1,2,4,5-tetracarboxylic acid; H4bbch=benzene-4,5-bicarboxylate-1,2-hydrazide; H4bbh=benzene-1,2,4,5-bihydrazide;H3bch=Benzene-4-carboxylate-1,2-hydrazide;2,2'-bpy=2,2'-bipyridine; phen=1,10-phenanthroline; bipy=4,4'-bipyridine; bbi=1,6-bis(imidazole-1-yl)hexane)
The main objective of this thesis is to design and investigate novelorganic-inorganic compounds, based on aromatic polycarboxylates orpolyoxometalates, which have been synthesized by hydrothermal synthesis method.The influences of reaction conditions and the mechanisms of synthesizing processwere investigated. The properties of these compounds were studied. Thesecompounds have been structurally characterized by single crystal X-ray diffractions,elemental analyses, IR and TG. The fluorescent activities of these compounds havealso been studied.
     1. Seven three dimensional (3D) lanthanides compounds were hydrothermallysynthesized based on H4bta as an organic unit. Compounds5and6are composed oftwo dimensional (2D) metal-oxygen layers, and compound7contains onedimensional (1D) metal-oxygen chain. Three new coordination modes of H4bta arereported for the first time.
     [Pr(bta)0.5(H2bta)0.5(H2O)](1)
     [Eu2(bta)1.5(H2O)2](2)
     [Ln2(bta)1.5(H2O)4]3H2O (Ln=La(3), Ce(4))
     [Ln2(bta)1.5(H2O)2] H2O (Ln=Ce(5), Pr(6))
     [Pr(bta)0.5(H2bta)0.5]5H2O (7)
     2. Eight novel compounds were synthesized with in situ amidation hydrothermalreactions of aromatic polycarboxylates and hydrazine. H4bbch was firstly obtainedwith reaction of H4bta and hydrazine with a starting ratio of1:1.
     [Cu(H3bbch)(H2O)]2·2H2O (8)
     [Fe3(Hbbch)2(H2O)2(H2O)2]·2H2O (9)
     [Zn(H2bbh)(N2H4)1/2(H2O)]·2H2O (10)
     [Cd(H2bch)2(2,2'-bpy)(H2O)2][Cd(H2bch)(2,2'-bpy)(H2O)2](H2bch)(11)
     [Cd2(Hbch)2(phen)2]·H2O (12)
     [Zn2(Hbch)2(phen)2]·H2O (13)
     [Zn(Hbch)(2,2'-bpy)](14)
     [Cd(bta)1/2(N2H4)(H2O)]·H2O (15)
     3. With utilization of4,4'-bipyridine (bipy) organic template, six Keggin-typepolyoxometalates based compounds were synthesized. In addition, two compoundsbased on Keggin-type polyoxometalates includes1,10-phenanthroline (phen) and 1,6-bis(imidazole-1-yl)hexane (bbi), respectively, have also been obtained. In thesynthesizing process, pH and La(NO3)3are the crucial issue for the final structures ofcompounds16-21.
     (SiMo12O40)(H2bipy)2·2H2O (16)
     [Cu(Hbipy)4(HSiMo12O40)(SiMo12O40)](H2bipy)0.5·7H2O (17)
     [Cu2(Hbipy)6(bipy)(SiMo12O40)3](Hbipy)2·6H2O (18)
     [Cu2(bipy)2(SiMo12O40)](H2bipy)·2H2O (19)
     [Cu2(bipy)4(H2O)4](SiMo12O40)·13H2O (20)
     [Cu(bipy)]2(SiMo12O40)(H2bipy)·2H2O (21)
     [SiMo12O40](H2bbi)2·2H2O (22)
     [Cu2(phen)4(SiMo12O40)](23)
     (H4bta=benzene-1,2,4,5-tetracarboxylic acid; H4bbch=benzene-4,5-bicarboxylate-1,2-hydrazide; H4bbh=benzene-1,2,4,5-bihydrazide;H3bch=benzene-4-carboxylate-1,2-hydrazide;2,2'-bpy=2,2'-bipyridine; phen=1,10-phenanthroline; bipy=4,4'-bipyridine; bbi=1,6-bis(imidazole-1-yl)hexane)
引文
[1] Yaghi O M, Li H, Davis C, et al. Synthetic Strategies, Structure Patterns, and EmergingProperties in the Chemistry of Modular Porous Solids[J]. Acc. Chem. Res.,1998,31:474-484.
    [2] Rowsell J L C, Yaghi O M. Effects of functionalization, catenation, and variation of the metaloxide and organic linking units on the low-pressure hydrogen adsorption properties ofmetal-organic frameworks[J]. J. Am. Chem. Soc.,2006,128:1304-1315.
    [3] Evans O R, Lin W. Crystal engineering of NLO materials based on metal-organiccoordination networks[J]. Acc. Chem. Res.,2002,35(7):511-522.
    [4] Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very large clusters-nanoscalemagnets[J]. Chem. Rev.,1998,98(1):239-272.
    [5] Ma S, Zhou H-C. Gas storage in porous metal–organic frameworks for clean energyapplications[J]. Chem. Commun.,2010,46:44-53.
    [6] Botar B, Geletii Y V, K gerler P, et al. The true nature of the di-iron(III) γ-Keggin structure inwater: Catalytic aerobic oxidation and chemistry of an unsymmetrical trimer[J]. J. Am. Chem.Soc.,2006,128:11268-11277.
    [7] Kortz U, Müller A, van Slageren J, et al. Polyoxometalates: Fascinating structures, uniquemagnetic properties Review[J]. Coord. Chem. Rev.,2009,253:2315-2327.
    [8] Cooper G J T, Cronin L. Real-time direction control of self fabricatingpolyoxometalate-based microtubes[J]. J. Am. Chem. Soc.,2009,131:8386-8369.
    [9] Wang B, Yin Z-D, Bi L-H, et al. An electroswitchable fluorescence thin-film based on aluminescent polyoxometalate cluster[J] Chem. Commun.,2010,46:7163-7165.
    [10] Fu H, Li Y-G, Lu Y, et al. Polyoxometalate-based metal-Organic frameworks assembledunder the ionothermal conditions[J]. Cryst. Growth Des.,2011,11:458-465.
    [11] Champness N R, Schr der M. Extended networks formed by coordination polymers in thesolid state[J]. Current Opinion in Solid State and Materials Science,1998,3:419-424.
    [12] Hosking B F, Robson R. Infinite polymeric frameworks consisting of three dimensionallylinked rod-like segments[J]. J. Am. Chem. Soc.,1989,111:5962-5964.
    [13] Zhang S-Y, Zhang Z, Zaworotko M J. Topology, chirality and interpenetration incoordination polymers[J]. Chem. Commun.,2013,49:9700-9703.
    [14] Tranchemontagne D J, Mendoza-Cortés J L, O'Keeffe M, et al. Secondary building units,nets and bonding in the chemistry of metal-organic frameworks[J]. Chem. Soc. Rev.2009,38:1257-1283.
    [15] Gianneschi N C, Masar III M S, Mirkin C A. Development of a coordinationchemistry-based approach for functional supramolecular structures[J]. Acc. Chem. Res.,2005,38:825-837.
    [16] Luan X, Chu Y, Wang Y, et al. Formation of two-dimensional supramolecular water layercontaining (H2O)18morphology via dianion templating[J]. Cryst. Growth Des.,2006,6:812-814.
    [17] J. Li, H. Sun, Q. Yuan, et al. Ferrocene-carboxylate coordination complexes bridged bydifferent N-containing ligands[J]. J. Coord. Chem.,2013,66:1686-1699.
    [18] Y. Wei, Y. Yu, R. Sa, et al. Two cobalt(II) coordination polymers [Co2(H2O)4(Hbidc)2]nand [Co(Hbidc)]n(Hbidc=1H-benzimidazole-5,6-dicarboxylate): Syntheses, crystal structures,and magnetic properties[J]. CrystEngComm,2009,11:1054-1060.
    [19] Y. Yao, Y. Che, J. Zheng, The coordination chemistry of benzimidazole-5,6-dicarboxylicacid with Mn(II), Ni(II), and Ln(III) complexes (Ln=Tb, Ho, Er, Lu)[J]. Cryst. Growth Des.,2008,8:2299-2306.
    [20] Liu X, Wang X, Gao T, et al. Three3D lanthanide–organic frameworks with sra topology:syntheses, structures, luminescence and magnetic properties[J]. CrystEngComm,2014,16:2779-2787.
    [21] Wu J-Y, Yuan P-T, Hsiao C-C. Positional isomerism of unsymmetrical semirigid ligandstoward the construction of discrete and infinite coordination architectures of zinc(II) andcadmium(II) complexes[J]. CrystEngComm,2014,16:3128-3140.
    [22](a) Clough A, Zheng S-T, Zhao X, et al. New Lithium Ion Clusters for Construction ofPorous MOFs[J]. Cryst. Growth Des.,2014,14:897-900.(b) Kundu T, Sahoo S C, Banerjee R.Alkali earth metal (Ca, Sr, Ba) based thermostable metal–organic frameworks (MOFs) for protonconduction[J]. Chem. Commun.,2012,48:4998-5000.
    [23] Lu Y-B, Jian F-M, Jin S, et al. Three-Dimensional Extended Frameworks Constructed fromDinuclear Lanthanide(III)1,4-Naphthalenedicarboxylate Units with Bis(2,2′-biimidazole)Templates: Syntheses, Structures, and Magnetic and Luminescent Properties[J]. Cryst. GrowthDes.,2014,14:1684-1694.
    [24] Koner R, Lee G-H, Wang Y, et al. Two new diphenoxo-bridged discrete dinuclear CuIIGdIIIcompounds with cyclic diimino moieties: Syntheses, structures, and magnetic properties[J]. Eur.J. Inorg. Chem.2005,2005:1500-1505.
    [25] Zhang Z-Y, Deng Z-P, Zhang X-F, et al. Self-assembly of [Cu3I2]-or [CuI]n-based (n=2,4,and∞) coordination polymers from unsymmetrical bis(pyridyl) and in situ ligands: syntheses,structures, and properties[J]. CrystEngComm,2014,16:359-368.
    [26] Gai Y, Jiang F, Chen L, et al. Europium and Terbium Coordination Polymers Assembledfrom Hexacarboxylate Ligands: Structures and Luminescent Properties[J]. Cryst. Growth Des.,2014,14:1010-1017.
    [27] Batten S R, Hoskins B F, Robson R. Interdigitation, interpenetration and intercalation inlayered cuprous tricyanomethanide derivatives[J]. Chem. Eur. J.2000,6:156-161.
    [28] Kirillova M V, Kirillov A M, Martins A N C, et al. Topologically unique heterometallicCuII/Li coordination polymers self-Assembled fromN,N-bis(2-Hydroxyethyl)-2-aminoethanesulfonic acid biobuffer: versatile catalyst precursors formild hydrocarboxylation of alkanes to carboxylic acids[J]. Inorg. Chem.,2012,51:5224-5234.
    [29] Du M, Li C-P, Liu C-S, et al. Design and construction of coordination polymers withmixed-ligand synthetic strategy[J]. Coor. Chem. Rev.,2013,257:1282-1305.
    [30] Hagrman P J, Hagrman D, Zubieta J. Organic-inorganic hybrid materials: From “Simple”coordination polymers to organodiamine-templated molybdenum oxides[J]. Angew. Chem. Int.Ed.,1999,38:2638-2684.
    [31] Sun C, Li Y, Wang E, et al. A Series of New Organic Inorganic Molybdenum ArsenateComplexes Based on [(ZnO4-x)-6)(As3O3)2Mo6O18]-and [HxAs2Mo6O26](6Clusters as SBUs[J].Inorg. Chem.,2007,46:1563–1574.
    [32] Heine J, Schmedt auf der Günne J, Dehnen S. Formation of a Strandlike Polycatenane ofIcosahedral Cages for Reversible One-Dimensional Encapsulation of Guests[J]. J. Am. Chem.Soc.2011,133:10018-10021.
    [33] Harris K, Sun Q-F, Sato S, et al. M12L24Spheres with endo and exo coordination sites:scaffolds for non-covalent functionalization[J]. J. Am. Chem. Soc.2013,135:12497-12499.
    [34] Li H, Eddaoudi M, O’Keeffe M, er al. Design and synthesis of an exceptionally stable andhighly porous metal-organic framework[J]. Nature,1999,402:276-279.
    [35] Furukawa H, Go Y B, Ko N, et al. Isoreticular Expansion of Metal!Organic Frameworkswith Triangular and Square Building Units and the Lowest Calculated Density for PorousCrystals[J]. Inorg. Chem.,2011,50:9147-9152.
    [36] Farha O K, Fryazici I, Jeong N K, et al. Metal organic framework materials with ultrahighsurface areas: Is the sky the limit?[J]. J. Am. Chem. Soc.,2012,134:15016-15021.
    [37] Lu W-G, Su C-Y, Lu T-B, et al. Two stable3D metal organic frameworks constructed bynanoscale cages via sharing the single-layer walls[J]. J. Am. Chem. Soc.,2006,128:34-35.
    [38] Lin X, Blake A J, Wilson C, et al. A porous framework polymer based on a zinc(II)4,4′-bipyridine-2,6,2′,6′-tetracarboxylate: synthesis, structure, and “zeolite-Like” behaviors[J]. J.Am. Chem. Soc.,2006,128:10745-10753.
    [39] Kan W-Q, Ma J-F, Liu Y-Y, et al. A series of coordination polymers based on5-(2-carboxybenzyloxy) isophthalic acid and bis(imidazole) ligands: syntheses, topologicalstructures and photoluminescent properties[J]. CrystEngComm,2012,14:2316-2326.
    [40] In situ observation of gating phenomena in the flexible porous coordination polymerZn2(BPnDC)2(bpy)(SNU-9) in a combined diffraction and gas adsorption experiment[J]. Inor.Chem.,2014,53:1513-1520.
    [41] Blake A J, Champness N R, Chung S S, et al. In situ ligand synthesis and construction of anunprecedented three-dimensional array with silver (I): a new approach to inorganic crystalengineering[J]. Chem. Commun.,1997,1675-1676.
    [42] Wei Q-H, Zhang L Y, Yin G-Q, et al. Luminescent heteronuclear AuII5Ag8Complexes of{1,2,3-C6(C6H4R-4)3}3-(R=H, CH3,But) by cyclotrimerization of arylacetylides[J]. J. Am.Chem. Soc.,2004,126:9940-9941.
    [43] Xiao D, Hou Y, Wang E, et al. Dehydrogenative coupling of2,2′-bipyridine: hydrothermalsynthesis and crystal structure of a novel polyoxovanadate decorated with the2,2′;6′,2′′;6′′,2′′′-quaterpyridine ligand[J]. Inorg. Chem. Comm.,2004,7:437-439.
    [44] Lei T, Gao Q, Chen W-Q, et al. Formation of C\C and C\O bonds via solvothermal in situmetal-ligand reaction: Synthesis and crystal structures of two novel nickel(II) complexessupported by in situ generated polydentate Schiff base ligands[J]. Inor. Chem. Comm.,2013,30:92-96.
    [45] Han Z, Zhang Q, Gao Y, et al. Novel hexagonal {VO}6-containing sandwich-type clusteraccompanied by in situ carbon–carbon bond formation of organic cations[J]. Dalton Trans.,2012,41:1332-1337.
    [46] Zhang X-M, Tong M-L, Chen X-M. Hydroxylation of N-Heterocycle Ligands Observed inTwo Unusual Mixed-Valence CuI/CuIIComplexes[J]. Angew. Chem. Int. Ed.,2002,41:1029-1031.
    [47] Hu S, Chen J-C, Tong M-L, et al. Cu2+-Mediated dehydrogenative coupling andhydroxylation of an N-heterocyclic ligand: from generation of a new tetratopic ligand to thedesigned assembly of three-dimensional Copper(I) coordination polymers[J]. Angew. Chem. Int.Ed.2005,44:5471-5475.
    [48] Zheng Y-Z, Zhang Y-B, Tong M-L, et al. Syntheses, structures and magnetic properties of afamily of metal carboxylate polymers via insitu metal-ligand reactions ofbenzene-1,2,3-tricarboxylic acid[J]. Dalton Trans.,2009,1396-1406.
    [49] Liang L, Peng G, Ma L, et al. A new family of3d-4f heterometallic tetrazole-basedcoordinationFrameworks: in situ tetrazole ligand synthesis, structure, luminescence, andmagnetic properties[J]. Cryst. Growth Des.,2012,12:1151-1158.
    [50] Zheng L-L, Li H-X, Leng J-D, et al. Two photoluminescent metal-organic frameworksconstructed from Cd3(μ3-OH) cluster or1D Zn5(μ3-OH)2(μ-OH)2chain units and in situ formedbis(tetrazole)amine ligands[J]. Eur. J. Inorg. Chem.,2008,213-217.
    [51] Zhang X-M, Zhao Y-F, Wu H-S, et al. Syntheses and structures of metal tetrazolecoordination polymers[J]. Dalton Trans.,2006,3170-3178.
    [52] Tang Y-Z, Wang G-X, Ye Q, et al. Heterometallic Tetrazole Coordination Polymer Formedthrough2+3Cycloaddition Reaction between Inorganic Complexes in the Presence of LewisAcid[J]. Cryst. Growth Des.,2007,7:2382-2386.
    [53] Zhang J-P, Lin Y-Y, Huang X-C, et al. Copper(I)1,2,4-Triazolates and Related Complexes:Studies of the Solvothermal Ligand Reactions, Network Topologies, and PhotoluminescenceProperties[J]. J. Am. Chem. Soc.,2005,127:5495-5506.
    [54] Wang J, Zheng S-L, Hu S, et al. New in situ cleavage of both S S and S C(sp2) bonds andrearrangement reactions toward the construction of Copper(I) cluster-based coordinationnetworks[J]. Inorg. Chem.,2007,46:795-800.
    [55] Jin J, Bai F-Q, Jia M-J, et al. Oxalate-extended Cd2+-acylhydrazidate coordination polymers:synthesis, structure and fluorescence property[J]. CrystEngComm.,2013,15:5919-5927.
    [56] Jin J, Jia M-J, Li G-H, et al. New metal complexes with di(mono)acylhydrazidatemolecules[J]. Dalton Trans.,2012,41:10267-10275.
    [57] Jin J, Bai F-Q, Jia M-J, et al. New monoacylhydrazidate-coordinated Mn2+and Pb2+compounds[J]. Dalton Trans.,2012,41:6137-6147.
    [58](a) Hu X-X, Xu J-Q, Cheng P, et al. A new route for preparing coordination polymers fromhydrothermal reactions involving in situ ligand synthesis[J]. Inorg. Chem.,2004,43:2261-2266;(b) Yu X-Y, Ye L, Zhang X, et al. Fluorescent metal–organic polymers of zinc and cadmiumfrom hydrothermal in situ acylation reaction[J] Dalton Trans.,2010,39,10617-10625;(c) YuX-Y, Cui X-B, Yang J-J, et al. A series of coordination polymers constructed from in situamidation ligands: syntheses, structures and luminescent properties[J] CrystEngComm,2012,14,4719-4727.
    [59] Zhang X-M. Hydro(solvo)thermal in situ ligand syntheses[J]. Coord. Chem. Rev.,2005,249:1201-1219.
    [60] Chen X-M, Tong M-L. Solvothermal in situ metal/ligand reactions: a new bridge betweencoordination chemistry and organic synthetic chemistry[J]. Acc. Chem. Res.,2007,40:162-170.
    [61] Zhao H, Qu Z-R, Ye H-Y, et al. In situ hydrothermal synthesis of tetrazole coordinationpolymers with interesting physical properties[J]. Chem. Soc. Rev.,2008,37:84-100.
    [62] Zhu H-B, Gou S-H. In situ construction of metal–organic sulfur-containing heterocycleframeworks[J]. Coor. Chem. Rev.,2011,255:318-338.
    [63] Kanoo P, Matsuda R, Soto H, et al. In situ generation of functionality in a reactivehaloalkane-based ligand for the design of new porous coordination polymers[J]. Inorg. Chem.,2013,52:10735-10737.
    [64] Liu F, Duan L, Li Y, et al. Hydrothermal synthesis and characterizations of a novel2-Ddouble-layers metal-organic coordination polymer involving in situ ligand synthesis[J]. Inorg.Chim. Acta,2004,357:1355-1359.
    [65] Yang Q-F, Cui X-B, Yu J-H, et al. A series of metal–organic complexes constructed from insitu generated organic amines[J]. CrystEngComm,2008,10:1531-1538.
    [66] Liu W-T, Ou Y-C, Xie Y-L, et al. Photoluminescent metal-organic nanotubes viahydrothermal in situ ligand reactions[J]. Eur. J. Inorg. Chem.,2009,4213-4218.
    [67] Pope M T. Heteropoly and isopoly oxometalates[M]. Springer-Verlag: Berlin,1983,1-10.
    [68] Berzelius [J]. J Pogg Ann,1826,6:369-380.
    [69] Keggin J F.[J]. Proc R Soc,1934,144A,75-100.
    [70] Anderson J S.[J]. Nature,1937,140:850-850.
    [71] Dawson B.[J]. Acta Crystallogr,1953,6:113–126.
    [72] Waugh J C T, Schoemaker D P.[J]. Acta Crystallogr,1954,7:438-441.
    [73] Tsay Y H, Silverton J V. Z. Krist.[J].1973,137:256.
    [74]王恩波,李阳光,鹿颖等.多酸化学概论[M].长春:东北师范大学出版社,2009.
    [75]王恩波,胡长文,许林.多酸化学导论[M].北京:北京工业大学出版社,1998.
    [76] Pope M T, Müller A. Polyoxometalate chemistry: An old field with new dimensions inseveral disciplines[J]. Angew Chem Int Ed Engl,1991,30:34-48.
    [77]鲁晓明,朱慧菊,刘顺诚.[(C4H9)4N]2[(OC14H8O)2Mo4O10(OCH3)2]的合成和晶体结构[J].高等学校化学学报,1996,17(2):183-186.
    [78] Wei Y-G, Xu B-B, Barnes C-L, et al. An efficient and convenient reaction protocol toorganoimido derivatives of polyoxometalates[J]. J. Am. Chem. Soc.,2001,123:4083-4084.
    [79] Li S-L, Zhang Y-M, Ma J-F, et al. A novel organotin-substituted polyoxomolybdatecluster[J]. Dalton Trans.,2008:1000-1002.
    [80] Song Y-F, Long D-L, Cronin L. Noncovalently connected frameworks with nanoscalechannels assembled from a tethered polyoxometalate–pyrene hybrid[J]. Angew. Chem. Int. Ed.,2007,46:3900-3904.
    [81] Han J-W, Hill C-L. A coordination network that catalyzes O2-based oxidations[J]. J. Am.Chem. Soc.,2007,129:15094-15095.
    [82] Zhu Y, Yin P-C, Xiao F-P, Li D, et al. Bottom-up construction of POM-basedmacrostructures: coordination assembled paddle-wheel macroclusters and their vesicle-likesupramolecular aggregation in solution[J]. J. Am. Chem. Soc.,2013,135:17155-17160.
    [83] Gao G-G, Li F-Y, Xu L, et al. CO2coordination by inorganic polyoxoanion in water[J]. J.Am. Chem. Soc.,2008,130:10838-10839.
    [84] Zheng S-T, Zhang J, Yang G-Y. Designed synthesis of POM–organic frameworks from{Ni6PW9} building blocks under hydrothermal conditions[J]. Angew. Chem. Int. Ed.,2008,47:3909-3913.
    [85] Zheng S-T, Zhang J, Li X-X, et al. Cubic polyoxometalate-organic molecular cage[J]. J. Am.Chem. Soc.,2010,132:15102-15103.
    [86] Qin C, Song X-Z, Su S-Q, et al. New class of preyssler-lanthanide complexes with modifiedand extended structures tuned by the lanthanide contraction effect[J]. Dalton Trans.,2012,41:2399-2407.
    [87] Fu H, Qin Ch, Lu Y, et al. An ionothermal synthetic approach to porouspolyoxometalate-based metal–organic frameworks[J]. Angew. Chem. Int. Ed.,2012,51:1-6.
    [88] An H, Xiao D, Wang E, et al. A series of new polyoxoanion-based inorganic-organichybrids:(C6NO2H5)[(H2O)4(C6NO2H5)Ln(CrMo6H6O24)]·4H2O (Ln=Ce, Pr, La and Nd) with achiral layer structure[J]. New J. Chem.,2005,29:667-672.
    [89] An H-Y, Wang E-B, Xiao D-R, et al. Chiral3D architectures with helical channelsconstructed from polyoxometalate clusters and copper–amino acid complexes[J]. Angew. Chem.Int. Ed.,2006,45:904-908.
    [90] Nohra B, Moll H E, Albelo L M R, et al. Polyoxometalate-based metal organic frameworks(POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogenevolution reaction[J]. J. Am. Chem. Soc.,2011,133:13363-13374.
    [91] Hao X-L, Ma Y-Y, Wang Y-H, et al. New entangled coordination networks based oncharge-tunable Keggin-type polyoxometalates[J]. Chem. Asian, J.,2014,9:819-829.
    [92] Wu H, Yang J, Liu Y-Y, et al. pH-Controlled assembly of two unusual entangled motifsbased on a tridentate ligand and octamolybdate clusters:1D+1D→3D poly-pseudorotaxaneand2D→2D→3D polycatenation[J]. Cryst. Growth Des.,2012,12:2272-2276.
    [93] Sun C-Y, Liu S-X, Liang D-D, et al. Highly stable crystalline catalysts based on amicroporous metal-organic framework and polyoxometalates[J]. J. Am. Chem. Soc.,2009,131:1883-1888.
    [94] Ma F-J, Liu S-X, Sun C-Y, et al. A sodalite-type porous metal-organic framework withpolyoxometalate templates: adsorption and decomposition of dimethyl methylphosphonate[J]. J.Am. Chem. Soc.,2011,133:4178-4181.
    [95] Song J, Luo Z, Britt D K, et al. A multiunit catalyst with synergistic stability and reactivity:a poly oxometalate!metal organic framework for aerobic decontamination[J]. J. Am. Chem. Soc.,2011,133:16839-16846.
    [96] Zou C, Zhang Z, Xu X, et al. A multifunctional organic inorganic hybrid structure based onMnIII porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenouscatalyst[J]. J. Am. Chem.Soc.,2012,134:87-90.
    [97] Wei M, He C, Hua W, et al. A large protonated water cluster H+(H2O)27in a3Dmetal-organic framework[J]. J. Am. Chem. Soc.,2006,128:13318-13319.
    [98] Wei M, He C, Sun Q, et al. Zeolite ionic crystals assembled through direct incorporation ofpolyoxometalate clusters within3D metal-organic frameworks[J]. Inorg. Chem.,2007,46:5957-5966.
    [99] Duan C, Wei M, Guo D, et al. Crystal structures and properties of large protonated waterclusters encapsulated by metal-organic frameworks[J]. J. Am. Chem. Soc.,2010,132:3321-3330.
    [100] Kuang X-F, Wu X-Y, Yu R-M, et al. Assembly of a metal–organic framework by sextupleintercatenation of discrete adamantane-like cages[J]. Nature Chemistry.,2010,2:461-465.
    [101] Pang H-J, Peng J, Zhang C-J, et al. A polyoxometalate-encapsulated3D porousmetal–organic pseudo-rotaxane frameworkw[J]. Chem. Commun.,2010,46:5097-5099.
    [102] Uchida S, Hikichi S, Akatsuka T, et al. Preparation of monodispersed nanoparticles byelectrostatic assembly of Keggin-type polyoxometalates and1,4,7-Triazacyclononane-Basedtransition-metal complexes[J]. Chem. Mater.,2007,19:4694-4701.
    [103] Uchida S, Mizuno N. Zeotype ionic crystal ofCs5[Cr3O(OOCH)6(H2O)3][α-CoW12O40]7.5H2O with chape-celective adsorption of water[J]. J.Am. Chem. Soc.,2004,126:1602-1603.
    [104] Uchida S, Kawamoto R, Tagami H, et al. Highly selective sorption of small unsaturatedhydrocarbons by nonporous flexible framework with filver ion[J]. J. Am. Chem. Soc.,2008,130:12370-12376.
    [105] Uchida S, Kawamoto R, Akatsuka T, et al. Structures and sorption properties of ioniccrystals of Macrocation-Dawson-type polyoxometalates with different charges[J]. Chem. Mater.,2005,17:1367-1375.
    [106] Kawamoto R, Uchida S, Mizuno N, et al. Amphiphilic guest sorption ofK2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] ionic crystal[J]. J. Am. Chem. Soc.,2005,127:10560-10567.
    [107] Noro S-I, Ryo T, Kamiya Y, et al. Adsorption and catalytic properties of the innernanospace of a gigantic ring-shaped polyoxometalate cluster[J]. Angew. Chem. Int. Ed.,2009,48:8703-8706.
    [108] Ouahab L. Organic/Inorganic supramolecular assemblies and synergy between physicalproperties[J]. Chem. Mater.,1997,9:1909-1926.
    [109] Lin J-X, Lü J, Cao R, et al. Supramolecular assembly from decavanadate anion anddecamethylcucurbit[5]uril[J]. Dalton Trans.,2009,1101-1103.
    [110] Fang X, Ko¨gerler P, Isaacs L, et al. Cucurbit[n]uril-polyoxoanion hybrids[J]. J. Am.Chem.Soc.,2009,131:432-433.
    [111] Tomoyuki A, Daigoro E, Noro S-I, et al. Directing organic–inorganic hybridmolecular-assemblies of polyoxometalate crown-ether complexes with supramolecular cations[J].Coord. Chem. Rev.,2007,25:12547-2561.
    [112](a) Yu Q, Zhang X, Bian H, et al. pH-Dependent Cu(II) coordination polymers withtetrazole-1-acetic acid: synthesis, crystal structures, EPR and magnetic properties[J]. Cryst.Growth Des.,2008,8:1140-1146;(b) Chi Y-N, Cui F-Y, Jia A-R, et al. pH-Dependent synthesesof copper–quinoxaline–polyoxotungatate hybrids: variable role of Keggin-type polyanion indifferent pH conditions[J]. CrystEngComm,2012,14:3183-3188.
    [113](a) Forster P-M, Burbank A-R, Livage C, et al. The role of temperature in the synthesis ofhybrid inorganic–organic materials: the example of cobalt succinates[J]. Chem. Commun.,2004,368-369;(b) Du L-Y, Shi W-J, Hou L, et al. Solvent or temperature induced diverse coordinationpolymers of silver(I) sulfate and bipyrazole systems: syntheses, crystal structures, luminescence,and sorption properties[J]. Inorg. Chem.,2013,52:14018-14027.
    [114] Zhang J-P, Huang X-C, Chen X-M. Supramolecular isomerism in coordinationpolymers[J]. Chem. Soc. Rev.,2009,38:2385-2396.
    [115] Luo Y-H, Gu L-L, Yu X-Y, et al. A novel3D self-catenated coordination polymer withmultiform helical chains[J]. Inorg. Chem. Comm.,2014,40:176-180.
    [116] Tian J, Motkuri R-K, Thallapally P-K, et al. Metal-organic framework isomers withdiamondoid networks constructed of a semirigid tetrahedral linker[J]. Cryst. Growth Des.,2010,10:5327-5333.
    [117] Feng J, Zhang H. Hybrid materials based on lanthanide organic complexes: a review[J].Chem. Soc. Rev.,2013,42:387-410.
    [118](a) Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid withunusually large pore volumes and surface area[J]. Science,2005,309:2040-2042.(b)Thirumurugan A, Sanguramath R A, Rao C N R. Hybrid structures formed by lead1,3-cyclohexanedicarboxylates[J]. Inorg. Chem.,2008,47:823-831.
    [119] Cheng J-W, Zhang J, Zheng S-T, et al. Lanthanide–transition-metal sandwich frameworkcomprising {Cu3} cluster pillars and layered networks of {Er36} wheels[J]. Angew. Chem. Int.Ed.,2006,45:73-77.
    [120] Luo Y-H, Yue F-X, Yu X-Y, et al. A series of entangled ZnII/CdIIcoordination polymersconstructed from1,3,5-benzenetricarboxylate acid and flexible triazole ligands[J].CrystEngComm,2013,15:8116-8124.
    [121](a) Yang Q-F, Yu Y, Song T-Y, et al.2D and3D networks of lanthanide with mixeddicarboxylate ligands: syntheses, crystal structures and photoluminescent properties[J].CrystEngComm,2009,11:1642-1649.(b) Barkleit A, Tsushima S, Savchuk O, et al.Eu3+-Mediated Polymerization of Benzenetetracarboxylic Acid Studied by Spectroscopy,Temperature-Dependent Calorimetry, and Density Functional Theory[J]. Inorg. Chem.,2011,50:5451-5459.
    [122](a) Cheng D, Khan M A, Houser R P. Novel sandwich coordination polymers composed ofcobalt(II),1,2,4,5-benzenetetracarboxylato ligands, and homopiperazonium cations[J]. Cryst.Growth Des.,2002,2:415-420.(b) Fabelo O, Pasán J, Canadillas-Delgado L, et al.(4,4)Rectangular lattices of cobalt(II) with1,2,4,5-benzenetetracarboxylic acid: influence of thepacking in the crystal structure[J]. Cryst. Growth Des.,2008,8:3984-3992.
    [123](a) Prajapati R, Mishra L, Kimura K, et al. Metal–organic frameworks (MOFs) constructedfrom ZnII/CdII-2,2-bipyridines and polycarboxylic acids: Synthesis, characterization andmicrostructural studies[J]. Polyhedron,2009,28:600-608.(b) Yang E-C, Feng W, Wang J-Y, etal. Crystal structure, thermal stability and theoretical investigation on four1,3-bis(1,2,4-triazol-1-yl)propane-based copper(II) complexes[J]. Inorg. Chim. Acta,2010,363:308-316.
    [124] Karabach Y Y, Kirillov A M, Guedes da Silva M F C, et al. An aqua-solublecopper(II)-sodium two-dimensional coordination polymer with intercalated infinite chains ofdecameric water clusters[J]. Cryst. Growth Des.,2006,6:2200-2203.
    [125] Wang Y-B, Zhuang W-J, Jin L-P, et al. New lanthanide coordination polymers of1,2,4,5-benzenetetracarboxylic acid and4,4′-bipyridine with1D channels[J]. J. Mol. Struct.,2005,737:165-172.
    [126] Q. Hua, Y. Zhao, G.C. Xu, M.S. Chen, Z. Su, K. Cai,W.Y. Sun, Cryst. Growth Des.,2010,10:2553-2562.
    [127] Lu W G, Jiang L, Feng X L, et al. Three3D coordination polymers constructed by Cd(II)and Zn(II) with imidazole-4,5-dicarboxylate and4,4′-bipyridyl building blocks[J]. Cryst. GrowthDes.,2006,6:564-571.
    [128] Zhou R-S, Ye L, Ding H, et al. Syntheses, structures, luminescence, and magnetism of four3D lanthanide5-sulfosalicylates[J]. J. Solid State Chem.,2008,181:567-575.
    [129] Ma S, Zhou H-C. Gas storage in porous metal–organic frameworks for clean energyapplications[J]. Chem. Commun.,2010,46:44-53.
    [130] Kortz U, Müller A, van Slageren J, et al. Polyoxometalates: Fascinating structures, uniquemagnetic properties[J]. Coord. Chem. Rev.,2009,253:2315-2327.
    [131] Cooper G J T, Cronin L. Real-time direction control of self fabricatingpolyoxometalate-based microtubes[J] J. Am. Chem. Soc.,2009,131:8368-8369.
    [132] Wang B, Yin Z-D, Bi L-H, et al. An electroswitchable fluorescence thin-film based on aluminescent polyoxometalate cluster[J] Chem. Commun.,2010,46:7163-7165.
    [133] Fu H, Li Y, Lu Y, et al. Polyoxometalate-based metal-organic frameworks assembled underthe ionothermal conditions[J]. Cryst. Growth Des.,2011,11:458-465.
    [134] Wang Y, Peng Y, Xiao L-N, et al. New compounds constructed from polyoxometalates andtransition metal coordination complexes with lower positive charge[J]. CrystEngComm,2012,14:1049-1056.
    [135] Wei M, He C, Sun Q, et al. Zeolite ionic crystals assembled through direct incorporation ofpolyoxometalate clusters within3D metal organic frameworks[J]. Inorg. Chem.,2007,46:5957-5966.
    [136] Yi Z-H, Cui X-B, Zhang X, et al. Hydrothermal syntheses and structures of two novelpolyoxometalate-based3-D supramolecular architectures[J]. J. Mol. Struct.,2008,891:123-128.
    [137] Hou G, Bi L, Li B, et al. Polyoxometalate charge directed coordination assemblies:Macrocycles and polymer chains[J]. CrystEngComm,2011,13:3526-3535.
    [138] Dong B-X, Xu Q. Structural investigation of flexible1,4-bis(1,2,4-triazol-1-ylmethyl)benzene ligand in Keggin-based polyoxometalate frameworks[J].Cryst. Growth Des.,2009,9:2776-2782.
    [139] Han J W, Hill C L. A coordination network that catalyzes O2-based oxidations[J]. J. Am.Chem. Soc.,2007,129:15094-15095.
    [140] Shi Z, Peng J, Gómez-García C J, et al. Influence of metal ions on the structures of Kegginpolyoxometalate-based solids: Hydrothermal syntheses, crystal structures and magneticproperties[J]. J. Solid State Chem.,2006,179:253-265.
    [141] Jin H, Qin C, Li Y-G, et al.[Cu5Cl(4,4-bipy)5][SiW12O40]1.5H2O: A novelthree-dimensional framework constructed from polyoxometalate clusters and trinuclear Cu(I)complex[J]. Inorg. Chem. Commun.,2006,9:482-485.
    [142] Wang X-L, Li J, Tian A-X, et al. Assembly of three NiII-bis(triazole) complexes byexerting the linkage and template roles of Keggin anions[J]. Cryst. Growth Des.,2011,11:3456-3462.
    [143] Wang W, Xu L, Gao G, et al.3D framework constructed from Keggin polymolybdate anioncovalently linked by meso-helical mixed-valence copper(I/II) complex[J]. Inorg. Chem.Commun.,2009,12:259-262.
    [144] Zheng P-Q, Ren Y-P, Long L-S, et al. pH-Dependent assembly of Keggin-basedsupramolecular architecture[J]. Inorg. Chem.,2005,44:1190-1192.
    [145] Liu S, Xie L, Gao B, An organic–inorganic hybrid material constructed from athree-dimensional coordination complex cationic framework and entrapped hexadecavanadateclusters[J]. Chem. Commun.,2005,5023-5025.
    [146] Chen Q, Cai C, Zhou G, et al. Hydrothermal synthesis and structure of a newthree-dimensional inorganic-organic hybrid polyoxomolybdate based on Keggin cluster units[J].Z. Anorg. Allg. Chem.,2008,643:1197-1200.
    [147] Wang Y, Ye L, Ding H, et al. Hydrothermal syntheses and characterizations of twocompounds assembled from tungstates and bpy (bpy=4,4-bipyridine)[J]. J. Coord. Chem.,2010,63:426-434.
    [148] Sha J, Peng J, Liu H, Keggin POMs modified by bonding to multitrack Cu(bipy) chainsthrough linearly arrayed terminal and bridging oxygen atoms of the M3O13triad[J]. Eur. J. Inorg.Chem.,2007,1268-1274.
    [149] Li S-L, Lan Y-Q, Ma J-F, et al. Inorganic–organic hybrid materials with differentdimensions constructed from copper-fluconazole metal-organic units and Keggin polyanionclusters[J]. Dalton Trans.,2008,2015-2025.
    [150] Ma J-F, Yang J, Zheng G-L, et al. A porous supramolecular architecture from a copper(II)coordination polymer with a3D four-connected86net[J]. Inorg, Chem.,2003,42:7531-7534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700