A_2Zr_2O_7型稀土锆酸盐材料的组织结构与物理性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以ZrOCl2·8H2O和稀土氧化物为原材料,采用化学共沉淀-煅烧法成功制备了稀土锆酸盐(Sm1–xGdx)2Zr2O7、(Gd1–xYbx)2Zr2O7、(Sm1–xYbx)2Zr2O7和(Nd1–xYbx)2Zr2O7(0≤x≤1.0)粉体;经冷等静压成型和无压烧结后得到致密的陶瓷块体材料。采用X射线衍射、拉曼光谱、扫描电镜、透射电镜和能谱等手段研究了稀土锆酸盐材料的微观组织结构及其转变机理;采用激光热导仪、高温热膨胀仪和交流阻抗谱等手段测试了稀土锆酸盐材料的热扩散系数、热膨胀系数和电导率。
     (Sm1–xGdx)2Zr2O7、(Gd1–xYbx)2Zr2O7和(Sm1–xYbx)2Zr2O7稀土锆酸盐为完全固溶体,其晶体结构主要与A2Zr2O7中阳离子半径比值(r(A3+)/r(Zr4+))有关。当阳离子半径比值r(A3+)/r(Zr4+)<1.46时,为无序的缺陷型萤石结构;当阳离子半径比值r(A3+)/r(Zr4+)>1.46时,为有序的烧绿石结构。对于Gd2Zr2O7来说,阳离子半径比值r(Gd3+)/r(Zr4+)=1.46,处于烧绿石结构与缺陷型萤石结构的相边界处;本文中Gd2Zr2O7的烧结温度高于其有序无序转变温度(1803K),所以Gd2Zr2O7为无序的缺陷型萤石结构。在(Nd1–xYbx)2Zr2O7固溶体中,由于稀土阳离子Nd3+与Yb3+半径相差较大,没有形成完全固溶体。(Nd1–xYbx)2Zr2O7 (0≤x≤0.25)为单相烧绿石结构,(Nd1–xYbx)2Zr2O7(0.45≤x≤1.00)为单相缺陷型萤石结构,而(Nd1–xYbx)2Zr2O7(0.30≤x≤0.40)为烧绿石结构与缺陷型萤石结构共存。
     稀土锆酸盐(Ln1–xYbx)2Zr2O7(Ln=Gd, Sm, Nd)在室温到1673K范围内的热导率在1.35–1.96W·m–1·K–1之间,且(Ln1–xYbx)2Zr2O7固溶体的热导率随着温度的升高而逐渐减小,在1073–1273K附近达到最小值,继续升高温度有略微增大的趋势;在相同温度条件下,(Ln1–xYbx)2Zr2O7固溶体在A位两种稀土元素(Ln3+与Yb3+)等摩尔(x=0.5)时具有最低的热导率,这是由于当x=0.5时其有效声子平均自由程最小。在本文的稀土锆酸盐材料中,Sm2Zr2O7的热膨胀系数最大,Yb2Zr2O7的热膨胀系数最小,主要与晶体结构和氧空位分布有关。(Ln1–xYbx)2Zr2O7固溶体的平均热膨胀系数在373–1673K范围内处于10.52–11.78×10–6K–1之间,并且随着体系中Yb含量的增加逐渐减小。
     稀土锆酸盐(Sm1–xGdx)2Zr2O7和(Ln1–xYbx)2Zr2O7(Ln=Gd, Sm, Nd)的晶粒电导率与晶体结构有直接关系。当A2Zr2O7中阳离子半径比值r(A3+)/r(Zr4+)在1.48附近时,晶粒电导率达到最大值;并且在A位两种稀土阳离子半径相差最小的材料(Sm0.5Gd0.5)2Zr2O7中,晶粒电导率达到了本文中所有研究体系的最大值(2.69×10–2S·cm–1, 1173K)。在缺陷型萤石结构的稀土锆酸盐中,晶粒电导率随着阳离子半径比值的增大逐渐增大,这与晶胞自由体积逐渐增加有关;而在烧绿石结构稀土锆酸盐中,晶粒电导率随着阳离子半径比值的增大逐渐降低,这主要是由结构有序化程度增加导致的48f位置氧空位数量减少引起的。
     Gd2Zr2O7与V2O5在973K时的反应产物为ZrV2O7和GdVO4;而在1023–1273K之间的反应产物为GdVO4和m-ZrO2,反应产物的不同主要取决于ZrV2O7的热稳定性。在973–1273K之间,Gd2Zr2O7与等摩尔的V2O5和Na2SO4的混合物发生反应,生成GdVO4和m-ZrO2。稀土锆酸盐材料在高温下与氧化铝会发生化学反应。随着氧化铝含量的增加,在反应产物中先后出现了钙钛矿结构的NdAlO3和少量六方β-Al2O3结构的NdAl11O18。ZrO2–NdO1.5–AlO1.5陶瓷的热导率在室温到1673K范围内处在1.50–3.22W·m–1·K–1之间;在相同温度条件下,ZrO2–AlO1.5–NdO1.5陶瓷的热导率随着添加氧化铝含量的增加逐渐增大。在1523K时,ZrO2–AlO1.5–NdO1.5陶瓷的热膨胀系数在10.45–11.42×10–6K–1之间,与目前使用的热障涂层陶瓷层材料6–8wt.%Y2O3–ZrO2和稀土锆酸盐材料的热膨胀系数相近。
(Sm1–xGdx)2Zr2O7, (Gd1–xYbx)2Zr2O7, (Sm1–xYbx)2Zr2O7 and (Nd1–xYbx)2Zr2O7 (0≤x≤1.0) powders were synthesized by the chemical-coprecipitation and calcination method using ZrOCl2·8H2O and rare-earth oxides as starting materials. The synthesized powders were compacted by cold isostatic pressing, and were then pressureless-sintered to prepare dense ceramic bulk materials. The microstructure of rare-earth zirconate solid solutions were investigated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The thermal diffusivity, thermal expansion coefficient and electrical conductivity of rare-earth zirconate solid solutions were investigated by laser flash method, push-rod dilatometer and AC impedance spectroscopy.
     (Sm1–xGdx)2Zr2O7, (Gd1–xYbx)2Zr2O7 and (Sm1–xYbx)2Zr2O7 zirconates are complete solid solutions, whose crystal structures are mainly governed by the cation radius ratio of r(A3+)/r(Zr4+) in A2Zr2O7 system. The rare-earth zirconates exhibit a defect fluorite-type structure for r(A3+)/r(Zr4+)<1.46, and a pyrochlore-type structure for r(A3+)/r(Zr4+)>1.46. However, the cation radius ratio of Gd2Zr2O7, r(Gd3+)/r(Zr4+)=1.46, resides just at the phase boundary between pyrochlore- and defect fluorite-type structures. As the sintered temperature used in this study is higher than the order–disorder transition temperature, Gd2Zr2O7 exhibits only a defect fluorite structure. (Nd1–xYbx)2Zr2O7 are not complete solid solutions owing to the large difference in ionic radius of Nd3+ and Yb3+. The crystal structures of (Nd1–xYbx)2Zr2O7 have been found to be pyrochlores for 0≤x≤0.25, defect fluorites for 0.45≤x≤1.00 and a mixture of these for 0.30≤x≤0.40.
     The thermal conductivities of (Ln1–xYbx)2Zr2O7(Ln=Gd, Sm, Nd) solid solutions are located within the range of 1.35 to 1.96W·m–1·K–1 from room temperature to 1673K. The thermal conductivities of (Ln1–xYbx)2Zr2O7 first gradually decrease with increasing temperature, and then increase slightly above 1073–1273K due to the increased radiation contribution. At identical temperature levels, (Ln0.5Yb0.5)2Zr2O7 solid solutions have the lowest thermal conductivity due to the reduced cation mean free path at the compositional combination of equal molar Yb3+ and Ln3+ cations. Among all the rare-earth zirconates in this study, Sm2Zr2O7 exhibits the highest thermal expansion coefficient, however, Yb2Zr2O7 has the lowest thermal expansion, which depends mainly upon crystal structure and distribution of oxygen vacancy. The average thermal expansion coefficients of (Ln1–xYbx)2Zr2O7 solid solutions are within the range of 10.52–11.78×10–6K–1 from 373 to 1673K, and gradually decrease with increasing Yb content.
     The grain conductivities of (Sm1–xGdx)2Zr2O7 and (Ln1–xYbx)2Zr2O7(Ln=Gd, Sm, Nd) solid solutions are closely related to their own crystal structures. The grain conductivity of rare-earth zirconates has a maximum when the cation radius ratio of r(A3+)/r(Zr4+) is close to 1.48 in A2Zr2O7 system. (Sm0.5Gd0.5)2Zr2O7 solid solution with the smallest difference in cation radius at the A sites exhibits a highest grain conductivity of 2.69×10–2S·cm–1 at 1173K. For rare-earth zirconates with a defect fluorite structure, the grain conductivity increases gradually with increasing the cation radius ratio, which is related to increasing unit cell free volume. However, for rare-earth zirconates with a pyrochlore structure, the grain conductivity decreases gradually with increasing the cation radius ratio due to the decrease of oxygen vacancies at 48f sites caused by the increase of structural ordering degree.
     Gd2Zr2O7 reacts with V2O5 and forms ZrV2O7 and GdVO4 at 973K. However, in the temperature range of 1023–1273K, Gd2Zr2O7 reacts with V2O5 and finally forms GdVO4 and m-ZrO2, which could be explained based on the thermal instability of ZrV2O7. Gd2Zr2O7 reacts with a mixture of V2O5 and Na2SO4 to form GdVO4 and m-ZrO2 in the temperature range of 973–1273K. Rare-earth zirconates can react with Al2O3 at elevated temperatures. In ZrO2–NdO1.5–AlO1.5 ceramics, perovskite-like NdAlO3 and small amounts of hexagonalβ-Al2O3-type NdAl11O18 are also found with increasing Al2O3 content, besides the ZrO2-Nd2O3 solid solutions. The thermal conductivities of ZrO2–NdO1.5–AlO1.5 ceramics are located within the range of 1.50 to 3.22W·m–1·K–1 from room temperature to 1673K, and increase gradually with the increase of alumina concent in raw materials under identical temperature conditions. The thermal expansion coefficients of ZrO2–NdO1.5–AlO1.5 ceramics are within the range of 10.45 to 11.42×10–6 K–1 at 1523K, which are of the same order of magnitude as currently used 6–8wt.% yttria stabilized zirconia and rare-earth zirconates for thermal barrier coating applications.
引文
1 W. Beele, G. Marijnissen, A. van Lieshout. The Evolution of Thermal Barrier Coatings–Status and Upcoming Solutions for Today's Key Issues. Surface and Coatings Technology. 1999, 120~121: 61~67
    2 S. Bose. High Temperature Coatings. Butterworth-Heinemann, Burlington, MA, 2007: 155~232
    3 A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, F. S. Pettit. Mechanisms Controlling the Durability of Thermal Barrier Coatings. Progress in Materials Science. 2001, 46(5): 505~553
    4 J. D. Ballard, J. Davenport, C. Lewis, W. Nelson, R. H. Doremus, L. S. Schadler. Phase Stability of Thermal Barrier Coatings Made from 8wt.% Yttria Stabilized Zirconia: A Technical Note. Journal of Thermal Spray Technology. 2003, 12(1): 34~37
    5 D. Zhu, R. A. Miller. Development of Advanced Low Conductivity Thermal Barrier Coatings. International Journal of Applied Ceramic Technology. 2004, 1(1): 86~94
    6 E. Aleshin, R. Roy. Crystal Chemistry of Pyrochlore. Journal of the American Ceramic Society. 1962, 45(1): 18~25
    7 D. R. Clarke, S. R. Phillpot. Thermal Barrier Coating Materials. Materials Today. 2005, 8(6): 22~29
    8 L. Carrette, K. A. Friedrich, U. Stimming. Fuel Cells–Fundamentals and Applications. Fuel Cells. 2001, 1(1): 5~39
    9 J. B. Goodenough. Oxide-Ion Electrolytes. Annual Review of Materials Research. 2003, 33: 91~128
    10 D. J. L. Brett, A. Atkinson, N. P. Brandon, S. J. Skinnerd. Intermediate Temperature Solid Oxide Fuel Cells. Chemical Society Reviews. 2008, 37(8): 1568~1578
    11 M. A. Subramanian, G. Aravamudan, G. V. Subba Rao. Oxide Pyrochlores–A Review. Progress in Solid State Chemistry. 1983, 15(2): 55~143
    12 M. A. Subramanian, A. W. Sleight. Rare Earths Pyrochlores, in Handbook on the Physics and Chemistry of Rare Earths, Volume 16, Edited by: K. A. Gschneidner, Jr., L. Eyring. Elsevier Science Publishers B.V. 1993: 225~248
    13 K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, T. Hartmann. Radiation Tolerance of Complex Oxides. Science. 2000, 289: 748~751
    14 R. A. McCauley. Structural Characteristics of Pyrochlore Formation. Journal of Applied Physics. 1980, 51(1): 290~294
    15 R. S. Roth, T. Negas, L. P. Cook. Phase Diagrams for Ceramists. Science and Technology of Zirconia (Vol. 4). Columbus: American Ceramic Society, 1981
    16 C. R. Stanek, L. Minervini, R. W. Grimes. Nonstoichiometry in A2B2O7 Pyrochlores. Journal of the American Ceramic Society. 2002, 85(11): 2792~2798
    17 D. Michel, M. Perez-y-Jobra, R. Collongues. Etude de la Transformation Ordre-Desordre de la Structure Fluorite a la Structure Pyrochlore pour des Phases (1–x)ZrO2–xLn2O3. Materials Research Bulletin. 1974, 9(11): 1457~1468
    18 B. J. Wuensch, K. W. Eberman. Order-Disorder Phenomena in A2B2O7 Pyrochlore Oxides. JOM-Journal of the Minerals, Metals and Materials Society. 2000, 52(7): 19~21
    19 B. E. Scheete, W. B. White. Characterization of Anion Disorder in Zirconate A2B2O7 Compounds by Raman Spectroscopy. Journal of the American Ceramic Society. 1979, 62(9~10): 468~470
    20 L. Minervini, R. W. Grimes, K. E. Sickafus. Disorder in Pyrochlore Oxides. Journal of the American Ceramic Society. 2000, 83(8): 1873~1878
    21 M. J. D. Rushton, R. W. Grimes, C. R. Stanek, S. Owens. Predicted Pyrochlore to Fluorite Disorder Temperature for A2Zr2O7 Compositions. Journal of Materials Research. 2004, 19(6): 1603~1604
    22 M. Glerup, O. F. Nielsen, F. W. Poulsen. The Structural Transformation from the Pyrochlore Structure, A2B2O7, to the Fluorite Structure, AO2, Studied by Raman Spectroscopy and Defect Chemistry Modeling. Journal of Solid State Chemistry. 2001, 160(1): 25~32
    23 L. Minervini, R. W. Grimes, Y. Tabira, R. L.Withers, K. E. Sickafus. The Oxygen Positional Parameter in Pyrochlores and Its Dependence on Disorder. Philosophical Magazine. 2002, 82(1): 123~135
    24 E. J. Harvey, K. R. Whittle, G. R. Lumpkin, R. I. Smith, S. A. T. Redfern. Solid Solubilities of (La,Nd)2(Zr,Ti)2O7 Phases Deduced by Neutron Diffraction. Journal of Solid State Chemistry. 2005, 178(3): 800~810
    25 B. P. Mandal, A. Banerji, V. Sathe, S. K. Deb, A. K. Tyagi. Order–Disorder Transition in Nd2–yGdyZr2O7 Pyrochlore Solid Solution: An X-ray Diffraction and Raman Spectroscopic Study. Journal of Solid State Chemistry. 2007, 180(10): 2643~2648
    26 K. R. Whittle, L. M. D. Cranswick, S. A. T. Redfern, I. P. Swainson. G. R. Lumpkin. Lanthanum Pyrochlores and the Effect of Yttrium Addition in the Systems La2–xYxZr2O7 and La2–xYxHf2O7. Journal of Solid State Chemistry. 2009, 182(3): 442~450
    27 F. X. Zhang, J. Lian, U. Becker, R. C. Ewing, J. Hu, S. K. Saxena. High-Pressure Structural Changes in the Gd2Zr2O7 Pyrochlore. Physical Review B. 2007, 76(21): 214104
    28 F. X. Zhang, J. W. Wang, J. Lian, M. K. Lang, U. Becker, R. C. Ewing. Phase Stability and Pressure Dependence of Defect Formation in Gd2Ti2O7 and Gd2Zr2O7 Pyrochlores. Physical Review Letters. 2008, 100(4): 045503
    29 N. R. S. Kumar, N. V. C. Shekar, P. Ch. Sahu. Pressure Induced Structural Transformation of Pyrochlore Gd2Zr2O7. Solid State Communications. 2008, 147(9~10): 357~359
    30 F. X. Zhang, J. Lian, U. Becker, L. M. Wang, J. Hu, S. Saxena, R. C. Ewing. Structural Distortions and Phase Transformations in Sm2Zr2O7 Pyrochlore at High Pressures. Chemical Physics Letters. 2007, 441(4~6): 216~220
    31 F. X. Zhang, M. Lang, U. Becker, R. C. Ewing, J. Lian. High Pressure Phase Transitions and Compressibilities of Er2Zr2O7 and Ho2Zr2O7. Applied Physics Letters. 2008, 92(1): 011909
    32 G. Suresh, G. Seenivasan, M. V. Krishnaiah, P. S. Murti. Investigation of the Thermal Conductivity of Selected Compounds of Gadolinium and Lanthanum. Journal of Nuclear Materials. 1997, 249(2~3): 259~261
    33 G. Suresh, G. Seenivasan, M. V. Krishnaiah, P. S. Murti. Investigation of the Thermal Conductivity of Selected Compounds of Lanthanum, Samarium and Europium. Journal of Alloys and Compounds. 1998, 269(1~2): L9~L12
    34 S. Lutique, R. J. M. Konings, V. V. Rondinella, J. Somers, T. Wiss. The Thermal Conductivity of Nd2Zr2O7 Pyrochlore and the Thermal Behaviour of Pyrochlore-Based Inert Matrix Fuel. Journal of Alloys and Compounds. 2003, 352(1~2): 1~5
    35 J. Wu, X. Wei, N. P. Padture, P. G. Klemens, M. Gell, E. Garcia, P. Miranzo, M.I. Osendi. Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications. Journal of the American Ceramic Society. 2002, 85(12): 3031~3035
    36 H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, D. St?ver. Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System. Journal of the American Ceramic Society. 2003, 86(8): 1338~1344
    37 P. K. Schelling, S. R. Phillpot, R. W. Grimes. Optimum Pyrochlore Compositions for Low Thermal Conductivity. Philosophical Magazine Letters. 2004, 84(2): 127~137
    38 B. Liu, J. Y. Wang, Y. C. Zhou, T. Liao, F. Z. Li. Theoretical Elastic Stiffness, Structure Stability and Thermal Conductivity of La2Zr2O7 Pyrochlore. Acta Materialia. 2007, 55(9): 2949~2957
    39 Q. Xu, W. Pan, J. Wang, L. Qi, H. Miao, M. Kazutaka, T. Taiji. Preparation and Thermophysical Properties of Dy2Zr2O7 Ceramic for Thermal Barrier Coatings. Materials Letters. 2005, 59(22): 2804~2807
    40 Q. Xu, W. Pan, J. Wang, C. Wan, L. Qi, H. Miao. Rare-Earth Zirconate Ceramics with Fluorite Structure for Thermal Barrier Coatings. Journal of the American Ceramic Society. 2006, 89(1): 340~342
    41 J. Wang, W. Pan, Q. Xu, K. Mori, T. Torigoe. Thermal Conductivity of the New Candidate Materials for Thermal Barrier Coatings. Key Engineering Materials. 2005, 280~283: 1503~1506
    42 K. V. G. Kutty, S. Rajagopalan, C. K. Mathews, U. V. Varadaraju. Thermal Expansion Behaviour of Some Rare Earth Oxide Pyrochlores. Materials Research Bulletin. 1974, 29(7): 759~766
    43 K. Shimamura, Tatsumi Arima, K. Idemitsu, Y. Inagaki. Thermophysical Properties of Rare-Earth-Stabilized Zirconia and Zirconate Pyrochlores as Surrogates for Actinide-Doped Zirconia. International Journal of Thermophysics. 2007, 28(3): 1074~1084
    44 Q. B. Fan, F. Zhang, F. C, Wang, L. Wang. Molecular Dynamics Calculation of Thermal Expansion Coefficient of a Series of Rare-Earth Zirconates. Computational Materials Science. 2009, 46(3): 716~719
    45 C. L. Wan, W. Pan, Q. Xu, Y. X. Qin, J. D. Wang, Z. X. Qu, M. H. Fang. Effect of Point Defects on the Thermal Transport Properties of (LaxGd1–x)2Zr2O7:Experiment and Theoretical Model. Physical Review B. 2006, 74(14): 144109
    46 W. Pan, C. L. Wan, Q. Xu, J. D. Wang, Z. X. Qu. Thermal Diffusivity of Samarium–Gadolinium Zirconate Solid Solutions. Thermochimica Acta. 2007, 455(1~2): 16~20
    47 N. P. Bansal, D. Zhu. Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings. Materials Science and Engineering A. 2007, 459(1~2): 192~195
    48 S. Yamazaki, T. Yamashita, T. Matsui, T. Nagasaki. Thermal Expansion and Solubility Limits of Plutonium-Doped Lanthanum Zirconates. Journal of Nuclear Materials. 2001, 294(1~2): 183~187
    49 B. P. Mandal, A. K. Tyagi. Preparation and High Temperature-XRD Studies on a Pyrochlore Series with the General Composition Gd2–xNdxZr2O7. Journal of Alloys and Compounds. 2007, 437(1~2): 260~63
    50 J. Wang, S. Bai, H. Zhang, C. Zhang. The Structure, Thermal Expansion Coefficient and Sintering Behavior of Nd3+-Doped La2Zr2O7 for Thermal Barrier Coatings. Journal of Alloys and Compounds. 2009, 476(1~2): 89~91
    51 Z. Qu, W. Pan, C. Wan, Y. Qin. Thermal Expansion Coefficients of Sm2Zr2O7 Doped with MgO. Key Engineering Materials. 2007, 336~338: 2331~2333
    52 Z. Qu, C. Wan, W. Pan. Thermal Expansion and Defect Chemistry of MgO-doped Sm2Zr2O7. Chemistry of Materials. 2007, 19(20): 4913~4918
    53 S. J. Patwe, B. R. Ambekar, A. K. Tyagi. Synthesis, Characterization and Lattice Thermal Expansion of Some Compounds in the System Gd2CexZr2–xO7. Journal of Alloys and Compounds. 2005, 389(1~2): 243~246
    54 X. Q. Cao, R. Vassen, F. Tietz, D, Stover. New Double-Ceramic-Layer Thermal Barrier Coatings Based on Zirconia-Rare Earth Composite Oxides. Journal of the European Ceramic Society. 2006, 26(3): 247~251
    55 X. Cao, J. Li, X. Zhong, J. Zhang, Y. Zhang, R. Vassen, D. Stover. La2(Zr0.7Ce0.3)2O7–A New Oxide Ceramic Material with High Sintering-Resistance. Materials Letters. 2008, 62(17~18): 2667~2669
    56 H. Zhou, D. Yi, Z. Yu, L. Xiao. Preparation and Thermophysical Properties of CeO2 Doped La2Zr2O7 Ceramic for Thermal Barrier Coatings. Journal of Alloys and Compounds. 2007, 438(1~2): 217~221
    57 H. Zhou, D. Yi. Effect of Rare Earth Doping on Thermo-Physical Properties of Lanthanum Zirconate Ceramic for Thermal Barrier Coatings. Journal of RareEarths. 2008, 26(6): 770~774
    58周宏明,易丹青.热障涂层用Nd2O3–CeO2–ZrO2陶瓷粉末制备及其性能研究.无机材料学报. 2008, 23(2): 247~252
    59 H. S. Zhang, Z. J. Li, Q. Xu, F. C. Wang, L. Liu. Preparation and Thermophysical Properties of Sm2(Ce0.3Zr0.7)2O7 Ceramic. Advanced Engineering Materials. 2008, 10(1~2): 139~142
    60 H. S. Zhang, K. Sun, Q. Xu, F. C. Wang, L. Liu. Preparation and Thermal Conductivity of Sm2(Zr0.6Ce0.4)2O7 Ceramic. Journal of Materials Engineering and Performance. 2009, doi: 10.1007/s11665-008-9346-x
    61周宏明,易丹青,钟华.稀土Dy和Ce共掺杂La2Zr2O7新型热障涂层用陶瓷材料.无机材料学报. 2008, 23(3): 567~572
    62 L. Liu, Q. Xu, F. Wang, H. Zhang. Thermophysical Properties of Complex Rare-Earth Zirconate Ceramic for Thermal Barrier Coatings. Journal of the American Ceramic Society. 2008, 91(7): 2398~2401
    63 N. P. Padture, M. Gell, E. H. Jordan. Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science. 2002, 296: 280~284
    64 X. Q. Cao, R. Vassen, D. Stover. Ceramic Materials for Thermal Barrier Coatings. Journal of the Europen Ceramic Society. 2004, 24(1): 1~10
    65 D. R. Clarke, C. G. Levi. Materials Design for Next Generation Thermal Barrier Coatings. Annual Review of Materials Research. 2003, 33: 383~417
    66 J. R. Nicholls. Advances in Coating Design for High Performance Gas Turbines. MRS Bulletin. 2003, 28(9): 659~670
    67 D. St?ver, G. Pracht, H. Lehmann, M. Dietrich, J. E. D?ring, R. Va?en. New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatings. Journal of Thermal Spray Technology. 2004, 13(1): 76~83
    68 D. Wang, X. Huang, P. C. Patnaik. Latest Advancements in Thermal Barrier Coatings. Canadian Aeronautics and Space Journal. 2004, 50(2): 107~114
    69 Y. S. Tian, C. Z. Chen, D. Y. Wang, Q. Ji. Recent Developments in Zirconia Thermal Barrier Coatings. Surface Review and Letters. 2005, 12(3): 369~378
    70 M. Belmonte. Advanced Ceramic Materials for High Temperature Applications. Advanced Engineering Materials. 2006, 8(8): 693~703
    71曹学强.热障涂层材料.科学出版社, 2007: 142~264
    72 X. Cao. Application of Rare Earths in Thermal Barrier Coating Materials. Journal of Materials Science and Technology. 2007, 23(1): 15~35
    73 R. Va?en, F. Cernuschi, G. Rizzi, A. Scrivani, N. Markocsan, L. ?stergren, A. Kloosterman, R. Mevrel, J. Feist, J. Nicholls. Recent Activities in the Field of Thermal Barrier Coatings Including Burner Rig Testing in the European Union. Advance Engineering Materials. 2008, 10(10): 907~921
    74周玉.陶瓷材料学.科学出版社, 2004: 129~238
    75 S. Bose. High Temperature Coatings. Butterworth-Heinemann, Burlington, MA, 2007: 53~70
    76 P. Mohan, B. Yuan, T. Patterson, V. H. Desai, Y. H. Sohnw. Degradation of Yttria-Stabilized Zirconia Thermal Barrier Coatings by Vanadium Pentoxide, Phosphorous Pentoxide, and Sodium Sulfate. Journal of the American Ceramic Society. 2007, 90(11): 3601~3607
    77 Z. Chen, S. Speakman, J. Howe, H. Wang, W. Porter, R.Trice. Investigation of Reactions between Vanadium Oxide and Plasma-Sprayed Yttria-Stabilized Zirconia Coatings. Journal of the European Ceramic Society. 2009, 29(8): 1403~1411
    78 Z. Chen, J. Mabon, J. G. Wen, R. Trice. Degradation of Plasma-Sprayed Yttria-Stabilized Zirconia Coatings via Ingress of Vanadium Oxide. Journal of the European Ceramic Society. 2009, 29(9): 1647~1656
    79 R. Vassen, X. Cao, F. Tietz, D. Basu, D. St?ver. Zirconates as New Materials for Thermal Barrier Coatings. Journal of the American Ceramic Society. 2000, 83(8): 2023~2028
    80 X. Q. Cao, R. Vassen, F. Tietz, W. Jungen, D. St?ver. Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating. Journal of the American Ceramic Society. 2001, 84(9): 2086~2090
    81 R. Va?en, M. Dietrich, H. Lehmann, X. Cao, G. Pracht, F. Tietz, D. Pitzer, D. St?ver. Development of Oxide Ceramics for an Application as TBC. Materialwissenschaft und Werkstofftechnik. 2001, 32(8): 673~677
    82 B. Saruhan, K. Fritscher, U. Schulz. Y–Doped La2Zr2O7 Pyrochlore EB–PVD Thermal Barrier Coatings. Ceramic Engineering and Science Proceedings. 2003, 24: 491~496
    83 B. Saruhan, P. Francois, K. Fritscher, U. Schulz. EB–PVD Processing of Pyrochlore-Structured La2Zr2O7-Based TBCs. Surface and Coatings Technology. 2004, 182(2~3): 175~183
    84 P. Strunz, G. Schumacher, R. Va?en, A. Wiedenmannb, V. Ryukhtin. In SituSmall-Angle Neutron Scattering Study of La2Zr2O7 and SrZrO3 Ceramics for Thermal Barrier Ccoatings. Scripta Materialia. 2006, 55(6): 545~548
    85 X. D. Zhao, K. L. Zeng, J. G. Xie, Z. D. Li. Nanostructured Lanthanum Zirconate Coating and Its Thermal Stability Properties. Journal of Iron and Steel Research International. 2007, 14(Suppl. 1): 147~151
    86 Z. Xu, X. Zhong, J. Zhang, Y. Zhang, X. Cao, L. He. Effects of Deposition Conditions on Composition and Thermal Cycling Life of Lanthanum Zirconate Coatings. Surface and Coatings Technology. 2008, 202(19): 4714~4720
    87 R. Va?en, F. Traeger, D. St?ver. New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems. International Journal of Applied Ceramic Technology. 2004, 1(4): 351~361
    88 K. Bobzin, E. Lugscheider, N. Bagcivan. Thermal Cycling Behavior of Yttria Stabilized Zirconia and Lanthanum Zirconate, as Graded and Bilayer EB–PVD Thermal Barrier Coatings. High Temperature Material Processes. 2006, 10(1): 103~115
    89 K. Bobzin, E. Lugscheider, N. Bagcivan. Thermal Cycling Behaviour of Lanthanum Zirconate as EB–PVD Thermal Barrier Coating. Advanced Engineering Materials. 2006, 8(7): 653~657
    90 H. Dai, X. Zhong, J. Li, Y. Zhang, J. Meng, X. Cao. Thermal Stability of Double-Ceramic-Layer Thermal Barrier Coatings with Various Coating Thickness. Materials Science and Engineering A. 2006, 433(1~2): 1~7
    91 Z. Xu, L. He, R. Mu, X. Zhong, Y. Zhang, J. Zhang, X. Cao. Double-Ceramic-Layer Thermal Barrier Coatings of La2Zr2O7/YSZ Deposited by Electron Beam-Physical Vapor Deposition. Journal of Alloys and Compounds. 2009, 473(1~2): 509~515
    92刘喜华,毛红,宋波,傅强. La2O3–CeO2–ZrO2粉的制备及性能.北京科技大学学报. 2004, 26(4): 404~406
    93 Z. Xu, L. He, R. Mu, S. He, X. Zhong, X. Cao. Influence of the Deposition Energy on the Composition and Thermal Cycling Behavior of La2(Zr0.7Ce0.3)2O7 Coatings. Journal of the European Ceramic Society. 2009, 29(9): 1771~1779
    94 Z. Xu, L. He, X. Zhong, R. Mu, S. He, X. Cao. Thermal Barrier Coating of Lanthanum–Zirconium–Cerium Composite Oxide Made by Electron Beam-Physical Vapor Deposition. Journal of Alloys and Compounds. 2009, 29(9):1771~1779
    95 X. Cao, R. Vassen, W. Fischer, F. Tietz, W. Jungen, D. St?ver. Lanthanum–Cerium Oxide as a Thermal Barrier Coating Material for High Temperature Applications. Advanced Materials. 2003, 15(17): 1438~1441
    96 W. Ma, S. Gong, H. Xu, X. Cao. The Thermal Cycling Behavior of Lanthanum-Cerium Oxide Thermal Barrier Coating Prepared by EB–PVD. Surface and Coatings Technology. 2006, 200(16~17): 5113~5118
    97 W. Ma, S. Gong, H. Xu, X. Cao. On Improving the Phase Stability and Thermal Expansion Coefficients of Lanthanum Cerium Oxide Solid Solutions. Scripta Materialia. 2006, 54(8): 1505~1508
    98 W. Ma, Y. Ma, S. Gong, H. Xu, X. Cao. Thermal Cycling Behavior of Lanthanum-Cerium Oxide Thermal Barrier Coatings Prepared by Air Plasma Spraying. Key Engineering Materials. 2007, 336~338: 1759~1761
    99 W. Ma, S. Gong, H. Li, H. Xu. Novel Thermal Barrier Coatings Based on La2Ce2O7/8YSZ Double-Ceramic-Layer Systems Deposited by Electron Beam Physical Vapor Deposition. Surface and Coatings Technology. 2008, 202(12): 2704~2708
    100 H. Dai, X. Zhong, J. Li, J. Meng, X. Cao. Neodymium-Cerium Oxide as New Thermal Barrier Coating Material. Surface and Coatings Technology. 2006, 201(6): 2527~2533
    101 X. Zhong, Z. Xu, Y. Zhang, J. Zhang, X. Cao. Phase Stability and Thermophysical Properties of Neodymium Cerium Composite Oxide. Journal of Alloys and Compounds. 2009, 469(1~2): 82~88
    102 K. I. Jung, S. H. Park, J. H. Kim, D. K. Kim, U. G. Paik, K. S. Lee. Hertzian and Nanoindentations on EBPVD-Coated Gadolinium Zirconate Thermal Barrier Materials. Solid State Phenomena. 2007, 124~126: 1349~1353
    103 A. M. Limarga, T. L. Duong, G. Gregori, D. R. Clarke. High-Temperature Vibration Damping of Thermal Barrier Coating Materials. Surface & Coatings Technology. 2007, 202(4~7): 693~697
    104 D. Lee, T. W. Kim, K. S. Lee. Design of Thermal Barrier Coatings Using Gadolinium Zirconate Ceramics: A Study on Gadolinium Zirconate/YSZ Bilayers. Journal of the Ceramic Society of Japan. 2009, 117(5): 550~554
    105 J. Wu, N. P. Padture, M. Gell. High-Temperature Chemical Stability of Low Thermal Conductivity ZrO2–GdO1.5 Thermal-Barrier Ceramics in Contact withα-Al2O3. Scripta Materialia. 2004, 50(10): 1315~1318
    106 R. M. Leckie, S. Kr?mer, M. Rühle, C. G. Levi. Thermochemical Compatibility between Alumina and ZrO2–GdO3/2 Thermal Barrier Coatings. Acta Materialia. 2005, 53(11): 3281~3292
    107张红松,李振军,徐强,王富耻,王全胜,刘玲.大气等离子喷涂Sm2Zr2O7热障涂层的微观组织.材料热处理学报. 2009, 28(3): 163~167
    108 H. Zhao, C. G. Levi, H. N. G. Wadley. Vapor Deposited Samarium Zirconate Thermal Barrier Coatings. Surface and Coatings Technology. 2009, 203(20~21): 3157~3167
    109 K. Shinozaki, M. Miyauchi, K. Kuroda, O. Sakurai, N. Mizutani, M. Kato. Oxygen-Ion Conduction in the Sm2Zr2O7 Pyrochlore Phase. Journal of the American Ceramic Society. 1979, 62(9~10): 538~539
    110 T. van Dijk, K.J. de Vries, A. J. Burggraaf. Electrical Conductivity of Fluorite and Pyrochlore LnxZr1–xO2–x/2 (Ln = Gd, Nd) Solid Solutions. Physica Status Solidi A. 1980, 58(1): 115~125
    111 A. J. Burggraaf, T. van Dijk, M. J. Verkerk. Structure and Conductivity of Pyrochlore and Fluorite Type Solid Solutions. Solid State Ionics. 1981, 5: 519~522
    112 M. P. van Dijk, K. J. de Vries, A. J. Burggraaf. Oxygen Ion and Mixed Conductivity in Compounds with the Fluorite and Pyrochlore Structure. Solid State Ionics. 1983, 9~10(2): 913~920
    113 S. Meilicke, S. Haile. Order–Disorder Transitions in Gadolinium Zirconate: A Potential Electrolyte Material in Solid Oxide Fuel Cells. Materials Research Society Symposium Proceedings. 1995, 135: 55–60
    114 T. Fournier, J. Y. Nots, J. Muller, J. C. Joubert. Conductive Ionique des Phases de Type Pyrochlore Gd2–xCaxZr2O7–x/2 et Gd2Zr2–xScxO7–x/2. Solid State lonics. 1985, 15(1): 71~74
    115 P. K. Moon, H. L. Tuller. Ionic Conduction in the Gd2Ti2O7–Gd2Zr2O7 System. Solid State Ionics. 1988, 28~30(Part 1): 470–474
    116 K. V. G. Kutty, C. K. Mathews, T. N. Rao, U. V. Varadaraju. Oxide Ion Conductivity in Some Substituted Rare Earth Pyrozirconates. Solid State Ionics. 1995, 80(1~2): 99~110
    117 J. Wang, H. Otobe, A. Nakamura, M. Takeda. Correlation of Crystal Structures with Electric Field Gradients in the Fluorite- and Pyrochlore-Type Compoundsin the Gd2O3–ZrO2 System. Journal of Solid State Chemistry. 2003, 176(1): 105~110
    118 P. Holtappels, F. W. Poulsen, M. Mogensen. Electrical Conductivities and Chemical Stabilities of Mixed Conducting Pyrochlores for SOFC Applications. Solid State Ionics. 2000, 135(1~4): 675~679
    119 H. Yamamura, H. Nishino, K. Kakinuma, K. Nomura. Electrical Conductivity Anomaly around Fluorite–Pyrochlore Phase Boundary. Solid State Ionics. 2003, 158(3~4): 359~365
    120 H. Yamamura, H. Nishino, K. Kakinuma. Ac Conductivity for Eu2Zr2O7 and La2Ce2O7 with Pyrochlore-Type Composition. Journal of the Ceramic Society of Japan. 2004, 112(10): 553~558
    121 H. Nishino, N. Matsunaga, K. Kakinuma, H. Yamamura, K. Nomura. Crystal Structure and Electrical Conductivity of Pyrochlore-Type Composition Systems, A2B2O7. Journal of the Ceramic Society of Japan. 2004, 112(5): S738~S741
    122 H. Yamamura, H. Nishino, K. Kakinuma. Relationship between Oxide-Ion Conduction and Dielectric Properties of Gd2Zr2O7 Having a Fluorite-Type Structure. Japanese Journal of Applied Physics. 2008, 47(7): 5521~5525
    123 M. Kumar, M. Anbu Kulandainathan, I. Arul Raj, R. Chandrasekaran, R. Pattabiraman. Electrical and Sintering Behaviour of Y2Zr2O7 (YZ) Pyrochlore-Based Materials–the Influence of Bismuth. Materials Chemistry and Physics. 2005, 92(2~3): 295~302
    124 M. Kumar, I. Arul Raj, R. Pattabiraman. Y2Zr2O7 (YZ)-Pyrochlore Based Oxide as an Electrolyte Material for Intermediate Temperature Solid Oxide Fuel Cells (ITSOFCs)–Influence of Mn Addition on YZ. Materials Chemistry and Physics. 2008, 108(1): 102~108
    125 C. Heremans, B. J. Wuensch, J. K. Stalick, E. Prince. Fast-Ion Conducting Y2(ZryTi1–y)2O7 Pyrochlores: Neutron Rietveld Analysis of Disorder Induced by Zr Substitution. Journal of Solid State Chemistry. 1995, 117(1): 108~121
    126 B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud, E. M. E. Yeo, S. M. Haile, J. K. Stalick, J. D. Jorgensen. Connection between Oxygen-Ion Conductivity of Pyrochlore Fuel-Cell Materials and Structural Change with Composition and Temperature. Solid State Ionics. 2000, 129(1~4): 111~133
    127 T. Norby. Fast Oxygen Ion Conductors–From Doped to Ordered Systems. Journal of Materials Chemistry. 2001, 11(1):11~18
    128 H. Takamura, H. L. Tuller. Ionic Conductivity of Gd2GaSbO7–Gd2Zr2O7 Solid Solutions with Structural Disorder. Solid State Ionics. 2000, 134(1~2): 67~73
    129 K. J. Moreno, A. F. Fuentes, J. García-Barriocanal, C. León, J. Santamaría. Mechanochemical synthesis and ionic conductivity in the Gd2(Sn1–yZry)2O7 (0≤y≤1) solid solution. Journal of Solid State Chemistry. 2006, 179(1): 323~330
    130 K. J. Moreno, M. A. Guevara-Liceaga, A. F. Fuentes, J. García-Barriocanal, C. León, J. Santamaría. Room-Temperature Synthesis and Conductivity of the Pyrochlore type Dy2(Ti1–yZry)2O7 (0≤y≤1) Solid Solution. Journal of Solid State Chemistry. 2006, 179(3): 928~934
    131 B. P. Mandal, A. Banerji, V. Sathe, S. K. Deb, A. K. Tyagi. Order–Disorder Transition in Nd2–yGdyZr2O7 Pyrochlore Solid Solution: An X-ray Diffraction and Raman Spectroscopic Study. Journal of Solid State Chemistry. 2007, 180(10): 2643~2648
    132 B. P. Mandal, S. K. Deshpande, A. K. Tyagi. Ionic Conductivity Enhancement in Gd2Zr2O7 Pyrochlore by Nd Doping. Journal of Materials Research. 2008, 23(4): 911~916
    133 J. A. Díaz-Guillén, M. R. Díaz-Guillén, J. M. Almanza, A. F. Fuentes, J. Santamaría, C. León. Effect of La Substitution for Gd in the Ionic Conductivity and Oxygen Dynamics of Fluorite-Type Gd2Zr2O7. Journal of Physics: Condensed Matter. 2007, 19(35): 356212
    134 J. A. Díaz-Guillén, M. R. Díaz-Guillén, K. P. Padmasree, J. M. Almanza, A. F. Fuentes, J. Santamaría, C. León. Synthesis and Electrical Properties of the Pyrochlore-Type Gd2–yLayZr2O7 Solid Solution. Boletin De La Sociedad Espanola De Ceramica Y Vidrio. 2008, 47(3): 159~164
    135 J. A. Díaz-Guillén, M. R. Díaz-Guillén, K. P. Padmasree, A. F. Fuentes, J. Santamaría, C. León. High Ionic Conductivity in the Pyrochlore-Type Gd2?yLayZr2O7 Solid Solution (0≤y≤1). Solid State Ionics. 2008, 179(38): 2160~2164
    136 M. R. Díaz-Guillén, K. J. Moreno, J. A. Díaz-Guillén, A. F. Fuentes, K. L. Ngai, J. Garcia-Barriocanal, J. Santamaría, C. León. Cation Size Effects in Oxygen Ion Dynamics of highly Disordered Pyrochlore-Type Ionic Conductors. Physical Review B. 2008, 78(10): 104304
    137 J. A. Díaz-Guillén, A. F. Fuentes, M. R. Díaz-Guillén, J. M. Almanza, J. Santamaría, C. León. The Effect of Homovalent A-Site Substitutions on theIonic Conductivity of Pyrochlore-Type Gd2Zr2O7. Journal of Power Sources. 2009, 186(2): 349~352
    138谢亚红,刘瑞泉,李志杰,王吉德,宿新泰. Ca、Ce双掺杂烧绿石型复合氧化物的合成及离子导电性能研究.无机化学学报. 2004, 20(5): 551~554
    139 H. Nishino, H. Yamamura, T. Arai, K. Kakinuma, K. Nomura. Effect of Cation Radius Ratio and Unit Cell Free Volume on Oxide-Ion Conductivity in Oxide Systems with Pyrochlore-Type Composition. Journal of the Ceramic Society of Japan. 2004, 112(10): 541~546
    140 H. Nishino, S. Ikeda, T. Arai, K. Kakinuma, H. Yamamura, K. Nomura. Oxide-Ion Conductivity for the Pyrochlore-Type Composition System (Yb1–xNdx)2(Ce1–0.88xZr0.88x)2O7 with a Constant Lattice Parameter. Journal of the Ceramic Society of Japan. 2005, 113(3): 236~240
    141 H. Yamamura, H. Nishino, K. Kakinuma, K. Nomura. Relationship between Oxide-Ion Conductivity and Ordering of Oxide Ion in the (Y1–xLax)2(Ce1–xZrx)2O7 System with Pyrochlore-Type Composition. Solid State Ionics. 2007, 178(3~4): 233~238
    142 B. R. Marple, J. Voyer, M. Thibodeau, D. R. Nagy, R. Vassen. Hot Corrosion of Lanthanum Zirconate and Partially Stabilized Zirconia Thermal Barrier Coatings. Journal of Engineering for Gas Turbines and Power. 2006, 128(1): 144~152
    143 R. Va?en, D. Sebold, D. St?ver. Corrosion Behavior of New Thermal Barrier Coatings. Ceramic Engineering and Science Proceedings. 2008, 28(3): 27~38
    144 J. R. Nicholls, R. G. Wellman, M. J. Deakin. Erosion of Thermal Barrier Coatings. Materials at High Temperatures. 2003, 20(2): 207~218
    145 X. Chen, M. Y. He, I. T. Spitsberg, N. A. Fleck, J. W. Hutchinson, A. G. Evans. Mechanisms Governing the High Temperature Erosion of Thermal Barrier Coatings. Wear. 2004, 256(7~8): 735~746
    146 A. G. Evans, N. A. Fleck, S. Faulhaber, N. Vermaak, M. Maloney, R. Darolia. Scaling Laws Governing the Erosion and Impact Resistance of Thermal Barrier Coatings. Wear. 2006, 260(7~8): 886~894
    147 C. Mercer, S. Faulhaber, A. G. Evans, R. Darolia. A Delamination Mechanism for Thermal Barrier Coatings Subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Infiltration. Acta Materialia. 2005, 53(4): 1029~1039
    148 S. Kr?mer, J. Yang, C. G. Levi, C. A. Johnson.Thermochemical Interactions ofThermal Barrier Coatings with Molten CaO–MgO–Al2O3–SiO2 (CMAS) Deposits. Journal of the American Ceramic Society. 2006, 89(10): 3167~3175
    149 A. Aygun, A. L. Vasiliev, N. P. Padture, X. Ma. Novel Thermal Barrier Coatings that are Resistant to High-Temperature Attack by Glassy Deposits. Acta Materialia. 2007, 55(20): 6734~6745
    150 S. Kr?mer, J. Yang, C. G. Levi. Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts. Journal of the American Ceramic Society. 2008, 91(2): 576~583
    151 S. M. Lakiza, L. M. Lopato. Stable and Metastable Phase Relations in the System Alumina–Zirconia–Yttria. Journal of the American Ceramic Society. 1997, 80(4): 893~902
    152 S. Lakiza, O. Fabrichnaya, M. Zinkevich, F. Aldinger. On the Phase Relations in the ZrO2–YO1.5–AlO1.5. Journal of Alloys and Compounds. 2006, 420(1~2): 237~245
    153 S. M. Lakiza, L. M. Lopato. Phase Diagram of the Al2O3–ZrO2–Er2O3 System. Journal of the European Ceramic Society. 2008, 28(12): 2389~2397
    154 S. Lakiza, O. Fabrichnaya, Ch. Wang, M. Zinkevich, F. Aldinger. Phase Diagram of the ZrO2–Gd2O3–Al2O3 System. Journal of the European Ceramic Society. 2006, 26(3): 233~246
    155 S. Lakiza, L. Lopato. Phase Diagram of the Alumina–Zirconia–Samaria System. Journal of the American Ceramic Society. 2006, 89(11): 3516~3521
    156 S. M. Lakiza, L. M. Lopato. Phase Diagram of the Al2O3–ZrO2–Nd2O3 System. Journal of the European Ceramic Society. 2006, 26(16): 3725~3732
    157 S. M. Lakiza, L. M. Lopato. Phase Diagram of the Al2O3–ZrO2–La2O3 System. Journal of the European Ceramic Society. 2005, 25(8): 1373~1380
    158 O. Fabrichnaya, S. Lakiza, Ch. Wang, M. Zinkevich, F. Aldinger. Assessment of Thermodynamic Functions in the ZrO2–La2O3–Al2O3 System. Journal of Alloys and Compounds. 2008, 453(1~2): 271~281
    159 O. Fabrichnaya, H. J. Seifert. Assessment of Thermodynamic Functions in the ZrO2–Sm2O3–Al2O3 System. Computer Coupling of Phase Diagrams and Thermochemistry. Journal of Alloys and Compounds. 2009, 475(1~2): 86~95
    160 O. Fabrichnaya, H. J. Seifert. Assessment of Thermodynamic Functions in the ZrO2–Nd2O3–Al2O3 System. Computer Coupling of Phase Diagrams and Thermochemistry. 2008, 32(1): 142~151
    161 R. A. Swalin. Thermdynamics of Solids. Second edition. John Wiley & Sons, New York, 1972: 53~87
    162 O. Kubaschewsji, C. B. Alcock, P. J. Spencer. Materials Thermochemistry. Sixth edition. Pergamon Press, Oxford, 1993: 257~323
    163 ASTM E 1461–07. Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM International. 2007
    164 ASTM E 228–06. Standard Test Method for Linear Thermal Expansion of Solid Materials with a Push-Rod Dilatometer. ASTM International. 2006
    165 J. T. S. Irvine, D. C. Sinclair, A. R. West. Electroceramics: Characterization by Impedance Spectroscopy. Advanced Materials. 1990, 2(3): 132~138
    166 J. R. Macdonald, W. B. Johnson. Fundamentals of Impedance Spectroscopy. In Impedance Spectroscopy: Theory, Experiment and Applications. Second edition. Edited by: E. Barsoukov, J. R. Macdonald. John Wiley & Sons, Inc., New Jersey, 2005: 1~26
    167夏天.新型固体氧化物电解质电学性质的研究.中国科学院长春应用化学研究所博士学位论文. 2006: 52~53
    168潘金生,仝健民,田民波.材料科学基础.清华大学出版社, 1998: 101~102
    169 G. S. Rohrer. Structure and Bonding in Crystalline Materials. Cambridge University Press, Cambridge, 2004: 521~526
    170 R. Berman. Thermal Conduction in Solids. Clarendon Press, Oxford, 1976: 45~101
    171 J. Yang. Theory of Thermal Conductivity. In Thermal Conductivity: Theory, Properties, and Applications. Edited by: T. M. Tritt, Kluwer Academic/Plenum Publishers, New York, 2004: 1~20
    172 N. Qin, X. Q. Liu, X. M. Chen. Thermal Expansion and High-Temperature Phase Transition of Ba6–3xLn8+2xTi18O54 (Ln = La, Nd, and Sm) Ceramics. Journal of the American Ceramic Society. 2007, 90(9): 2912~2917
    173 O. L. Anderson. A Simplified Method for Calculating the Debye Temperature from Elastic Constants. Journal of Physics and Chemistry of Solids. 1963, 24(7): 909~917
    174 Z. Sun, M. Li, Y. Zhou. Thermal Properties of Single-Phase Y2SiO5. Journal of the European Ceramic Society. 2009, 29(4): 551~557
    175 M. R. Winter, D. R. Clarke. Thermal Conductivity of Yttria-Stabilized Zirconia–Hafnia Solid Solutions. Acta Materialia. 2006, 54(19): 5051~5059
    176 J. Callaway, H. C. von Baeyer. Effect of Point Imperfections on Lattice Thermal Conductivity. Physical Review. 1960, 120(4): 1149~1154
    177 B. Abeles. Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperature. Physical Review. 1963, 131(5): 1906~1911
    178 NIST SP 966, NIST Special Publication, Periodic Table Atomic Properties of the Elements. 2003. Available at http://www.everyspec.com
    179Б.Г.李夫舍茨著,王润等译.金属与合金的物理性能.中国工业出版社, 1961: 323~345
    180关振铎,张中太,焦金生.无机材料物理性能.清华大学出版社, 1992: 164~166
    181 K. M. Mackay, R. A. Mackay, W. Henderson. Introduction to Modern Inorganic Chemistry. Sixth edition. CRC Press, 2002: 116~117
    182 M. Mori, Y. Hiei, N. M. Sammes, G. A. Tompsett. Thermal-Expansion Behaviors and Mechanisms for Ca- or Sr-Doped Lanthanum Manganite Perovskites under Oxidizing Atmospheres. Journal of the Electrochemical Society. 2000, 147(4): 1295~302
    183 J. X. Wang, L. P. Li, B. J. Campbell, Z. Lv, Y. Ji, Y. F. Xue, W. H. Su. Structure, Thermal Expansion and Transport Properties of BaCe1?xEuxO3?δOxides. Materials Chemistry and Physics. 2004, 86(1): 150~155
    184 O. Johannesen, A. G. Andersen. Selected Topics in High Temperature Chemistry: Defect Chemistry of Solids. Elsevier Science Publishers, Amsterdam and New York, 1989: 101~105
    185 S. J. Hong, A. V. Virkar. Lattice Parameters and Densities of Rare-Earth Oxide Doped Ceria Electrolytes. Journal of the American Ceramic Society. 1995, 78(2): 433~439
    186 P. J. Wilde, C. R. A. Catlow. Defects and Diffusion in Pyrochlore Structured Oxides. Solid State Ionics. 1998, 112(3~4): 173~183
    187 Physical Constants of Inorganic Compounds. In CRC Handbook of Chemistry and Physics. 87th Edition. Edited by: D. R. Lide. Taylor and Francis, Boca Raton, FL, 2007
    188 M. K. Reser. Phase Diagrams for Ceramists–1969. The American Ceramic Society, Columbus, OH, 1969, Supplement, Fig. 2405
    189 G. Smith. Phase Diagrams for Ceramists, Volume IV. Columbus, OH, 1981, Fig. 5127
    190 H. Zheng, G. D. C. Csete de Gy?rgyfalva, R. Quimby, H. Bagshaw, R. Ubic, I. M. Reaney, J. Yarwood. Raman Spectroscopy of B-Site Order–Disorder in CaTiO3-Based Microwave Ceramics. Journal of the European Ceramic Society. 2003, 23(14): 2653~2659
    191 C. H. Hao, L. L. Chase, G. D. Mahan. Raman Scattering inβ-Alumina. Physical Review B. 1976, 13(10): 4306~4313
    192 T. Hattori, H. Kurokawa, A. Mitsuishi. Ionic Conductivity and Raman Scattering inβ-Alumina. Solid State Ionics. 1983, 9~10(1): 215~220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700