外场强化光催化与气—液反应处理污染物的过程分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业废水尤其是含内分泌污染物、偶氮染料及重金属废水的处理,一直备受关注,主要原因是这些污染物即使在较低的浓度也表现出较大的环境危害和毒性风险。在各种物化处理方法中,Ti02非均相光催化是处理难降解有机污染物的一种很有前景的方法,由于该方法具有可利用太阳能的优点而受到重视;空气吹脱法在去除废水中挥发性污染物方面因具有过程简单、成本较低等优点,得到广泛应用。但是,TiO2非均相光催化存在液相中光催化剂易于团聚、失活、分离回收困难,以及由于光催化剂团聚引起的反应体系中气—液—固相间传质限制与光源传递限制等问题;空气吹脱是一个涉及气—液相间传质的废水处理过程,由于实际废水处理过程中往往存在固体物质,使得常用的填料塔等气—液反应设备中存在填料结垢和堵塞等工程问题,其处理过程效率也有待提高。因此,研究这些废水处理过程中涉及的多相反应过程的强化方法,并开发与此相适应的新型反应器,对于废水处理技术的创新具有直分重要的意义。为此,本论文开展了超声波强化纳米TiO2多相光催化;循环流化床技术强化微米级稀土掺杂Ti02多相光催化;静态超重力场强化气—液反应等污染物处理过程的研究,对强化处理过程进行了详细分析,着重在反应器的结构设计、构—效关系量化、反应器结构优化、流型分析等方面,构建了超声波和流态化技术强化TiO2多相光催化和静态超重力强化气—液反应去除污染物的新方法。主要研究内容如下:
     1、设计了一种新的循环超声直接强化光催化反应器,以解决悬浮浆态TiO2光催化反应体系中纳米光催化剂易于团聚及其对间质量传递和光传递的限制问题。
     针对悬浮浆态TiO2光催化反应体系出现的光催化剂易于团聚失活的问题,研究采用超声场强化TiO2光催化多相反应过程,来提高处理效率。实验设计了一种新的循环式超声直接强化光催化反应器,用以处理偶氮染料——甲基橙,实验研究了过程操作参数对处理效果影响。研究表明,超声和光催化过程在该反应器中实现了有效协同,产生了明显的协同效应,处理效果优于两种单独过程处理效果之和。最优操作参数为超声功率600W、TiO2光催化剂浓度3g/L、循环流速4.05×10-2m/s、气流量200ml/min。在最优条件下,处理1h甲基橙的降解率可达91.74%,降解速率常数达3.96×10-2min-1,超声与TiO2光催两个反应过程之间的协同因子高达2.26。超声光催化处理过程中,光催化起主导作用,超声主要起协同强化作用,可提高污染物的降解效率,但并不改变前者的降解变化趋势。
     2、以稀土Gd掺杂的微米TiO2为光催化剂,结合固体流态化思想,设计了一种光源内置式气-液-固三相循环流化床光催化反应器,研究了内分泌干扰物—双酚A在该光催化反应体系中的降解,对处理过程进行了分析评价。构建了基于颗粒型TiO2光催化剂与流态化技术相结合的光催化处理新方法,解决了光催化体系中纳米催化剂难于回收利用的问题。
     针对悬浮浆态TiO2光催化反应体系存在的纳米光催化剂易于团聚失活、且难以分离回收,无法用于实际废水处理等缺点。提出了使用易于沉降分离的微米级稀土Gd掺杂TiO2光催化剂,与新设计的光源内置式气-液-固三相循环流化床相结合的光催化反应体系,颗粒流态化强化光催化反应过程,提高处理效果。实验以双酚A为模型物,先优化了新反应体系的操作参数;然后在最优操作条件下,从处理效果和沉降性能上与常用的P25-TiO2反应体系进行了对比:最后采用响应曲面法对新反应体系进行了优化。研究表明:对于新的反应体系,最优操作参数为Ti02浓度为4.5g/L,表观气速为7.83×10-3m/s,表观气速为8.65×10-3m/s。与常规的P25-TiO2粉末反应体系相比,该反应体系具有更好的光催化性能和光催化剂沉降性能,实际光催化效率是后者的3倍。通过响应曲面法建立的模型,可对该反应体系处理的效果进行优化和评估。
     3、水力喷射—空气旋流器(WSA)中射流流型分析,为利用静态超重力强化气—液反应处理污染物提供了过程调控与操作参数优化的基础。
     水力喷射空气旋流器是一种利用液体射流与气体旋流耦合场和静态超重力场强化气—液反应过程的新型高效反应器。由于其内部无填料和反应介质的高速旋转剪切流动,因而可以避免实际废水处理过程中设备内部填料的结垢和堵塞问题,具有自清洁功能。为了进一步提高静态超重力场强化气—液传质效率,认识射—旋流体系气—液传质机理,为反应过程调控与操作参数优化提供基础,首先采用了直接观察法对水力喷射—空气旋流器(WSA)中的射流流型进行了系统研究,绘制出了不同进口气速下射流流型图。然后,结合化学吸收法(CO2—空气-NaOH体系)测定了不同射流流型下的有效相界面积α,并将流型和α进行关联分析,以便证实流型划分的科学性。结果表明,在低射流流速(≤4.42m/s)下,液相射流随着进口气速增大,主要存在稳态射流、变形旋线射流、破碎旋线射流、雾化旋线射流、贴壁雾化旋线射流五种流型;在高射流流速(≥6.19m/s)下,射流主要出现稳态射流、破碎旋线射流以及雾化旋线射流三种流型。有效相界面积α与流型有关,雾化旋线射流下的α值大于其他流型下对应值,但低流速下的贴壁雾化,不利于气液两相充分接触、作用,对应α值较小。α值与射流流速有一定关系,随着射流速度的增大而略有增大,且随着射流流速增大至8.84m/s以上,增大的幅度变大。
     4、水力喷射—空气旋流器(WSA)的喷孔分布与结构优化,为实现静态超重力强化气—液反应过程的设备设计提供了依据。
     超重力场常用来强化气—液传质,但目前采用的主要是动态超重力设备旋转填充床,存在稳定性差、能耗高、易结垢的缺点。本课题组开发了一种利用液体射流场和气体旋流超重力场耦合强化气—液传质的新型静态超重力设备水力喷射—空气旋流器(WSA)。为了进一步提高WSA的传质性能,本章采取理论分析与吹脱氨实验相结合的方法,对其喷孔排布方式、喷孔间距、喷孔直径进行了优化研究。提出了基于同层相邻喷孔液相射流边界层相交于WSA中心排气管表面的临界孔间距lc和反映射—旋流耦合传质特性的准数,JC的概念及其计算方法。研究表明,在吹脱氨传质性能上,WSA的射流喷孔按正方形排列优于三角形排列;喷孔间距存在一个较优取值,其值约等于1.28lc;通过数据拟合,得到了JC的经验公式为JC=2.77×10-9Re0.37ReL1.18WeL-1.05,该式可较好地预测喷孔直径对WSA脱氨传质性能的影响。喷孔直径的最佳取值应按db=l0/6.39设计计算,l0为WSA的环隙宽度。
     5、水力喷射—空气旋流器(WSA)用于SO2还原处理高浓度含Cr(Ⅵ)废水,建立了SO2还原法处理含Cr(Ⅵ)废水新工艺。
     含Cr(Ⅵ)废水常采用S02还原处理,一般采用填料塔、板式塔等设备,存在气液传质效率低、投资大、易结垢、堵塞等问题。本工作以SO2为还原剂,采用静态超重力强化气液传质设务——水力喷射空气旋流器(WSA)对含铬废水进行直接还原处理,并考察了废水pH、液相射流流速、SO2浓度、Cr(Ⅵ)浓度等因素对处理效果的影响。研究结果表明:当SO2浓度为3582m/m3时,对Cr(Ⅵ)初始浓度为1134mg/L的模拟含铬废水,循环处理6min,Cr(Ⅵ)去除率可达99.9%以上。废水初始pH为碱性比其为酸性条件下,更有利于SO2的勺吸收,提高了SO2利用率,增强了处理效率。废水射流流速对处理效果的影响较小,但SO2和Cr(Ⅵ)的浓度对处理效果有明显影响。随着SO2浓度增大,处理效率增大;Cr(Ⅵ)的初始浓度增大,处理效率降低。研究结果为建立含硫气体还原处理含Cr(Ⅵ)废水新工艺提供了依据。
Treatment of industry wastewater is a concern, especially for those pollutants that can not be treated by traditional biological methods, such as endocrine disruptors, azo dyes and heavy mental. Even with low concentrations, they can bring huge environmental pollution and toxic danger. These pollutants should be dealt by the physico-chemical treatment and process, in which photocatalysis using TiO2particles and air stripping process attract extensive attention for their simple processes, low cost and no need to add any chemical reagent. However, there exists low proficiency, few studies on the equipments and other problems. In order to solve these problems, in this thesis, physico-chemical treatment and process intensification of recalcitrant pollutants of azo dye, endocine disruping chemicals, ammonia and hexavalent chromium were investigated, and the thesis could be divided into five parts of contents:
     I Design a new circulating ultrasound directly-intensified photocatalytic reactor to solve the problems that the nanometer photocatalyst is easily agglomerated and limited the mass transfer in the suspension slurry reaction system of photocatalysis. In this chapter an original ultrasound (US) directly intensified photocatalytic reactor was designed to find a more efficient intensification manner for the scale-up of sonophotocatalytic process. Azo dye of methyl orange (MeO) was used as model pollutant using Degussa TiO2as the photocatalyst. The sonolytic, photocatalytic and sonophotocatalytic degradation of MeO in the new reactor and the synergistic effect between sonolysis and photocatalysis were investigated. Effects of operation parameters i.e., US power. TiO2dosage, liquid circulation velocity and air flow rate on degradation efficiency were investigated and optimized. The results showed that all parameters have optimal values for the sonophotocatalytic degradation of MeO, and the optimum conditions for the new process are US power600W, TiO2dosage3g/L, liquid circulation velocity4.05×10-2m/s and air flow rate0.2L/min. Under the optimum conditions,91.52%MeO had been degraded within1h, and the combination of sonolysis and TiO2photocatalysis exhibited an obvious synergetic effect.
     2The suspended slurry photocatalytic systems using TiO2nanoparticles can maximize the efficiency of photon utilization, oxidation rates and reactor throughput. However, the nanophotocatalysts easily agglomerate in slurry system, reducing the efficiency of photocatalytic process. It also exist separation problem of nanophotocatalysts using in the slurry system. In order to solve the problem, a new gas-liquid-solid circulating fluidized bed photocatalytic reactor (GLSCFBPR) with internally placed multi-layered UV lamps was developed and micrometer Gd-TiO2particles was chosen as the photocatalyst to intensify the treatment process. Hazardous substance bisphenol A (BPA) was chosen as the model pollutant to investigate the performance of this new photocatalytic system. The results showed that the photocatalytic degradation efficiency of the micrometer Gd-TiO2particles was similar to that of the nanometer P-25particles at their respective optimum dosage but the former could be easily separated out by gravity. After investigating the effects of process parameters on the photocatalytic BPA degradation, the response surface method (RSM) was further used for process optimization. The interactions among process parameters, i.e. TiO2concentration, superficial gas velocity and superficial liquid velocity were discovered and a related analysis was carried out to explore the underlying mechanism. A quadratic mathematic model was established and performed satisfactorily when used for prediction. The optimum conditions for this new process were as follows:TiO2concentration4.5g/L, superficial gas velocity7.83×10-3m/s and superficial liquid velocity8.65×10-3m/s. Under the optimum conditions,91.74%MeO had been degraded within1h, and the apparent degradation rate constant is3.96×10-2min-1. The synergy between photocatalysis and sonolysis is as high as2.26.
     3、Water-sparged aerocyclone (WSA) is new gas-liquid mass transfer equipment developed by our research group using of supergravity field of sparged air. In order to investigate the mechanism of the jet-sparged system of the WSA and improve its mass transfer performance, jet flow pattern and interfacial area (a) of the WSA were determined by directly observed method and the chemical reaction method with CO2-NaOH solution system. Then the transition of jet flow pattern and the a were correlated. The results show that jet flow pattern is mainly affected by jet velocity and air inlet velocity. There exists steady state je;, deformed spiral jet, broken spiral jet, atomized spiral jet and total atomized spiral jet in the WSA when the jet velocity is lower than4.42ni/s. Besides, when the jet velocity is higher than6.19m/s there exists only deformed spiral jet, broken spiral jet and atomized spiral jet. The a is related to jet flow pattern, and a is higher in atomized spiral jet than in the other jets. Moreover, the value of a increases with liquid jet velocity because of the gas-liquid intense interaction in WSA.
     4、In order to improve its mass transfer performance and establish design principles, spray hole distribution and jet hole diameter of the WSA was optimized by means of theoretic analysis and experimental method. A new concept, critical distance of spray holes,lc, and its calculation formula were put forward. A new dimensionless number, Jc, characterizing the mass transfer performance in the liquid jet-gas cyclone coupling field, was suggested. The results showed that the WSA with square arrangement of spray holes exhibited higher mass transfer efficiency than that with triangle arrangement of spray holes in air stripping of ammonia. The distance between adjacent spray holes of the WSA had obvious effect on volumetric mass transfer coefficient, the optimal distance was about1.28lc and the perforation area was about78%of the central tube height in the WSA. The mass transfer efficiency of the WSA increased with increasing jet hole diameter under a certain liquid jet velocity in air stripping of ammonia. However, excessive jet hole diameter will consume more energy for the reeireillation of wastewater. The optimum jet hole diameter could be calculated asdh=lo/6.39, herelo is the annular with of the WSA. To predict the effects of jet hole diameter on mass transfer characteristics in WSA, empirical formula for correlating the experimental data was developed, as Jc=2.77×10-9Reg0.37ReL1.18(?)eL-1.05.These results could be used as a guide for the design of WSA with good mass transfer performance.
     5、The removal of hexavalent chromium (Cr(Ⅵ)) from wastewater by sulfur dioxide(SO2) reduction was conducted in the water-sparged aerocyclone (WSA) reactor, and a satisfactory result was obtained. When chromium containing wastewater of1134mg/L was treated for6min with a gas containing SO2of3582mg/m3, more than99.9%Cr (Ⅵ) was removed. Alkaline Cr (Ⅵ) containing wastewater is beneficial to the absorption of SO2, increasing the efficiency of Cr (Ⅵ) reduction. Initial concentrations of SO2and Cr(Ⅵ) have significant influence on the efficiency of Cr (Ⅵ) removal, but wastewater jet velocity has less effects. Increasing SO2concentration increased Cr (VI) removal efficiency, whereas increasing Cr (Ⅵ) concentration decreased the treatment efficiency. Compared with the SO2reduction process conducted in some traditional gas-liquid reactors like packed towers, this SO2reduction process conducted in the WSA has obvious advantages such as no need for adjusting pH of wastewater to2~3before SO2reduction, easy operation and no Cr (OH)3scale deposited in reactor. So the investigation could provide a new sulfur dioxide reduction process for Cr (Ⅵ) containing wastewater using SO2containing gas.
引文
[1]中华人民共和国环境保护部.中国环境状况公报,2012.
    [2]中华人民共和国环境保护部.中国环境状况公报,2011.
    [3]Hu Y., Cheng H. Water pollution during China's industrial transition. Environmental Development,2013:http://dx.doi.org/10.1016/j.envdev.2013.06.001.
    [4]Cao D., Jiang G., Zhou Q., Yang R. Organotin pollution in China:An overview of the current state and potential health risk. J. Environ. Manage.,2009,90, Supplement 1(0):S16-S24.
    [5]Gultekin I., Ince N. H. Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J. Environ. Manage.,2007,85(4):816-832.
    [6]Lopez-Carrillo L., Hernandez-Ramirez R. U., Calafat A. M. et al. Exposure to Phthalates and Breast Cancer Risk in Northern Mexico. Environ. Health Perspect,2010,118(4):539-544.
    [7]Mocarelli P., Brambilla P., Gerthoux P. M., Jr D. G. P., Needham L. L. Change in sex ratio with exposure to dioxin. The Lancet,1996,348(9024):409.
    [8]Wang C, Zhang H., Li F., Zhu L. Degradation and Mineralization of Bisphenol A by Mesoporous Bi2WO6 under Simulated Solar Light Irradiation. Environ. Sci. Technol,2010, 44(17):6843-6848.
    [9]Peng X., Yu Y, Tang C., Tan J., Huang Q., Wang Z. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci. Total. Environ.,2008,397(1-3):158-166.
    [10]Shi W, Hu G., Chen S., Wei S., Cai X., Chen B., Feng J., Hu X., Wang X., Yu H. Occurrence of estrogenic activities in second-grade surface water and ground water in the Yangtze River Delta, China. Environ. Pollut,2013,181(0):31-37.
    [11]Lee C.-C., Jiang L.-Y, Kuo Y.-L., Hsieh C.-Y., Chen C. S., Tien C.-J. The potential role of water quality parameters on occurrence of nonylphenol and bisphenol A and identification of their discharge sources in the river ecosystems. Chemosphere,2013,91(7):904-911.
    [12]Staples C. A., Dome P. B., Klecka G. M., Oblock S. T., Harris L. R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere,1998,36(10): 2149-2173.
    [13]Ying G-G, Williams B., Kookana R. Environmental fate of alkylphenols and alkylphenol ethoxylates-a review. Environ. Int.,2002,28(3):215-226.
    [14]Xu X.-R., Li H.-B., Wang W.-H., Gu J.-D. Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere,2004,57(7):595-600.
    [15]Cui D., Guo Y.-Q., Cheng H.-Y, Liang B., Kong F.-Y., Lee H.-S., Wang A.-J. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor. J. Hazard Mater.,2012,239-240(0):257-264.
    [16]Han F., Kambala V. S. R., Srinivasan M., Rajarathnam D., Naidu R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment:A review. Applied Catalysis A:General,2009,359(1-2):25-40.
    [17]Liu G., Wu T., Zhao J., Hidaka H., Serpone N. Photoassisted Degradation of Dye Pollutants.8. Irreversible Degradation of Alizarin Red under Visible Light Radiation in Air-Equilibrated Aqueous TiO2 Dispersions. Environ. Sci. Technol.,1999,33(12):2081-2087.
    [18]Selvam K.., Swaminathan K.., Chae K.-S. Microbial decolorization of azo dyes and dye industry effluent by Fomes lividus. World Journal of Microbiology and Biotechnology,2003,19(6): 591-593.
    [19]Brown M. A., De Vito S. C. Predicting azo dye toxicity. Crit. Rev. Env. Sci. Tec,1993,23(3): 249-324.
    [20]Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biot.,2001,56(1-2):69-80.
    [21]Malik P. K., Saha S. K. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Sep. Purif Technol.,2003,31(3):241-250.
    [22]Sun J., Hu Y.-y., Bi Z., Cao Y.-q. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioivsowve Technology,2009,100(13):3185-3192.
    [23]Arslan I., Balcioglu I. A. Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes:a comparative study. Dyes and Pigments,1999, 43(2):95-108.
    [24]Weber E. J., Adams R. L. Chemical-and Sediment-Mediated Reduction of the Azo Dye Disperse Blue 79. Environ. Sci. Technol,1995,29(5):1163-1170.
    [25]Baughman G. L., Weber E. J. Transformation of dyes and related compounds in anoxic sediment: kinetics and products. Environ. Sci. Technol.,1994,28(2):267-276.
    [26]Zhu X., Ni J., Wei J., Xing X., Li H. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode. J Hazard Mater,2011,189(1-2):127-133.
    [27]Gupta V. K., Suhas. Application of low-cost adsorbents for dye removal-A review. Journal of Environmental Management,2009,90(8):2313-2342.
    [28]Madoni P., Romeo M. G. Acute toxicity of heavy metals towards freshwater ciliated protists. Environ. Pollut,2006,141(1):1-7.
    [29]Peterson A., Lewne M., Walum E. Acute toxicity of organic solvents, heavy metals and DDT tested in cultures of mouse neuroblastoma cells. Toxicol. Lett.,1981,9(2):101-106.
    [30]Leonard A., Lauwerys R. R. Carcinogen icity and mutagenicity of chromium. Mutation Research/Reviews in Genetic Toxicology,1980,76(3):227-239.
    [31]Borba C. E., Guirardello R., Silva E. A., Veit M. T., Tavares C. R. G. Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column:Experimental and theoretical breakthrough curves. Biochem. Eng. J.,2006,30(2):184-191.
    [32]Fu F., Wang Q. Removal of heavy metal ions from wastewaters:A review. J. Environ. Manage., 2011,92(3):407-418.
    [33]Wei B., Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J,2010,94(2):99-107.
    [34]Yao Z., Li J., Xie H., Yu C. Review on Remediation Technologies of Soil Contaminated by Heavy Metals. Procedia Environmental Sciences,2012,16(0):722-729.
    [35]Liu G, Tao L., Liu X., Hou J., Wang A., Li R. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. Journal of Geochemical Exploration,2013,132(0):156-163.
    [36]Meng W, Qin Y., Zheng B., Zhang L. Heavy metal pollution in Tianjin Bohai Bay, China. Journal of Environmental Sciences,2008,20(7):814-819.
    [37]Rule K. L, Comber S. D. W., Ross D., Thornton A., Makropoulos C. K., Rautiu R. Diffuse sources of heavy metals entering an urban wastewater catchment. Chemosphere,2006,63(1): 64-72.
    [38]Chrysochoou M., Dermatas D. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue. J. Hazard. Mater.,2007,141(2):370-377.
    [39]Cheng S. Heavy metal pollution in China:Origin, pattern and control. Environ. Sci. Pollut. R, 2003,10(3):192-198.
    [40]Benavente M., Moreno L., Martinez J. Sorption of heavy metals from gold mining wastewater using chitosan. Journal of the Taiwan Institute of Chemical Engineers,2011,42(6):976-988.
    [41]Wang Z., Liu G, Fan Z., Yang X., Wang J., Wang S. Experimental study on treatment of electroplating wastewater by nanofiltration. J. Membrane Sci,2007,305(1-2):185-195.
    [42]Sousa F. W., Sousa M. J., Oliveira I. R. N., Oliveira A. G., Cavalcante R. M., Fechine P. B. A., Neto V. O. S., de Keukeleire D., Nascimento R. F. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory. J. Environ. Manage., 2009,90(11):3340-3344.
    [43]Marder L., Bernardes A. M., Zoppas Ferreira J. Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system. Sep. Purif. Technol,2004,37(3):247-255.
    [44]Yoo K., Shin S.-M., Yang D.-H., Sohn J.-S. Biological treatment of wastewater produced during recycling of spent lithium primary battery. Miner. Eng.,2010,23(3):219-224.
    [45]Ji W., Yang T, Ma S., Ni W. Heavy Metal Pollution of Soils in the Site of a Retired Paint and Ink Factory. Energy Procedia,2012,16, Part A(0):21-26.
    [46]Pathak A., Dastidar M. G, Sreekrishnan T. R. Bioleaching of heavy metals from sewage sludge: A review. J. Environ. Manage.,2009,90(8):2343-2353.
    [47]Wong J. W. C., Selvam A. Speciation of heavy metals during co-composting of sewage sludge with lime. Chemosphere,2006,63(6):980-986.
    [48]Gimeno-Garcia E., Andreu V., Boluda R. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ. Pollut.,1996,92(1):19-25.
    [49]Zhang T., Ding L., Ren H., Xiong X. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology. Water Res.,2009,43(20):5209-5215.
    [50]Ahmed F. N., Lan C. Q. Treatment of landfill leachate using membrane bioreactors:A review. Desalination,2012,287(0):41-54.
    [51]Bonmati A., Flotats X. Air stripping of ammonia from pig slurry:characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion. Waste Manage.,2003,23(3): 261-272.
    [52]Randall D. J., Tsui T. K. N. Ammonia toxicity in fish. Marine Pollution Bulletin,2002,45(1-12): 17-23.
    [53]朱抓中.膜吸收法与膜生物反应器组合系统处理高浓度氨氮废水的研究[博士学位论文].无锡:江南大学,2005:7.
    [54]Mohan D., Pittman Jr C. U. Arsenic removal from water/wastewater using adsorbents--A critical review. J. Hazard. Mater.,2007,142(1-2):1-53.
    [55]Ali I., Asim M., Khan T. A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manage.,2012,113(0):170-183.
    [56]Ahmaruzzaman M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Sci Adv. Colloid Interface Sci.,2011,166(1-2):36-59.
    [57]Takht Ravanchi M., Kaghazchi T., Kargari A. Application of membrane separation processes in petrochemical industry:a review. Desalination,2009,235(1-3):199-244.
    [58]He Y., Li G, Wang H., Zhao J., Su H., Huang Q. Effect of operating conditions on separation performance of reactive dye solution with membrane process. J. Membrane Sci.,2008,321(2): 183-189.
    [59]Murthy Z. V. P., Chaudhari L. B. Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler-Kedem model. Chem. Eng. J.,2009,150(1):181-187.
    [60]Ali N. a., Halim N. S. A., Jusoh A., Endut A. The formation and characterisation of an asymmetric nanofiltration membrane for ammonia-nitrogen removal:Effect of shear rate. Bioresource Technol,2010,101(5):1459-1465.
    [61]Song G., Wang J., Chiu C.-A., Westerhoff P. Biogenic Nanoscale Colloids in Wastewater Effluents. Environ. Sci. Technol.,2010,44(21):8216-8222.
    [62]Ippersiel D., Mondor M., Lamarche F., Tremblay F., Dubreuil J., Masse L. Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping. J. Environ. Manage.,2012,95, Supplement(O):S165-S169.
    [63]Caffaro-Filho R. A., Morita D. M., Wagner R., Durrant L. R. Toxicity-directed approach of polyester manufacturing industry wastewater provides useful information for conducting treatability studies. J. Hazard. Mater.,2009,163(1):92-97.
    [64]Libralato G, Ghirardini A. V., Avezzu F. Evaporation and air-stripping to assess and reduce ethanolamines toxicity in oily wastewater. J. Hazard. Mater.,2008,153(3):928-936.
    [65]Juang R.-S., Lin S.-H., Yang M.-C. Mass transfer analysis on air stripping of VOCs from water in microporous hollow fibers. J. Membrane Sci.,2005,255(1-2):79-87.
    [66]Ayyildiz O., Anderson P. R., Peters R. W. Laboratory batch experiments of the combined effects of ultrasound and air stripping in removing CC14 and 1,1,1-TCA from water. J. Hazard. Mater. 2005,120(1-3):149-156.
    [67]Zhang L., Jahng D. Enhanced anaerobic digestion of piggery wastewater by ammonia stripping: Effects of alkali types. J. Hazard. Mater,2010,182(1-3):536-543.
    [68]Min X.-b., Zhou M., Chai L.-y., Wang Y.-y., Shu Y.-d. Treatment of nickel-ammonia complex ion-containing ammonia nitrogen wastewater. T. Nonferr. Metal Soc,2009,19(5):1360-1364.
    [69]Quan X., Ye C., Xiong Y., Xiang J., Wang F. Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. J. Hazard. Mater.,2010,178(1-3):326-332.
    [70]Gustin S., Marinsek-Logar R. Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process. Saf. Environ.,2011,89(1): 61-66.
    [71]Nirmalakhandan N., Spcece R. E., Peace J. L., Jang W. Operation of counter-current air-stripping towers at higher loading rates. Water Res.,1993,27(5):807-813.
    [72]llatta Dahlan M., Xing X.-H., Yoshikawa Y., Matsumoto K. Analysis of a simple biodegraclation process for the removal of volatile organic chemicals from wastewater based on a gas stripping principle../Bio.ici. Bioeng.,1999,87(4):519-524.
    [73]Cheng 11., Hu Y, Luo J., Sabatini D. A. Multipass membrane air-stripping (MAS) for removing volatile organic compounds (VOCs) from surfactant miccllar solutions. J. Hazard. Mater,2009, 170(2-3):1070-1078.
    [74]Shestakova M., Sillanpaa M. Removal of dichloromethane from ground and wastewater:A review. Chemosphere, (0).
    [75]Ward D. B., Tizaoui C., Slater M. J. Continuous extraction and destruction of chloro-organics in wastewater using ozone-loaded VolasilTM 245 solvent. J. Hazard. Mater.,2005,125(1-3):65-79.
    [76]汤清家.用二氧化硫处理含铬废水.化工环保,1998,18(6):347-352.
    [77]Klavarioti M., Mantzavinos D., Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int.,2009,35(2):402-417.
    [78]Chong M. N., Sharma A. K., Burn S., Saint C. P. Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment. Journal of Cleaner Production, 2012,35(0):230-238.
    [79]Nam S.-N., Han S.-K., Kang J.-W., Choi H. Kinetics and mechanisms of the sonolytic destruction of non-volatile organic compounds:investigation of the sonochemical reaction zone using several OH monitoring techniques. Ultrason. Sonochem.,2003,10(3):139-147.
    [80]Feng L., van Hullebusch E. D., Rodrigo M. A., Esposito G, Oturan M. A. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem. Eng. J,2013,228(0):944-964.
    [81]Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238(5358):37-38.
    [82]Teh C. M., Mohamed A. R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions:A review. J. Alloy. Compd.,2011,509(5):1648-1660.
    [83]Paz Y. Application of TiO2 photocatalysis for air treatment:Patents'overview. Applied Catalysis B:Environmental,2010,99(3-4):448-460.
    [84]Markowska-Szczupak A., Ulfig K., Morawski A. W. The application of titanium dioxide for deactivation of bioparticulates:An overview. Catal. Today,2011,169(1):249-257.
    [85]Khataee A. R., Kasiri M. B. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide:Influence of the chemical structure of dyes. Journal of Molecular Catalysis A:Chemical,2010,328(1-2):8-26.
    [86]Fujishima A., Rao T. N., Tryk D. A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [87]Kajitvichyanukul P., Ananpattarachai J., Pongpom S. Sol-gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process. Science and Technology of Advanced Materials,2005,6(3-4):352-358.
    [88]Andronic L., Enesca A., Vladuta C., Duta A. Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes. Chem. Eng. J.,2009,152(1):64-71.
    [89]Belgiorno V., Rizzo L., Fatta D., Delia Rocca C., Lofrano G., Nikolaou A., Naddeo V., Meric S. Review on endocrine disrupting-emerging compounds in urban wastewater:occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination,2007, 215(1-3):166-176.
    [90]Ahmed S., Rasul M. G, Brown R., Hashib M. A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater:A short review. J. Environ. Manage.,2011,92(3):311-330.
    [91]Velmurugan R., Krishnakumar B., Kumar R., Swaminathan M. Solar active nano-Ti02 for mineralization of Reactive Red 120 andTrypan Blue:1st Nano Update. Arabian Journal of Chemistry,2012,5(4):447-452.
    [92]Janus M., Tryba B., Inagaki M., Morawski A. W. New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2. Applied Catalysis B: Environmental1,2004,52(1):61-67.
    [93]Chong M. N., Jin B., Chow C. W. K., Saint C. Recent developments in photocatalytic water treatment technology:A review. Water Res.,2010,44(10):2997-3027.
    [94]Zheng Z., Huang B., Qin X., Zhang X., Dai Y. Strategic Synthesis of Hierarchical TiO2 Microspheres with Enhanced Photocatalytic Activity. Chemistry-A European Journal,2010, 16(37):11266-11270.
    [95]Nakata K., Fujishima A. TiO2 photocatalysis:Design and applications. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2012,13(3):169-189.
    [96]Liu Z., Zhang X., Nishimoto S., Jin M., Tryk D. A., Murakami T., Fujishima A. Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol. The Journal of Physical Chemistiy C,2007,112(1):253-259.
    [97]Wu C.-H., Chang H.-W., Chem J.-M. Basic dye decomposition kinetics in a photocatalytic slurry reactor. J. Hazard. Mater.2006,137(1):336-343.
    [98]McCullagh C., Robertson P. K. J., Adams M., Pollard P. M., Mohammed A. Development of a slurry continuous flow reactor for photocatalytic treatment of industrial waste water. Journal of Photochemistry and Photobiology A:Chemistiy,2010,211(1):42-46.
    [99]Zhang Z., Wu H., Yuan Y., Fang Y, Jin L. Development of a novel capillary array photocatalytic reactor and application for degradation of azo dye. Chem. Eng. J.,2012,184(0):9-15.
    [100]Nam W., Kim J., Han G Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor. Chemosphere,2002,47(9):1019-1024.
    [101]Vella G., Imoberdorf G E., Sclafani A., Cassano A. E., Alfano O. M, Rizzuti L. Modeling of a TiO2-coated quartz wool packed bed photocatalytic reactor. Applied Catalysis B:Environmental, 2010,96(3-4):399-407.
    [102]Joo H., Jeong H., Jeon M., Moon I. The use of plastic optical fibers in photocatalysis of trichloroethylene. Sol. Energ. Mater. Sol. C.,2003,79(1):93-101.
    [103]Cassano A. E., Alfano O. M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal.Today,2000,58(2-3):167-197.
    [104]Pareek V. K., Cox S. J., Brungs M. P., Young B., Adesina A. A. Computational fluid dynamic (CFD) simulation of a pilot-scale annular bubble column photocatalytic reactor. Chem. Eng. Sci., 2003,58(3-6):859-865.
    [105]Saien J., Delavari H., Solymani A. R. Sono-assisted photocatalytic degradation of styrene-acrylic acid copolymer in aqueous media with nano titania particles and kinetic studies. J. Hazard. Mater.,2010,177(1-3):1031-1038.
    [106]Malato S., Fernandez-Ibanez P., Maldonado M. I., Blanco J., Gernjak W. Decontamination and disinfection of water by solar photocatalysis:Recent overview and trends. Catal. Today,2009, 147(1):1-59.
    [107]Sannino D., Vaiano V., Ciambelli P., Eloy P., Gaigneaux E. M. Avoiding the deactivation of sulphated MoOx/TiO2 catalysts in the photocatalytic cyclohexane oxidative dehydrogenation by a fluidized bed photoreactor. Applied Catalysis A:General,2011,394(1-2):71-78.
    [108]Dong S., Zhou D., Bi X. Liquid phase heterogeneous photocatalytic ozonalion of phenol in liquid-solid fluidized bed:Simplified kinetic modeling. Particuology,2010,8(1):60-66.
    [109]Nam W., Woo K., Han G Photooxidation of anionic surfactant (sodium lauryl sulfate) in a three-phase fluidized bed reactor using TiO2/SiO2 photocatalyst. J. Ind. Eng. Chem.,2009,15(3): 348-353.
    [110]尤宏,罗薇楠,姚杰,陈平,蔡伟民.三和内循环流化床光催化反应器及其光辐射传递规律.环境科学,2005,26(1):112-116.
    [111]陈其伟.多光源三相内循环流化床光催化反应器的构建及其应用研究[硕士学位论文].哈尔滨:哈尔滨工业大学,2011:1-77.
    [112]Joseph C. G., Li Puma G., Bono A., Krishnaiah D. Sonophotocatalysis in advanced oxidation process:A short review. Ullrason. Sonochem.,2009,16(5):583-589.
    [113]Augugliaro V., Litter M., Palmisano L., Soria J. The combination of heterogeneous photocatalysis with chemical and physical operations:A tool for improving the photoprocess performance. Journal of Photochemistiy and Photobiology C:Photochemistry Reviews,2006, 7(4):127-144.
    [114]Ai Z., Yang P., Lu X. Degradation of 4-chlorophenol by a microwave assisted photocatalysis method.J. Hazard. Mater.,2005,124(1-3):147-152.
    [115]Tokumoto T., Ishikawa K., Furusawa T, Ii S., Hachisuka K., Tokumoto M., Tsai H.-J., Uchida S., Maezawa A. Sonophotocatalysis of endocrine-disrupting chemicals. Mar. Environ. Res.,2008, 66(3):372-377.
    [116]Madhavan J., Grieser F., Ashokkumar M. Degradation of formetanate hydrochloride by combined advanced oxidation processes. Sep. Purif. Technol,2010,73(3):409-414.
    [117]Bahena C. L., Martinez S. S., Guzman D. M., del Refugio Trejo Hernandez M. Sonophotocatalytic degradation ofalazineand gesaprim commercial herbicides in TiO2 slurry. Chemosphere,2008,71 (5):982-989.
    [118]Anandan S., Ashokkumar M. Sonochemical synthesis of Au nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment. Ultrason. Sonochem.,2009,16(3):316-320.
    [119]Maezawa A., Nakadoi H., Suzuki K., Furusawa T., Suzuki Y, Uchida S. Treatment of dye wastewater by using photo-catalytic oxidation with son i cat ion. Ullrason. Sonochem.,2007,14(5): 615-620.
    [120]Madhavan J.. Kumar P. S. S.. Anandan S., Zhou M., Grieser F., Ashokkumar M. Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment. Chemosphere, 2010,80(7):747-752.
    [121]Suslick K. S. The Chemical Effects of Ultrasound. Scientific American,1989:80-86.
    [122]Chen F., Li Y., Cai W., Zhang J. Preparation and sono-Fenton performance of 4A-zeolite supported a-Fe2O3. J. Hazard. Mater,2010,177(1-3):743-749.
    [123]Stock N. L., Peller J., Vinodgopal K., Kamat P. V. Combinative Sonolysis and Photocatalysis for Textile Dye Degradation. Environ. Sci. Technol.,2000,34(9):1747-1750.
    [124]Tuziuti T., Yasui K., Iida Y, Taoda H., Koda S. Effect of particle addition on sonochemicai reaction. Ultrasonics,2004,42(1-9):597-601.
    [125]Mrowetz M., Pirola C., Selli E. Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2. Ultrason. Sonochem.,2003,10(4-5):247-254.
    [126]Bejarano-Perez N. J., Suarez-Herrera M. F. Sonophotocatalytic degradation of congo red and methyl orange in the presence of TiO2 as a catalyst. Ultrason. Sonochem.,2007,14(5):589-595.
    [127]Berberidou C., Poulios I., Xekoukoulotakis N. P., Mantzavinos D. Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Applied Catalysis B: Environmental,2007,74(1-2):63-72.
    [128]Gonzilez A. S., Martinez S. S. Study of the sonophotocatalytic degradation of basic blue 9 industrial textile dye over slurry titanium dioxide and influencing factors. Ultrason. Sonochem., 2008,15(6):1038-1042.
    [129]Torres R. A., Nieto J. I., Combet E., Perier C., Pulgarin C. Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water. Applied Catalysis B:Environmental,2008,80(1-2):168-175.
    [130]Huang H., Li W. Destruction of toluene by ozone-enhanced photocatalysis:Performance and mechanism. Applied Catalysis B:Environmental,2011,102(3-4):449-453.
    [131]Kim H.-E., Lee J., Lee H., Lee C. Synergistic effects of TiO2 photocatalysis in combination with Fenton-like reactions on oxidation of organic compounds at circumneutral pH. Applied Catalysis B:Environmental,2012,115-116(0):219-224.
    [132]Agustina T. E., Ang H. M, Vareek V. K. Areview of synergistic effect of photocatalysis and ozonation on wastewater treatment. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2005,6(4):264-273.
    [133]Wang S., Shiraishi F., Nakano K. A synergistic effect of photocatalysis and ozonation on decomposition of formic acid in an aqueous solution. Chem. Eng. J.,2002,87(2):261-271.
    [134]Tizaoui C., Bickley R. I., Slater M. J., Wang W. J., Ward D. B., Al-Jaberi A. A comparison of novel ozone-based systems and photocatalysis for the removal of water pollutants. Desalination, 2008,227(1-3):57-71.
    [135]Rivas F. J.; Beltran F. J., Encinas A. Removal of emergent contaminants:Integration of ozone and photocatalysis.J.Environ. Manage.,2012,100(0):10-15.
    [136]Nasuhoglu D., Rodayan A., Berk D., Yargeau V. Removal of the antibiotic levofloxacin (LEVO) in water by ozonation andTiO2 photocatalysis. Chem. Eng. J.,2012,189-190(0):41-48.
    [137]Cernigoj U., Stangar U. L., Trebse P. Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Applied Catalysis B:Environmental,2007,75(3-4):229-238.
    [138]Tomova D., Iliev V., Rakovsky S., Anachkov M., Eliyas A., Puma G. L. Photocatalytic oxidation of 2,4,6-trinitrotoluene in the presence of ozone under irradiation with UV and visible light. Journal of Photochemistry and Photobiology A:Chemistry,2012,231(1):1-8.
    [139]陈建峰.超重力技术及应用[M].北京:化学工业出版社.2002,7:1-3,13-30.
    [140]曹仲文.侧壁喷液的旋流吸收器内吸收过程的研究[博士学位论文].无锡:江南大学,2008:1-137.
    [141]Zhao H., Shao L., Chen J.-F. High-gravity process intensification technology and application. Chem. Eng. J,2010,156(3):588-593.
    [142]Bokotko R. P., Hupka J., Miller J. D. Flue Gas Treatment for SO2 Removal with Air-Sparged Hydrocyclone Technology. Environ. Sci. Technol.,2005,39(4):1184-1189.
    [143]Quan X., Wang F., Zhao Q., Zhao T., Xiang J. Air stripping of ammonia in a water-sparged aerocyclone reactor. J. Hazard. Mater.,2009,170(2-3):983-988.
    [144]Basakcilardan-kabakci S., Ipekoglu A.N., Talinli I. Recovery of ammonia from human urine by stripping and absorption. Environ. Eng. Sci.,2007,24 (5):615-624.
    [145]李伦,汪宏渭,陆嘉竑.城镇高氨氮污水的吹脱除氮试验研究.中国给水排水,2006,22(17):92-95.
    [146]Sahel K., Perol N., Chermette H., Bordes C., Derriche Z., Guillard C. Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B-sotherm of adsorption, kinetic of decolorization and mineralization. Applied Catalysis B:Environmental,2007,77(1-2): 100-109.
    [147]Alinsafi A., Evenou F., Abdulkarim E. M., Pons M. N., Zahraa O., Benhammou A., Yaacoubi A., Nejmeddine A. Treatment of textile industry wastewater by supported photocatalysis. Dyes. Pigments,2007,74(2):439-445.
    [148]Rauf M. A., Meetani M.A., Hisaindee S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination,2011, 276(1-3):13-27.
    [149]He Y., Grieser F., Ashokkumar M. The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions. Ultrason. Sonochem.,2011,18(5):974-980.
    [150]Bejarano-Perez N. J., Suarez-Herrera M. F. Sonochemical and sonophotocatalytic degradation of malachite green:The effect of carbon tetrachloride on reaction rates. Ultrason. Sonochem.,2008, 15(4):612-617.
    [151]Wang H., Niu J., Long X., He Y. Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions. Ultrason. Sonochem.,2008,15(4):386-392.
    [152]Ray A. K. Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment. Chem. Eng. Sci.,1999,54(15-16):3113-3125.
    [153]Li Puma G, Lock Yue P. The modeling of a fountain photocatalytic reactor with a parabolic profile. Chem. Eng. Sci.,2001,56(2):721-726.
    [154]Vega A. A., Imoberdorf G. E., Mohseni M. Photocatalytic degradation of 2,4-dichlorophcnoxyacetic acid in a fluidized bed photoreactor with composite template-free TiO2 photocatalyst. Applied Catalysis A:General,2011,405(1-2):120-128.
    [155]Gole J. L., Stout J. D., Burda C., Lou Y., Chen X. Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale. The Journal of Physical Chemistiy B,2003,108(4):1230-1240.
    [156]全学军,杨露,程治良,蒋丽,徐云兰.偶氮染料在气-液-固循环浆态光催化反应器中的降解脱氮.化工学报,2010,(11):2829-2835.
    [157]Vijayabalan A., Selvam K., Velmurugan R., Swaminathan M. Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4. J. Hazard. Mater.,2009, 172(2-3):914-921.
    [158]Madhavan J., Grieser F., Ashokkumar M. Degradation of orange-G by advanced oxidation processes. Ultrason. Sonochem.,2010,17(2):338-343.
    [159]Torres-Palma R. A., Nieto J. I., Combct E., Petrier C., Pulgarin C. An innovative ultrasound, Fe2+and TiO2 photoassisted process for bisphenol a mineralization. Water Res.,2010,44(7): 2245-2252.
    [160]Neppolian B., Doronila A., Grieser F., Ashokkumar M. Simple and Efficient Sonochemical Method for the Oxidation of Arsenic(Ⅲ) to Arsenic(Ⅴ). Environ. Sci. Technol,2009,43(17): 6793-6798.
    [161]Martyanov I. N., Savinov E. N., Klabunde K. J. Influence of solution composition and ultrasonic treatment on optical spectra of TiO2 aqueous suspensions. J. Colloid Interface Sci.,2003,267(1): 111-116.
    [162]Taghizadeh M. T, Abdollahi R. Sonolytic, sonocatalytic and sonophotocatalytic degradation of chitosan in the presence of TiO2 nanoparticles. Ultrason. Sonochem.,2011,18(1):149-157.
    [163]Kaur S., Singh V. Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2. Ultrason. Sonochem.,2007,14(5):531-537.
    [164]Sohrabi M. R., Ghavami M. Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters..J. Hazard. Mater,2008,153(3):1235-1239.
    [165]Sopajaree K., Qasim S. A., Basak S., Rajeshwar K. An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part Ⅱ:Experiments on the ultrafiltration unit and combined operation. J. Appl. Electrochem.,1999,29(9):1111-1118.
    [166]Kovacic P. How safe is bisphenol A? Fundamentals of toxicity:Metabolism, electron transfer and oxidativc stress. Med. Hypotheses,2010,75(1):1-4.
    [167]Yeo M.-K., Kang M. Photodecomposition of bisphenol A on nanometer-sized TiO2 thin film and the associated biological toxicity to zebrafish (Danio rcrio) during and after photocatalysis. Water Res.,2006,40(9):1906-1914.
    [168]Ballari M. d.1. M., Brandi R., Alfano O., Cassano A. Mass transfer limitations in photocatalytic reactors employing titanium dioxide suspensions:I. Concentration profiles in the bulk. Chem. Eng. J.,2008,136(1):50-65.
    [169]Ballari M. d.1. M., Brandi R., Alfano O., Cassano A. Mass transfer limitations in photocatalytic reactors employing titanium dioxide suspensions:Ⅱ. External and internal particle constrains for the reaction. Chem. Eng.1,2008,136(2-3):242-255.
    [170]Vaisman E., Kabir M. F., Kantzas A., Langford C. H. A fluidized bed photoreactor exploiting a supported photocatalyst with adsorption pre-concentration capacity. J. Appl. Electrochem.,2005, 35(7-8):675-681.
    [171]Quan X., Zhao Q., Tan H., Sang X., Wang F., Dai Y. Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol-gel process. Mater. Chem. Phys,2009,114(1):90-98.
    [172]Wu Y., Li Q., Li F. Desulfurization in the gas-continuous impinging stream gas-liquid reactor. Chem. Eng. Sci.,2007,62(6):1814-1824.
    [173]Watanabe N., Horikoshi S., Kawabe H., Sugie Y., Zhao J., Hidaka H. Photodegradation mechanism for bisphenol A at the TiO2/H2O interfaces. Chemosphere,2003,52(5):851-859.
    [174]Wong C. C., Chu W. The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources. Chemosphere,2003,50(8):981-987.
    [175]Bizani E., Fytianos K., Poulios I., Tsiridis V. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J. Hazard. Mater.,2006, 136(1):85-94.
    [176]Tsai W.-T., Lee M.-K., Su T.-Y, Chang Y.-M. Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J. Hazard. Mater.,2009,168(1):269-275.
    [177]Fan L. S., Gas-liquid-solid fluidization engineering.1989. Medium:X; Size:Pages:(763 p).
    [178]Chin S. S., Lim T. M., Chiang K., Fane A. G. Hybrid low-pressure submerged membrane photoreactor for the removal of bisphenol A. Desalination,2007,202(1-3):253-261.
    [179]Li F. B., Li X. Z., Hou M. F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control. Applied Catalysis B:Environmental,2004,48(3): 185-194.
    [180]Arana J., Dona-Rodriguez J. M., Tello Rendon E., Garriga i Cabo C., Gonzalez-Diaz O., Herrera-Melian J. A., Perez-Pena J.. Coldn G., Navio J. A. TiO2 activation by using activated carbon as a support:Part Ⅱ. Photoreactivity and FTIR study. Applied Catalysis B:Environmental, 2003,44(2):153-160.
    [181]Mohapatra D. P., Brar S. K., Tyagi R. D., Surampalli R. Y. Parameter optimization of ferro-sonication pre-treatment process for degradation of bisphenol A and biodegradation from wastewater sludge using response surface model. J. Hazard. Mater.,2011,189(1-2):100-107.
    [182]Arslan-Alaton I., Ayten N., Olmez-Hanci T. Photo-Fenton-like treatment of the commercially important H-acid:Process optimization by factorial design and effects of photocatalytic treatment on activated sludge inhibition. Applied Catalysis B:Environmental,2010,96(1 ): 208-217.
    [183]Korbahti B. K., Rauf M. A. Determination of optimum operating conditions of carmine decoloration by UV/H2O2 using response surface methodology. J. Hazard. Mater.,2009,161(1): 281-286.
    [184]贾绍义,柴诚敬.化工传质与分离工程第二版.北京:化学工业出版社,2012:32-37.
    [185]Yi F., Zou H.-K., Chu G-W., Shao L., Chen J.-F. Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed. Chem. Eng. J.,2009,145(3): 377-384.
    [186]De Fang L., Liu R., Lu Q. H., Wang X. J., Liang Y. J. The Flow Pattern Transition Identification and Interphases Force Detection of Gas-Liquid Two-Phase Flow. AASRI Procedia,2012,3(0): 534-539.
    [187]Iliuta I., Larachi F. Onset of pulsing in gas-liquid trickle bed filtration. Chem. Eng. Sci.,2004, 59(6):1199-1211.
    [188]Attou A., Ferschneider G A two-fluid hydrodynamic model for the transition between trickle and pulse flow in a cocurrent gas-liquid packed-bed reactor. Chem. Eng. Sci.,2000,55(3):491-511.
    [189]Quan X., Zhao Q., Xiang J., Cheng Z., Wang F. Mass transfer mechanism of a water-sparged aerocyclone reactor. Adv. Mater. Res.,2012,396-398(2-3):279-283.
    [190]姚海元,宫敏.水平管内油水两相流流型转换特性.化工学报,2005,56(9):1649-1653.
    [191]魏丽娟,朱春英,付涛涛,马友光.T型微通道内液滴尺寸的实验测定与关联.化工学报,2013,64(2):517-523.
    [192]Li N., Guo L., Li W. Gas-liquid two-phase flow patterns in a pipeline-riser system with an S-shaped riser. Int. J. Multiphas. Flow,2013,55(0):1-10.
    [193]Timung S., Mandal T. K. Prediction of flow pattern of gas-liquid flow through circular microchannel using probabilistic neural network. Applied Soft Computing,2013,13(4): 1674-1685.
    [194]高亦普.刘振华.水基纳米流体在水平毛细管中的气液两相流流型特性.化工学报,2007,58(8):1943-1947.
    [195]李正兴,袁惠新,曹仲文.静态超重力器(旋流器)中吸收过程研究.煤矿机械,2006,27(1):24-36.
    [196]刘有智.超重力化工过程与技术.北京:国防工业出版社,2009:74-78.
    [197]Cao C., Hu C., Wang X., Wang S., Tian Y., Zhang H. UV sensor based on TiO2 nanorod arrays on FTO thin film. Sensors and Actuators B:Chemical,2011,156(1):114-119.
    [198]Erickson R. J. An evaluation of mathematical models for the effects of pH and temperature on ammonia toxicity to aquatic organisms. Water Res.,1985,19(8):1047-1058.
    [199]Zhang L., Lee Y.-W, Jahng D. Ammonia stripping for enhanced biomethanization of piggery wastewater. J. Hazard. Mater.,2012,199-200(0):36-42.
    [200]刘沛清.自由紊动射流理论.北京:北京航空航天大学出版社,2008:89-107.
    [201]Alitalo A., Kyro A., Aura E. Ammonia Stripping of Biologically Treated Liquid Manure. J. Environ. Qual.,2012,41(1):273-280.
    [202]Matter-Miiller C., Gujer W., Giger W. Transfer of volatile substances from water to the atmosphere. Water Res.,1981,15(11):1271-1279.
    [203]赵清华,全学军,项锦欣,王富平,程治良.水力喷射空气旋流器的气相压降特性.化工学报,2011,62(9):2507-2511.
    [204]Barrera-Diaz C. E., Lugo-Lugo V., Bilyeu B. A review of chemical, electrochemical and biological methods for aqueous Cr(Ⅵ) reduction. J. Hazard. Mater.,2012,223-224(0):1-12.
    [205]Labanda J., Khaidar M. S., Llorens J. Feasibility study on the recovery of chromium (Ⅲ) by polymer enhanced ultrafiltration. Desalination,2009,249(2):577-581.
    [206]Mohan D., Pittman Jr C. U. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J. Hazard. Mater.,2006,137(2):762-811.
    [207]Gheju M., Baku I. Removal of chromium from Cr(Ⅵ) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. J. Hazard. Mater.,2011,196(0): 131-138.
    [208]Velazquez-Pena S., Linares-Hernandez I., Martinez-Miranda V., Barrera-Diaz C., Bilyeu B. Azo dyes as election transfer mediators in the electrochemical reduction of Cr(VI) using boron-doped diamond electrodes. Fuel,2013,110(0):12-16.
    [209]Saha B., Orvig C. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordin. Chem. Rev.,2010,254(23-24):2959-2972.
    [210]高洪阁,李白英,刘立民,陈丽慧.应用高硫煤燃烧产生的二氧化硫还原电镀废水中的六价铬离子.煤矿环境保护,2002,16(4):16-17.
    [211]Miretzky P., Cirelli A. F. Cr(Ⅵ) and Cr(Ⅲ) removal from aqueous solution by raw and modified lignocellulosic materials:A review. J. Hazard. Mater.,2010,180(1-3):1-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700