用户名: 密码: 验证码:
改性Ti/SnO_2-Sb电极及石墨电极的制备及处理硝基苯废水的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过热分解刷涂法对钛基掺Sb的二氧化锡电极进行制备,并在制备过程中掺杂硝酸根金属离子,制备电极分别为Ti/SnO_2-Sb、 Ti/SnO_2-Sb-Cu、Ti/SnO_2-Sb-Ni、 Ti/SnO_2-Sb-La、 Ti/SnO_2-Sb-Nd、 Ti/SnO_2-Sb-Ce、Ti/SnO_2-Sb-Zn、Ti/SnO_2-Sb-Bi。利用扫描电子显微镜(SEM)、及X射线衍射(XRD)等分析方法对改性二氧化锡电极表面形貌及晶型进行了表征。通过强化电极寿命测试考察了改性电极的使用寿命及稳定性,并对其失活机理进行了初步的分析。
     将改性电极应用于电催化降解硝基苯模拟废水的使用中,研究金属掺杂对改性二氧化锡电极的电催化性能的影响。测定电解过程中体系槽电压随时间的变化,考察改性电极对能耗的影响;根据硝基苯降解动力学方程及COD的电流效率分析不同金属掺杂对电极降解速率的影响。用水杨酸捕集羟基自由基的液相色谱法测定OH·的浓度,用分光光度法测定了体系内过氧化氢的生成情况,并通过UV-Vis紫外光谱及质谱对硝基苯的降解机理进行了初步的探讨。
     对硝基苯的电催化氧化实验中考察了电流强度,溶液初始pH,溶液初始浓度对改性二氧化锡电极电催化氧化效果的影响。考察金属Cu,Ni的不同掺杂水平对改性二氧化锡电极的影响,通过SEM及XRD对电极表面形貌及晶型进行表征,通过加速寿命测试及对硝基苯模拟废水的电催化氧化实验考察不同掺杂量对电极稳定性及电催化氧化活性的影响。实验结果表明金属掺杂二氧化锡电极改善了电极的表面形貌,改变了二氧化锡衍射峰的强度,电极寿命明显增强,电催化降解能力提高。
     研究了电极在高频交流电源中电催化氧化硝基苯的能力,在相同的输出功率下与直流电源进行比较,结果表明,高频交流电源电解体系对有机物的去除效果显著。
     用碳纳米管修饰石墨电极,并将其作为阴极电极应用于电催化氧化体系中,考察制备工艺及电解条件对硝基苯去除率的影响,结果表明,用碳纳米管修饰的石墨电极对硝基苯的去除效果高于普通的石墨阴极。
Nitrobenzene, as a kind of highly toxic substances, is too hard tobiodegrade and play inhibited and toxic roles against the biochemical reactions.The wastewater included nitrobenzene comes from a variety of sources withbroad pollution. There are some solutions mainly involving biological, physicaland chemical methods. In recent years, advanced oxidation technology with apriority that it produces highly oxidizing hydroxyl radicals is regarded as aneffective technical approach on degrading organic pollution in the waste water.This technology for water treatment has become a hot research topic.
     The anode plays an oxidation role in the electrochemical oxidation system,and therefore the speed of electro-catalytic oxidation is determined by thecharacteristics of the anode. The different electrode materials cause the differentremoval efficiency of organic matter. The anode materials of electrochemicaloxidation that are appropriate for degrading wastewater are generally sufficientfor some conditions such as good conductivity, less energy loss, good stability,acid and alkali resistance, and standing a certain temperature and mechanicalstrength, higher electro-catalytic activity, etc. However, there is a lack of goodelectrode materials to satisfy the needs of the electrochemical oxidation.Consequently, the researches for the electrochemical oxidation technology havefocused on the development of high effective inexpensive electrode material. Inthis dissertation, the preparation of SnO_2anode has been investigated. In orderto increase the overall efficiency of electro-catalytic oxidation system, thedegradation of nitrobenzene has been also discussed.
     Titanium-based Sb-doped tin dioxide electrode was prepared by thermaldecomposition brush coating and doped by metal nitrate ions during the wholepreparation to respectively gain some electrodes as follows: Ti/SnO_2-Sb,Ti/SnO_2-Sb-Cu, Ti/SnO_2-Sb-Ni, Ti/SnO_2-Sb-La, Ti/SnO_2-Sb-Nd, Ti/SnO_2-Sb-Ce,Ti/SnO_2-Sb-Zn, Ti/SnO_2-Sb-Bi. The electrode surface morphology and crystal of SnO_2were characterized by scanning electron microscopy (SEM) and X-raydiffraction (XRD). The life span and stability of the electrodes were examinedby strengthening the electrode life test, and its deactivation mechanism wascarried on a preliminary analysis. The modified electrodes were used in thewastewater simulated by electric degradation of nitrobenzene. The purpose is tostudy on the influence of the electro catalytic performance by the metal-dopedtin dioxide electrode, measure the cell voltage in every stage during theelectrolytic period, research the effect of modified electrode on energyconsumption, and analyze the effects of doped different metal on electrodedegradation rate by nitrobenzene degradation kinetics equation and the currentefficiency of COD. The initial discussion is on determining the concentration ofOH·by using the salicylic acid captured hydroxyl radicals by liquidchromatography, and meanwhile the production of hydrogen peroxide isdetermined by spectrophotometer method. Then the degradation mechanism ofnitrobenzene was discussed through UV-Vis ultraviolet spectrum and massspectrum.
     Experimental results show that the modified stannic oxide electrodeimproved surface morphology, and the coating of electrode surface covered moresmoothly and uniformly. The grain of crystal was so fine that the surface area ofthe electrode was increased. Meanwhile, the XRD pattern showed that themodified tin dioxide electrode did not transform into other crystals and justchanged the diffraction peak intensity of tin dioxide, which is showed that themetal formed solid solution crystals as it came into the tin dioxide lattice.Accelerated life test showed the life of the modified Ti/SnO_2-Sb electrode hadrisen obviously. Nitrobenzene wastewater electrolysis experiment proved thatmetal doping significantly improved the electro-catalytic degradation.Nitrobenzene degradation corresponds to the first order kinetic equation.Hydroxyl radicals and hydrogen peroxide concentration indicates that the higherconcentration of free radicals was, the faster degradation rate of nitrobenzenewould be. Since it reacted for60min, the OH·concentration of the blank electrode fell by one-fifth by contrast to the one mixed with Cu. Other peak oforganic materials did not appear in the absorption in Nitrobenzene degradationof ultraviolet absorption spectra, whereas aniline was just found in the massspectrum of5-10min degradation in FIG presence. This result indicates thatnitrobenzene oxidation, first, is reduced to the aniline on the cathodic reactionand then degraded on the anodic. The catalytic oxidation reaction was promptafter revivification. The absorption of other substances was not observed in thesubsequent mass spectrum.
     It was investigated that the electro catalytic oxidation affects on the currentintensity, initial solution pH, and initial concentration with modified SnO_2electrode in the electro catalytic oxidation of nitrobenzene experiments.Experimental results show that the higher current was, the higher removal ratewould be. In a certain range of the current intensity, the current efficiency hadincreased significantly once the electrode was modified. The acidic initial pHwas in favor of nitrobenzene degradation. The higher of the initial concentrationwas, the lower of the organic removal rate would be. In a certain concentrationrange, with increase of the initial concentration, the current efficiency alsoincreased. The modified SnO_2electrode enlarged the adaptability of the initialconcentration range.
     The influences of different doping levels of metals Cu, Ni on the modifiedSnO_2electrodes were investigated. The surface morphology and crystal structureof the electrodes were characterized by SEM and XRD. The effects of differentamount of doping electrode of the electro catalytic oxidation stability andactivity were examined by the accelerated life test and nitrobenzeneelectro-catalytic oxidation of simulated wastewater experiments. The resultsshowed that both the angle and the intensity of diffraction peaks of theelectrodes with different doping levels had brought into changes. They weremuch different on the surface morphology. The surface of doped1/2electrodehad more cracks and the one doped twice electrode had more particles.Compared with them, the surface of doped equivalent electrode morphology was better. The coating that was uniform with honeycomb hole was easy to beoxidized. While the investigation of the electrode life also proved dopedequivalent electrodes had the longest life and best stability. It also demonstratedgood catalytic oxidation in nitrobenzene degradation experiments.
     It was investigated that how to influence the electrodes with differentquantity of doped Cu and Ni on nitrobenzene wastewater degradation byelectrolysis current intensity, pH value and initial concentration. Theexperimental results showed that different electrolysis conditions had greatimpact on the electrodes with different doping quantity. After comprehensivecomparisons, the doped equivalent quantity of the electrode gave the bestperformance, doped twice quantity guaranteed the stable performance, but thecatalytic ability was low. While doped1/2quantity showed a poor stability andlower electro-catalytic ability.
     The treatment of highly toxic and non-biodegradable organic wastewaterwill be important and difficult points of environmental improvement over alonger period of time. Metal-doped electrodes that were compared withTi/SnO_2-Sb electrode showed a better performance on stability andelectro-catalytic oxidation activity. It suggested that the metal impurity dopedSnO_2was feasible.
     In the electrochemical oxidation technology, the electrode is always themain part in the electro-catalytic oxidation system. The preparation of the highstability electrode has been the goal of scientific investigator. But in order toremove recalcitrant organic substances in water better, the use of more efficientpower source is also an important mean of improving the efficiency of thedegradation besides preparation of the high-performance electrode. The powersource of catalytic degradation system has been used DC output power. Cathodeand anode is the main portion in electro-catalytic degradation of system. Theanode electrode is the main working and the cathode only plays a supportingrole. If the two electrodes of the electrolysis system were changed to workingelectrode, the anode in the form of double plays a role in the degradation process, the degradation of organic wastewater will be greatly enhanced. So theexperiment which changes DC to AC as power supply, and uses the workingelectrode in the form of dual anode electrode,studies the ability ofhigh-frequency AC power supply electro-catalytic oxidation of nitrobenzene.The experiment proves that the AC power is higher than DC power in thedegradation of nitrobenzene with the same output power. Ti/SnO_2-Sb of blankand Ti/SnO_2-Sb of metal-doped electrodes exhibit good electrocatalyticproperties. The greater the frequency of the AC power output of electrolyticsystem, the higher the nitrobenzene removal. AC power is different from DCpower, the removal rate of nitrobenzene is better than the initial pH value of thealkaline. Impact on nitrobenzene removal of electrode material indicates ACelectrolysis system could expand the scope of application of the alternatingcurrent in the electrode. When the two electrodes are Ti/SnO_2-Sb-Cu, theremoval rate is up to98.8%and the removal efficiency is very significant underthe best conditions of electrolysis for45minutes.
     In response to the DC power supply as the main power source for theelectrolysis system, the anode electrode is main working one, also the cathodeplays a significant role in the electrolysis system, mainly for the reduction of thecathode, for some oxidation of refractory organic materials, the cathode canreduce the degradation of organic matter remaining after its degradation throughthe anode. Therefore, the study of high-performance anode materials, whilechoosing the right as an auxiliary electrode cathode electro-catalytic oxidationalso has a positive meaning. This paper, based on carbon nanotubes modifyinggraphite electrode as the cathode electrode electrolysis system to explore thepreparation of carbon nanotubes modifying graphite electrode and electrode wasstudied as a cathode removal of organic pollutants. Experimental results showthat in the process of preparing carbon nanotube modified electrode, the coatingwears for embedding method, carbon nanotubes and graphite substrate cancombine more closely, electrode coating method which optimizes carbonnanotubes can make much uniformly dispersed in the electrode surface. Activated carbon nanotubes have a high specific surface area, increase thechemical reactivity. When the initial pH of acidic presents, increasing oxygenevolution potential to improve the utilization efficiency of the oxidant.Increasing the initial concentration of nitrobenzene, carbon nanotubes modifiedgraphite electrodes after nitrobenzene removal is still able to maintain a highlevel.The treatment of highly toxic and non-biodegradable organic wastewaterwill be important and difficult points of environmental improvement over alonger period of time.
     By the preparation of the anode which has higy-capacity and high-stability,the application of AC power dual anode electrolytic system, or the improvementthe performance of the cathode electrode in an electrolytic DC power system,they are feasible to improve the electro-catalytic oxidation degradation of highlytoxic biodegradable organic waste.
引文
[1]中哲民.电催化氧化法处理有机废水及提高其能效的研究,博十学位论文,中国科学院生态研究中心,2002.
    [2]钟理,詹怀宇.高级氧化技术在废水处理中的应用进展,上海环境科学,2002,12:568-571.
    [3]崔艳萍,杨昌柱.电化学氧化法在难降解有机废水处理中的应用,工业安全与环保,2004,6:12-14.
    [4]周明华,吴相成等.难生化降解芳香化合物废水的电催化处理,环境科学,2003,24:121-124.
    [5]高颖,邹冰.《电化学基础》,化学工业出版舍,2004.
    [6]吴辉煌.水中有机污染物电化学清除的研究进展,环境污染与防治,2000,4:39-42.
    [7]崔宝臣,刘淑芝,罗洪君.有毒难降解有机物高级氧化电催化电极,环境污染治理技术与设备,2004,6:84-87.
    [8] R.B.Mellor,Reduction of nitrate in water by immobilized enyzmes. Nature,1992,355:717-719.
    [9]冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用[M].北京:化学工业出版社.2002.
    [10] Ch.Comninellis, Nerini A, Anodic Oxidation of Phenol in the Presenee ofNaCI for Wastewater treatment. J. AppI. Electoehem,1995,25:23-28.
    [11] Deliang He, Sun-il Mho.Electrocatalytic reaction of Phenolic compounds atferric ion Co-doped SnO2:Sb5+electrodes.J.Electroanal Chem.2004,568:19-27.
    [12] Ch.Comninellis, Pulgarin C. Anodic Oxidation of Phenol for wastewatertreatment. J.AppI.Electoehem,1991,21:703-708.
    [13] Ch.Comninellis, Pulgarin C. Electrochemical oxidation of Phenol forwastewater treatment using SnO2anodes. J.AppI.Electochem,1993,23:108-112.
    [14] B.Correa-Lozano,Ch.Comninellis,A.De Battisti. Elcetrochemical propertiesof Ti/SnO2-Sb2O5electrodes Prepared by spray pyrolysistechnique.J.AppI.Electochem,1996,26:683-688.
    [15] R Kotz,S.Stucki,B Carcer. Electrochemical wastewater treatment using highovervoltage anodes.PartⅠ:Physical and electrochemical Properties of SnO2anodes.J.AppI.Electochm,1991,21:14-20.
    [16] R Kotz,S.Stucki,B Carcer. Electrochemical wastewater treatment using highovervoltage anodes. PartⅡ:Anodes performance and applications. J. Appl.Electochem,1991,21:99-104.
    [17] Y.J.Feng,X.Y.Li.Electro-catalytic oxidation of phenol on several metal-oxideelectrodes in aqueous solution, Water Research,2003,37:2399-2407.
    [18] O.Simond, V. Schaller and Ch.Comninellis. Theoretical model for the anodicoxidation of organics on metal oxide electrodes, Electrochimica Acta,1997.42:2009-2012.
    [19]王玉玲,蔡乃才等.苯胺在SnO2/Ti电极上的电化学氧化,物理化学学报,2001,17:609-613.
    [20]张清松,吴辉煌.苯酚在热氧化法制各的SnO2/Ti电极上的电氧化研究,电化学,1999,5:401-405.
    [21] Z. R. Sun, F. Takahashi, Y. Odaka et al. Effects of potassium alkalis andsodium alkalis on the dechlorination of o-chlorophenol in supercriticalwater.Chemosphere.2007,66(1):151-157.
    [22] X. Z. Li, H. L. Liu, P. T. Yue et al. Photoelectrocatalytic oxidation of roseBengal in aqueous solution using a Ti/TiO2mesh electrode. Environ. Sci.Technol.2000,34(20):4401-4406.
    [23] R. Toor, M. Mohseni. UV-H2O2based AOP and its integration with biologicalactivated carbon treatment for DBP reduction in drinking water.Chemosphere.2007,66(11):2087-2095.
    [24] A. Fujishima, K. Honda. Electrochemical photolysis of water at asemiconductor electrode. Nature.1972,238:37-38.
    [25] W. H. Glaze, J. W. Kang. Advanced oxidation processes. Description of akinetic model for the oxidation of hazardous materials in aqueous media withozone and hydrogen peroxide in a semibatch reactor. Ind. Eng. Chem. Res.1989,28:1573-1580.
    [26] D. Gandini, E. Mahé, P. A. Michaud et al. Oxidation of carboxylic acids atboron-doped diamond electrodes for wastewater. J. Appl. Electrochem.2000,30(12):1345-1350.
    [27] J. Iniesta, P. A. Michaud, G. Cherisola. Electrochemical oxidation of phenolat boron-doped diamong electrode. Electrochim. Acta.2001,46(23):3573-3578.
    [28] S. S. Vaghela, A. D. Jethva, B. B. Mehta et al. Laboratory studies ofelectrochemical treatment of industrial Azo Dye effluent. Environ. Sci.Technol.2005,39:2848-2855.
    [29] I. Sires, F. Centellas, J. A. Garrido et al. Mineralization of clofibric aicd byelectrochemical advanced oxidation processes using a boron-doped diamondanode and Fe2+and UVA light as catalysis. Appl. Catal. B: Environ.2007,72:373-381.
    [30] Zimmer. Electrochemical Processes for Decomposition of Organic Matter inWastewater. Z. Tech. Univ. Dresden.1997,46(4):80-85
    [31]王仲权.电催化作用.分子催化.1988,2(2):124-136.
    [32]张招贤.钛电极学导论[M].北京:冶金工业出版社,2008,87-88.
    [33] L. C. Chiang, J. E. Chang, T. C. Wen. Indirect oxidation effect inelectrochemical oxidation treatment of landfill leachate. Water. Res.1995,29(2):671-678.
    [34] C.Comninellis.Electrocatalysis in the electrochemical conversion/combustionof organic pollutants for waste water treatment. Electrochim. Acta.1994,39(11/12):1857-1862.
    [35] D. Dabo. Electrocatalytic dehydrochlorination of pentachlorophenol tophenol or cyclohexanol. Environ. Sci. Technol.2000,34(7):1265-1268.
    [36] T. C. Franklin. Destruction of halogenated hydro carbons accompanied bygeneration of electricity. J. Electrochem. Soc.1992,20:2192-2195.
    [37]张招贤.钛电极学导论[M].北京:冶金工业出版社,2008,90-92.
    [38] T. C. Franklin. Use of the oxidation barium peroxide in apueoussurfactantcystems the electrolytic destruction of organic compounds. J.Electrochem. Soc.1991,138:2285-2288.
    [39] N. L. Weinberg. Proceedings of Sixth International Forum on Electrolysis,Environmental Applications of Electrochemical Technology. ElectrosynthesisCo. East Amherst. New York.1992.
    [40] J. Bringmann, K. Ebert, U. Galla et al. Electrochemical mediators for totaloxidation of chlorinated hydrocarbons: formation kinetics of Ag (II), Co (III)and Ce (IV). J. Appl. Electrochem.1995,25:846-855.
    [41] J. W. Lee, S. J. Chung, S. Balaji et al. Destruction of EDTA using Ce (IV)mediated electrochemical oxidation: A simple modeling study andexperimental verification. Chemosphere.2007,68:1067-1073.
    [42] F. Beck, H. Schulz. Cr-Ti-Sb oxide composite anodes: electroorganicoxidation. J. Appl. Electrochem.1987,17:914-924.
    [43] O. Simond. Anodic oxidation organics on Ti/IrO2anodes using nafion aselectrolyte. Electrochim. Acta.1997,42(13-14):2009-2018.
    [44] A. M. Polcaro. On the performance of Ti/SnO2and anodes in electrochemicaldegradation of2-Chorophenol for wastewater treatment. J. Appl.Electrochem.1999,28:147-151.
    [45] R. Tomat. Electrochemical oxidation of toluene promoted by OH radicals. J.Appl. Electrochem.1984,14:1-8.
    [46] M. Panizz, C. Bocca, G. Cerisola. Electrochemical treatment of wastewatercontaining polyaromatic organic pollutants. Water. Res.2000,34(9):2601-2605.
    [47] C. H. Yang. Hypochlorite generation on Ru-Pt binary oxide for treatment ofdye wastewater. J. Appl. Electrochem.2000,30:1043-1051.
    [48] P. Ribordy. Electrochemical versus photo chemical pretreatment of industrialwastewaters. Wat. Sci. Technol.1997,35:293-300.
    [49] J. Thanos. The influences of the electrolyte and the physical conditions onozone production by the electrolysis of water. J. Appl. Electrochem.1984,14:389-399.
    [50] E. Yeager. Electrocatalysis for O2reduction. Electrochim. Acta.1984,29(11):1527-1537.
    [51] A. T. Kuhn. Electrolytic decomposition of cyanides, phenols and thiocyanatesin effluents streams-a literature review. J. Appl. Chem. Biotechol.1971,21:29-34.
    [52] C. Comninellis, C. Pulgarin. Anodic oxidation of phenol for wastewatertreatment. J. Appl. Electrochem.1991,21:703-712.
    [53] N. B. Tahar, A. Savall. Electrochemical degradation of phenol in aqueoussolution on bismuth doped lead dioxide: a comparison of the activities ofvarious electrode formulations. J. Appl. Electrochem.1999,29:277-283.
    [54] Z. C. Wu, M. H. Zhou. Partial degradation of phenol by advancedelectrochemical oxidation process, Environ. Sci. Technol.2001,35:2698-2703.
    [55] Y. J. Feng, X. Y. Li. Electro-catalytic oxidation of phenol on severalmetal-oxide electrodes in aqueous solution. Water. Res.2003,37:2399-2407.
    [56] J. Feng, L. L. Houk, D. C. Johnson. Electrocatalysis of anodic oxygen-transfer reaction: the electrochemical incineration of benzoquinone. J.Electrochem. Soc.1995,142:3626-3631.
    [57] P. Canizares, C. Saez, J. Lobato et al. Electrochemical treatment of4-nitrophenol containing aqueous wastes using boron-doped diamond anodes.Ind. Eng. Chem.Res.2004,43:1944-1951.
    [58] M. A. Quiroz, S. Reyna, C. A. Martínez-Huitle et al. Electrocatalyticoxidation of p-nitrophenol from aqueous solutions at Pb/PbO2anodes. Appl.Catal. B: Environ.2005,59:259-266.
    [59] P. Canizares, C. Saez, J. Lobato et al. Electrochemical treatment of2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes.Electrochim. Acta.2004,49:4641-4650.
    [60] M. Tian, L. Bakovic, A. C. Chen. Kinetics of the electrochemical oxidation of2-nitrophenol and4-nitrophenol studied by in situ UV spectroscopy andchemometrics. Electrochim. Acta.2007,52:6517-6524.
    [61] B. Nasr, G. Abdellatif. Electrochemical oxidation of2,4,6-trinitrophenol onboron-doped diamond anodes. J. Electrochem. Soc.2005,152(6):D113-D116.
    [62] C. L. P. S. Zanta, P. A. Michaud, C. Comninellis et al. Boodts.Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5based anodesfor wastewater treatment. J. Appl. Electrochem.2003,33(12):1211-1215.
    [63] Y. H. Wang, K. Y. Chan, X. Y. Li et al. Electrochemical degradation of4-chlorophenol at nickel-antimony doped tin oxide electrode. Chemosphere.2006,65:1087-1093.
    [64] Y. J. Li, F. Wang, G. D. Zhou et al. Aniline degradation by electrocatalyticoxidation. Chemosphere.2003,53:1229-1234.
    [65] M. Panizza, G. Cerisola. Electrochemical oxidation as a final treatment ofsynthetic tannery wastewater. Environ. Sci. Technol.2004,38:5470-5475.
    [66] G. R. P. Malpass, D. W. Miwa, D. A. Mortari et al. Decolorisation of realtextile waste using electrochemical techniques: effect of the chlorideconcentration. Water. Res.2007,41:2969-2977.
    [67] A. Cabeza, A. M. Urtiaga, I. Ortiz. Electrochemical treatment of landfillleachates using a boron-doped diamond anode. Ind. Eng. Chem. Res.2007,46:1439-1446.
    [68] B. Wang, W. P. Kong, H. Z. Ma. Electrochemical treatment of paper millwastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5anode.J.Hazard. Mater.2007,146:295-301.
    [69] X. Y. Li, Y. H. Cui, Y. J. Feng et al. Reaction pathways and mechanisms ofthe electrochemical degradation of phenol on different electrodes. Water. Res.2005,39:1972-1981.
    [70] P. Canizares, J. Lobato, R. Paz et al. Electrochemical oxidation of phenolicwastes with boron-doped diamond anodes. Water. Res.2005,39:2687-2703.
    [71] A. G. Vlyssides, M. Loizidou, P. K. Karlis et al. Electrochemical oxidation ofa textile dye wastewater using a Pt/Ti electrode. J. Hazard. Mater. B.1999,15870(1-2).
    [72]周明华,吴祖成,汪大翚.难生化降解芳香化合物废水的电催化处理.环境科学.2003,24(2):121-124.
    [73]陈卫国,徐涛,彭玉凡等.电催化系统-电生物炭接触氧化床处理垃圾渗滤液.中国环境科学.2002,22(2):146-149.
    [74]赵丽,范洪富,方永奎等.电化学法处理茜素红S模拟染色废水的研究.印染.2004,20:1-4.
    [75]陈延禧.电解工程[M].天津:天津科学技术出版社,1993.
    [76]张招贤.钛电极工学[M].第二版.北京:冶金工业出版社,2003.
    [77]孙德智,环境工程中的高级氧化技术[M].第1版.北京:化学工业出版社,2002.
    [78]冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用[M].第1版.北京:化学工业出版社,2002.
    [79]陈繁中.电催化氧化法降解水中有机物的研究进展[J].中国给水排水,1999,15(13):24-26.
    [80]王辉,王建中,张萍.电化学氧化法处理难降解有机废水的研究进展[J].宝鸡文理学院学报,2004,4:279-83.
    [81]潘会波,鞠鹤,陈凤云.氧化处理温度对Ti/RuO2阳极性能的影响[J].氯碱工业,1994,(8):24-27.
    [82]梁镇海,王森,孙彦平.硫酸中Ti/RuO2阳极性能研究[J].甘肃科学学报,1995,7(2):162-164.
    [83] Lia X Y,Cui Y H,Feng Y J,et al.Reaction pathways and meehanisms of theelectrochemical degradation of Phenol on different electrodes[J].waterResearch,2005,39:1972-1981.
    [84]赵国华,周兵,朱仲良.苯酚溶液电解降解的过程分析及中间体的研究[J].同济大学学报,2000,28(5):597-599.
    [85] Veliehenko A, Girenko D V, Danilov F I. Meehanism of lead electrodePosition[J]. Journal of Electroanalytical Chemistry,1996,(45):127-132.
    [86]谢天,王斌.二氧化铅电极制备方法综述[J].成都大学学报(自然科学版),2003,22(3):25-30.
    [87]陈武,杨吕柱,梅平等.三维电极电化学方法处理印染废水实验研究[J].工业水处理,2004,8(2):43-45.
    [88]崔艳萍,杨昌柱.复极性三维电极处理含酚废水的研究[J].能源环境保护,2004,1(8):23-26.
    [89]郭玉凤,崔建升.三维电极电解法处理生活污水的研究[J].河北科技工业大学学报,2003,2(24):27-29.
    [90]董绍俊,车广礼,谢运武.化学修饰电极,科学出版社,1995.181-199.
    [91]王翠.电化学氧化法在中水回用中的应用:[硕士学位论文].石家庄:河北工业大学,2004.
    [92]顾彬.Ti/SnO2+Sb203电极的制备及其在模拟苯酚废水处理中的应用:[硕士学位论文].扬州:扬州大学,2007.
    [93]陈康宁.《金属阳极》,华东师范人学出版社,1989.
    [94] A.Mottram Couper, Derek Pleteher, Frank C Walsh. Electrode material forElectrosythesis. Chem Rev,1990,90:837-865.
    [95]张招贤.钛电极工学.北京:冶金工业出版社,2000.4-10.
    [96]锦西化工研究院二室,金属阳极的研究,氯碱工业,1975,1:55-6.4.
    [97]林海波.金属阳极的研究及其应用,有机电化学和工业,1986,2:27-31.
    [98] Deng Tswen Shieh, Bing Joe Hwang, Morphology and electrochemicalactivity of Ru-Ti-Sn ternary-oxide electrodes in IM NaCI solution.Electrochimica Acta,1993,38:2239-2246.
    [99] A.I.Onuchukwu, S.trasatti, Eeffet of substitution of SnO2for TiO2on thesurface and electrocatalytic Properties of RuO2+TiO2.J.AppI.Electochem,1991,21:858-862.
    [100]宋建梅,童效平,陈康宁.高氧超电极在电解法生产氯酸盐中的应用.氯碱工业2000,6:3-6.
    [101] Xueming Chen, Guohua Chen, Po Lock Yue. Stable Ti/lrO2-SnO2-Sb2O5Anode for O2Evolusion with Low Ir Content. J. Phy. Chem.B,2001,105:4623-4628.
    [102] M Morita, C. Iwakura, H.Tamura.The anodic characteristics of manganesedioxide electrodes Prepared by thermal decomposition of manganese nitrate.Electrochimica Aeta,1977.22:325-328.
    [103] M Morita, C. Iwakura,H.Tamura.The anodic characteristics of massivemanganese dioxide electrodes. Electrochimica Aeta.1979.24:357-362.
    [104]林海波,钛基锰氧化物电极的研究,氯碱工业,1988,8:4-8.
    [105]金向军,李晓萍,林海波等.Ru-Ti-Sn/Ti二元氧化物金属阳极的析氧性能,化学与粘合,2003,3:149-150.
    [106] Guohua Chen, Xueming Chen, Po Loek Yue. Electrochemical Behavior ofNovel Ti/IrOx-Sb2O5-SnO2Anodes.J.Phy.Chem.B,2002,106:4364-4369.
    [107] Chiaki Iwakura,Meguru Inai,Tsuyoshi Uemura,Hideo Tamura. The anodicevolution of oxygen and chorine on foreign metal-dopod SnO2filmelectrode. Electrochimica Aeta,1981,26:579-584.
    [108] Ch. Comninellis, G.P Vercesi. Characterization of DSA-type oxygenevolving electrode-choice coating. J. AppI. Electochem,1991,21:335-345.
    [109] B.Correa-Lozano, Ch.Comninellis, A. De Battisti. PhysicochemicalProperties of SnO2–Sb2O5films Prepared by the Spray pyrolysis Technique.J. Electrochem. Soc,1996,143:203-209.
    [110] B.Correa-Lozano, Ch.Comninellis, A. De Battisti. Service life of Ti/SnO2–Sb2O5anodes. J. AppI.Electochem,1997,27:970-974.
    [111] L.Lipp, D.Pletcher. The Preparation and characterization of tin dioxidecoatedtitanium electrodes. Electrochimica Atca,1997,42:1091-1097.
    [112]王纬.钛基β-PbO2电极的新应用,稀有金属与硬质合金,1998,133:12-14.
    [113]Ch. Comninellis. Preparetion of characterization des electrodes du typeTi/PbO2oberflec-surface.J.AppI.Electochem,1982,2:34-37.
    [114]黄永吕.含锡锑氧化物底层的PbO2电极,上海交通人学学报,1992,4:25-33.
    [115]梁镇海.硫酸中钛基二氧化铅阳极研究,稀有金属与工程,2001,30:232-234.
    [116]梁镇海.Ti/SnO2+Sb2O3/PbO2阳极性能的研究,电化学,1995,11:456-460.
    [117]黄永吕,叶慧娟,章燕豪.锡锑中间层在钛基二氧化铅电极中作用机理探讨,上海交通大学学报,1982,4:25-33.
    [118]许学敏,张秋香.析氧体系阳极制备及性能,化学世界,1998,1:26-29.
    [119]于德龙.低析氧过电位PbO2电极的研究,材料研究学报,1995,9:250-254.
    [120] Gilory,D.Stevens. R. The electrode Position of lead dioxide on titanium. J.AppI. EIectochem,1980,10:511-525.
    [121]余逸男.添加剂对铁基PbO2电极制备影响的研究,东华大学学报,2001,27:66-69.
    [122] Larew, Larry A. Application of an electrochemical quartz crystalmicrobalance to a study of Pure and bismush-doped beta-lead dioxide filmelectrode, Jounal of Electrochemistry society.1990,137:3071-3078.
    [123] Yeo In-Hyeong.Electrocatalysis of anodie oxygen transfer reaction. J.Electrochem. Soe,1989,136:1935-1941.
    [124] Mahato.B.K, Tidemnan. W. H. Linear Potential sweep of lead-acid batteryelectrodes containing trace Te, Sb, As, Co and Ni. J. AppI. Electochem,1983,130,11:2139-2143.
    [125] Fred.D, Grilibson Jr.Inert lead dioxide anode.U.S.Patent294579J,1960,7.
    [126] Velichenko, A.B.Electrolsynthesis and Physicochemical Properties ofFe-doped lead dioxide elecrocatalysis. Electrochimica Aeta,2000,45:4341-4350.
    [127]韦国林.PbO2电极制备及其析氧性能考察,上海大学学报,1997,11:302-305.
    [128]邵志冈.钛基二氧化铅平板电极的镀制,电化学,1997,3:319-324.
    [129]冯玉杰.电化学技术在环境工程中的应用,化学工业出版社,2002.
    [130]张招贤.电化学技术在环境工程中的应用,氯碱工业,1996,8:17-23.
    [131]王峰.一种新型PbO2电极的研制,应用化学,2002,19:193-195.
    [132]陈国栋.电沉积PbO2电极的析氧行为,电池,1998,28:160-163.
    [133]乔庆东.钛基二氧化铅电极的制备及其应用,应用化学,2000,17:555-557.
    [134]张招贤,钛基二氧化铅的改进和应用,氯碱工业,1996,8:17-23.
    [135] P. K. Shen and A.C.C. Tseung,Anodic Oxidation of Mathanol on Pt/WO3inAcidic Media. Jounal of Electroehemical society,141:3082-3089.
    [136]张招贤.涂层钛电极的研究和应用[J].稀有金属快报,2004,23(4):1-7.
    [137]张招贤.涂层钛阳极的应用[J].钛工业进展,2004,21(2):41-44.
    [138] HuYi,Hou S.H.Preparation and charaterzation of Sb-doped SnO2thin filmsfrom colloidal precursors[J]. Materials Chemistry and Physics,2004,86:21-25.
    [139] Grimm J.,Bessarabov D.,Maier W.,et al,S0l-gel film-perparation of novelelectrodes for the electrocatalytic oxidation of organic pollutants inwater[J].Desalination,1998,115:295-302.
    [140] Duverneuil P.,Maury F.,Pebere N.,et al,Chemieal vapor deposi-tion ofSnO2coatings on Ti plates for the preparation of electrocatalytic anodes[J].Surface and Coatings Technology,2002,151(52):9-13.
    [141] Raeheva T. M., Critehlow G.W.SnO2thin films prepared by the gol-gelprocess[J].Thin Solid Films,1997,292:299-302.
    [142]张乃东,李宁,彭永臻.电镀烧结烧结法制备Ti/SnO2-Sb2O4电极的研究[J].无机化学学报,2002,18(11):1173-1176.
    [143] Simonsson D.Electrochemistry for cleaner environment[J].Che-micalSoeiety Reviews,1997,26(3):181-190.
    [144]沉繁忠,傅家漠,盛国英等.电催化氧化法降解水中有机物的研究进展[J].中国给水排水,1999,15(3):24-26.
    [145]魏界杰,于秀娟,王东田.钛基氧化物电极的制备及其在水处理中的应用[J].环境保护科学,2002,28(112):10-12.
    [146] Correa-Lozano B., Comninellis CH., Battisti A.De.Electrochemicalproperties of Ti/SnO2-Sb2O5Electrodes prepared by the spray pyrolysistechnique[J].Journal of Applied Electrochemistry,1996,26:683-688.
    [147] Correa-Lozano B., Comninellis CH., Battisti A.De. Service1ife ofTi/SnO2-Sb2O5anodes[J]. Journal of Applied Electroche-mistry,1997,27:970-974.
    [148] Amjoud MB.,Maury F.,Soukane S.,et al.Making of speeific electrodes byCVD[J].Surface and oatings Tenology,1998,100-101:169-172.
    [149] Unuma H.,Tahabatake H.,Watanabe K.,et al.Preparationof SnO2thin filmsby the oxidative-soak-eoating method[J].Journal of Materials SeienceLetters,2002,21:1241-1243.
    [150] Polcaro A.M. Electrochemieal degradation of2-chlorophenol [J].Journal ofApplied Electrochemistry,2000,30:146-151.
    [151] Grimm J.H.,Bessarabov D.G.,SimonU.,et al.Characterization of doped tindioxide anodes prepared by a sol-gel technique and their applieation in anSPE-reaetor[J].Journal of Applied Electrochemistry,2000,30:293-302.
    [152] Zhang Jianrong, Gao Lian.Synthesis and characterization of nanocrysta-lline tin oxide by sol-gel method[J].Journal of Solid State Chemistry,2004,177:1425-1430.
    [153]陈国华,王光信,叶露等.电化学方法应用[M].北京:化学工业出版社,2003,176.
    [154]路长青,张果金,杨文忠.电化学氧化处理废水中有机物技术进展[J].南京化工大学学报,1996,18:117-120.
    [155] Comninellis Ch., Pulgarin C.Electrochemical oxidation of phenol forwastewater treatment using SnO2anodes[J].Jounral of AppliedElectro-chemistry,1993,23:108-112.
    [156] Correa-Lozano B.,Comninellis CH,,Battisti A.De. Preparation SnO2-Sb2O5films by the spray pyrolysis technique[J].Journal of AppliedElectrochemistry,1996,26(1):83-89.
    [157]梁镇海,孙彦平.Ti/SnO2+Sb2O3+MnO2/PbO2阳极的性能研究[J].无机材料学报,2001,16(1):183-187.
    [158]王树勇,张竹锋.含酚水的电化学氧化[J].太原科技,1999,6:34-36.
    [159] Stucki S. Anode performance and application[J].Journal of AppIiedElectrochemistry,1991,21:99-104.
    [160] Zhang Y., Wang L., Yan H. J., Si W. B., Journal of the Chinese Rare EarthSociety,2007,25(6),760-764(张翼,王磊,闫红娟,司文彬.中国稀土学报,2007,25(6),760-764).
    [161] Zhi Q., Lu H. Y., Ren X. B., Huang W. M., Dong Y. J., Lin H. B., ActaPhysico-Chimica Sinica,2009,25(7),1385-1390(智权,陆海彦,任秀彬,黄卫民,董艳杰,林海波.物理化学学报,2009,25(7),1385-1390).
    [162] Zhu F L., Qin R. H., Zhu Y. Q., Journal of Lanzhou University ofTechnolagy,2012,38(1),17-19(朱福良,秦瑞焕,朱玉庆.兰州理工大学学报,2012,38(1),17-19).
    [163] Chen G. H., Yue P. L. J PhyChem B,2002,106(17),4364-4369.
    [164] Liu Y. F., Zhan Y., Qiao Y. Y., Liu M., Wang J., China Science andTechnology Information,2009,7,28-29(刘彦飞,战友,乔艳云,刘明,王静.中国科技信息,2009,7,28-29).
    [165] Liang Z. H., Zhang F. Y., Sun Y. P., Rare Metal Materials and Engineering,2006,35(10),1605(梁镇海,张福元,孙彦平.稀有金属材料与工程,2006,35(10),1605).
    [166] Liang Z. H., Ding Y. B., Sun Y. F., He Z. Y., Rare Metal Materials andEngineering,2010, S1,56-59(梁镇海,丁永波,孙颜发,贺志勇,稀有金属材料与工程,2010, S1,56-59).
    [167] H. B. Beer. Electrodes and Coating there of US. Patent.1972(,3):498-632.
    [168]苗海霞,应用电化学, Ti/SnO2-Sb2O4电极的制备及性能研究,2006,23-24.
    [169] Li S. P., Cao H. L., Hu Z., Chinese Journal of Inorganic Chemistry,2008,24(3),369-374(李善评,曹翰林,胡振.无机化学学报,2008,24(3),369-374).
    [170] Liu M., Wang L., Wu D., Mi R., Quan F. M., Qian J., Journal of JilinUniversity(Earth Science Edition),2006,36,133-137(刘淼,王丽,吴迪,糜仁,全福民,钱进.吉林大学学报(地球科学版),2006,36,133-137).
    [171] Kolb.D.M.Eleetroehemical surface science. Angew. Chem. Int. Edit.2001,40(7):1162-1181.
    [172] Herrero E.,Buller L.J.,AbrunaH.D.Underpotential Deposition at SingleCrystal Surfaees of Au, Pt, Agand Other Materials. hem. ev.,2001,101:1897-1930.
    [173]任秀斌非贵金属氧化物电极的制备及其性能的研究博士论文200939-41.
    [174]张翼,王磊,闫红娟,司文彬钕掺杂Ti基Sn-Sb涂层电极的制备及性能评价中国稀土学报Journal of the Chinese rare earth society2007,25(6):760-764.
    [175]刘峻峰,冯玉杰,孙丽欣,钱正刚.钛基SnO2纳米涂层电催化电极的制备及性能研究.材料科学与工艺.2006,14(2):200-203.
    [176] Wang S. L., Zhang Z., Huang G. Q., Guangdong Pulp&Paper,2003,22(6),45-47(王仕良,张曾,黄干强.造纸科学与技术,2003,22(6),45-47).
    [177]李耀刚,许文林,孙彦平,Ti/SnO2+Sb2O3+MnO2/PbO2阳极的制备及其性能研究,化工冶金, Engineering Chemistry&Metallurgy,1997,18(1):13-17.
    [178] Yang W. H., Wang H. H., Fu F., Rare Metal Materials and Engineering,2010,39(7),1215-1218(杨卫华,王鸿辉,付芳.稀有金属材料与工程,2010,39(7),1215-1218).
    [179]李善评,付敬,胡振,稀土Y改性Ti/Sb2O5-SnO2电催化电极的制备及表征,山东大学学报(理学版)Journal of Shandong University(NaturalScience),2008,43(9):22-26.
    [180]刘春前,环境工程,稀土La掺杂Ti/Sb-SnO2电极电催化氧化对硝基苯酚,2009.
    [181]刘元,环境科学与工程,高效金属氧化物电极制备及处理水中硝基苯酚的研究2010.
    [182]丁海洋,冯玉杰,吕江维,刘峻峰,钛基二氧化锡电极电解过程中羟基自由基检测及电催化机理,分析化学研究报告Chinese Journal ofAnalytical Chemistry2007,35(10):1395-1399.
    [183]任秀斌,物理化学,非贵金属氧化物电极的制备及其性能的研究,2009.
    [184]刘洁,材料物理与化学,掺杂多种氧化物的二氧化锡电极的制备与其性能的研究,2009.
    [185]杨中民,张勤远,姜中宏.重金属氧化物对Er3+掺杂锗碲酸盐玻璃荧光性能的影响[J].硅酸盐学报,2005,33(6):732-735.
    [186]郑冀,刘志勇,窦富起,等.纳米掺杂SnO2的计算研究[J].电工材料,2008(4):9-13.
    [187]申乾宏乔秀清穆成法陈乐生樊先平杨辉.Sn1-xBixO2纳米粉体的制备及其表征电工材料2012,3:3-10.
    [188]雷蕾,材料学, SnO2-ZnO-CuO-Sb2O3电极陶瓷的制备及其性能研究,2007.
    [189]陈野,许维超,段体岗, Ni2+掺杂Ti/SnO2-Sb2O5电极的制备及性能,无机化学学报, Chinese journal of inorganic chemistry2013,29(2):243-248.
    [190]刘春前,环境工程,稀土La掺杂Ti/Sb-SnO2电极电催化氧化对硝基苯酚,2009.
    [191]陈康宁.金属阳极[M],上海:华东师范大学出版社,1989年7月:5-10.
    [192]胡勇等.掺锑二氧化锡纳米棒的制备及表征[J].华东理工大学学报(自然科学版),2005,31(l):115-118.
    [193]梁镇海,化学工程与技术,固溶体中间层钦基氧化物阳极研究,2007
    [194] Zhou M H, Dai Q H, Lei L C, et al, Long Life Modified Lead DioxideAnode for Organie Wstewater Treatment: Eleetroehemical Charaeteristicsand Degradation Mechanism[J].Environ.Sci.Technol.,2005,39:363-370.
    [195]韩卫清.电化学氧化法处理生物难降解有机化工废水的研究[J],南京:南京理工大学环境工程学院.2007.
    [196]周元祥,沈浩,钛基SnO2、Cr2O3、SnO2/Co催化电极的制备和性能比较,环境化学,environmental chemistry,2010,19(6):1027-1031.
    [197] Prasad, Kalakodimi Rajendra, Miura, Norio. Potentiodynamically depositednanostructured manganese dioxide as electrode material for electrochemicalredox supercapacitors[J]. Journal of Power Sources,2004,135(2):354-360.
    [198] R.N.Reddy, R.G.Reddy. Capacitive and textural characteristics ofhydrousmanganese oxide prepared by anodic deposition[J]. Journal ofPower Sources,2003,124(1):330-337.
    [199]倪永乐,孟惠民,孙冬柏,俞宏英,樊自拴,王旭东,SbOx+SnO2中间层对Ti/MnO2阳极性能的影响,材料科学与工程学报,Journal of MaterialsScience&Engineering,2007,25(4):529-532.
    [200]董艳杰,2004Ti/SnO2-Sb/PbO2阳极在电解过程中钝化机制研究.
    [201] Li Z.R., Zhang X. M., Yunnan Chemical Technology,2006,33(3),14-16(李子荣,张雪梅.云南化工,2006,33(3),14-16).
    [202] Li S. P., Fu J., Hu Z., Journal of Shandong University(Natural Science),2008,43(9),22-26(李善评,付敬,胡振,山东大学学报(理学版),2008,43(9),22-26).
    [203] J. M. Hu, H. M. Meng, J. Q. Zhang, C. N. Cao. Degradation mechanism oflong service life Ti/IrO2-TiO2oxide anodes insulphuric acid[J]. CorrosionScience,2002,44(8):1656-1668.
    [204]韩卫清.电化学氧化法处理生物难降解有机化工废水的研究[D],南京理工大学环境工程学院.2007.
    [205] Wang Y D,Wu X H,Li Y F.Mesostructured SnO2as sensing material for gassensors[J]. Solid State Electro,2004,48(5):627-632.
    [206]张建刚,材料科学与工程,不溶性催化电极的制备及其对废水中有机物、菌藻和纤维素类物质的催化降解作用,2010.
    [207]倪永乐,孟惠民,孙冬柏,俞宏英,樊自拴,王旭东, SbOx+SnO2中间层对Ti/MnO2阳极性能的影响,材料科学与工程学报,2007,25(4):539-549.
    [208] Yang W. H., Wang H. H., Fu F., Rare Metal Materials and Engineering,2010,39(7),1215-1218(杨卫华,王鸿辉,付芳.稀有金属材料与工程,2010,39(7),1215-1218).
    [209] Cui Y. H., Feng Y. J., Liu J. F., Journal of Functional Materials,2005,36(2),234-237(崔玉虹,冯玉杰,刘峻峰,功能材料,2005,36(2),234-237).
    [210] Han W. Q., Xue H. M., Qian T. J., Wang L. J., Environmental Science andTechnology,2010,3(6),31-35(韩卫清,薛红民,钱添皎,王连军.环境科技,2010,3(6),31-35).
    [211] Song W. F., Xie G. Y., Lin M. Q., Shanghai Environmental Sciences,2002,21(6),353-355(宋卫锋,谢光炎,林美强.上海环境科学,2002,21(6),353-355).
    [212] Qin N. N., Zha L., Li L. L., Wang B., Technology of Water Treatment,2010,36(12),117-121(秦娜娜,查磊,李磊磊,王斌,水处理技术,2010,36(12),117-121).
    [213] Fang Z. Q., Yang M., Nan J. M., Li W. S., Rare Metal Materials andEngineering,2011,40(9),1638-1642(方战强,杨梅,南俊民,李伟善,稀有金属材料与工程,2011,40(9),1638-1642).
    [214]汪定国,电催化氧化处理生活污水,北京:中国地质大学(北京),2004.
    [215]赵国华,胡惠康,氧化物修饰电极降解有机污染物的电催化特性.中国环境科学,2003,23(4):385-389.
    [216] Wang X. H., Zhang T. M., Tong S. P., Ma C. A., Electrochemistry,2010,16(2),172-176(王勋华,张铁明,童少平,马淳安,电化学,2010,16(2),172-176).
    [217] P. Ca izares, F. Martínez, M. Díaz et al. Electrochemical oxidation ofaqueousphenol wastes using active and nonactive electrodes.
    [218] G. Saracco, L. Solarino, R. Aigotti et al. Electrochemical oxidation oforganic pollutants at low electrolyte concentrations. Electrochim. Acta.2000,46(2-3):373-380.
    [219] D. Fino, C. C. Jara, G. Saracco et al. Deactivation and regeneration of Ptanodesfor the electro-oxidation of phenol. J. Appl. Electrochem.2005,35(4):405-411.
    [220] A. N. Ilichev, G. A. Konin, V. A. Matyshak et al. Formation mechanism ofO2(-)radical anions in the adsorption of NO+O-2and NO2+O-2mixtures onZrO2according to EPR and TPD data. Kinet. Catal.2002,43(2):214-222.
    [221] L. Diez, M. H. Livertoux, A. A. Stark et al. High-performance liquidchromatographic assay of hydroxyl free radical using salicylic acidhydroxylation during in vitro experiments involving thiols. J. Chromatogr.B.2001,763(1-2):185-193.
    [222] A. L. Rose, T. D. Waite. Chemiluminescence of luminol in the presence ofiron(II)and oxygen: Oxidation mechanism and implications for itsanalytical use. Anal.Chem.2001,73(24):5909-5920.
    [223] Y. Z. Xian, M. C. Liu, Q. Cai et al. Preparation of microporous aluminiumanodicoxide film modified Pt nano array electrode and application indirectmeasurement of nitric oxide release from myocardial cells. Analyst.2001,126(6):871-876.
    [224] M. Wettasinghe, F. Shahidi. Antioxidant and free radical-scavengingproperties ofethanolic extracts of defatted borage (Borago officinalis L.)seeds. Food. Chem.1999,67(4):399-414.
    [225] B. Tang, L. Zhang, Y. Geng. Determination of the antioxidant capacity ofdifferent food natural products with a new developed flowinjectionspectrofluorimetry detection hydroxyl radicals. Talanta.2005,65:769-775.
    [226] Liu N., Liu M., Jiao X. Q., Liu X., Leng S., Chen L. K., Chemical ResearchIn Chinese Universities,2011,32,1266-1271(刘南,刘淼,焦昕倩,刘歆,冷粟,陈力可,高等学校化学学报,2011,32,1266-1271).
    [227] G. X. Xu. Rare Earth. Metallurgical Industry Press, Beijing.1995.
    [228] F. M. Minachev. The Application of Rare Earth for Catalyst. SciencePress,Beijing.1987.
    [229] Di W., Miao L., De M. D.. Micro chemical Journal,2007,85,250-256.
    [230] S.Meinero, O.Zerbinati. Oxidative and energetic efficiency of differentelectrochemical oxidation processes for chloroanilines abatement inaqueoussolution. Chemosphere.2006.64(3):386-392.
    [231] D. Pavlov. The lead-acid battery lead dioxide active mass: a gel-crystalsystem with proton and electron conductivity. J. Electrochem. Soc.1992,139:3075-3080.
    [232] D. Pavlov, B. Monahov. Mechanism of the elementary electrochemicalprocesses taking palce during oxygen evolution on the lead dioxideelectrode. J.Electrochem. Soc.1996,143:3616-3629.
    [233] Y. Q. Cong, Z. C. Wu. Electrocatalytic generation of radical interediatesover lead dioxide electrode doped with fluoride. J. Phys. Chem. C.2007,111:3442-3446.
    [234] N.. Popovi, J. A. Cox, D. C. Johnson. Electrocatalytic function of Bi(V)sitesin heavily-doped PbO2-film electrodes applied for anodic detection ofselected sulfur compounds. J. Electroanal. Chem.1998,455:153-160.
    [235] N.. Popovi, J. A. Cox, D. C. Johnson. A mathematical model for anodicoxygen-transfer reactions at Bi(V)-doped PbO2-film electrodes J.Electrochem.Chem.1998,456:203-209.
    [236] Comninellis C, Pulgarin C. Anodic oxidation of phenol for wastewatertreatment[J]. Applied Electrochemistry,1991,21(8):703-705.
    [237]冀小元,云桂春.H2O2-Fe2+/TiO2-H2SO4;体系处理有机溶剂的研究.上海环境科学.1996,15(8)34-36.
    [238] Comninellis Ch et al.Electrochemical oxidation of phenol for wastewatertreatmentusing SnO2anodes.J Appl Electrochem.1993,23:108-112.
    [239]周明华,戴启洲,等.新型二氧化铅阳极电催化降解有机污染物的特性研究.物理化学学报.2004,20(8):871-876.
    [240]Scherer M M, Johnson K M, Westall J C. Envirom. Sci. Technol.,2001,35,2804-2811.
    [241] Xue X. X., Kang Y. H., Li S. X., Kang Z. S., Li W., Yang H., Journal of theChinese Rare Earth Society,2008,26,411-415(薛向欣,康艳红,李述贤,康泽双,李维,杨合,中国稀土学报,2008,26,411-415).
    [242] Liu X. B., Lin H. B., Zhang H. B., The13th National Conference onElectrochemistry Abstracts2005,11,471-472(刘晓波,林海波,张恒彬,第十三次全国电化学会议论文摘要集.2005,11,471-472).
    [243]李善评,曹翰林,胡振.稀土La掺杂Ti/Sb-SnO2电极的制备及性能研究,无机化学学报2008,24(3):369-374.
    [244] Li S. P., Fu J., Hu Z., Journal of Shandong University(Natural Science),2008,43(9),22-26(李善评,付敬,胡振,山东大学学报(理学版),2008,43(9),22-26).
    [245] Ardizzone S, Fregonara G, Trasatti S." Inner" and " outer" active surface ofRuORelectrodes, Electrochim Acta,1990,35(1):263-267.
    [246] L.A.Da Silva, V.A.Alves, M.A.P.Da Silva, S.Trasatti, and J. F.C. Boodts,Oxygen evolution in acid solution on IrO2+TiO2ceramic films. A study byimpedance,voltammetry and SEM, Electrochim.Acta,1997,42:271.
    [247]孙家寿,张泽强,沈静等.累托石层孔材料在废水处理中的应用[J].武汉化工学院学报.2003,25(1):43-45.
    [248] Comninellis C., Pulgarin C. Electrochemical oxidation of phenol forwastewater treatment using SnO2anodes. J.App.l Electrochem,1993,23:108-112.
    [249]卢强,安立超,王志良,钟秦,夏文文,含中间层的DSA电极电催化氧化硝基苯废水的研究,环境工程学报,2009,3(11):1989-1993.
    [250]吴迪,羟基自由基在点催化氧化体系中的形成规律及其在废水处理中的应用研究,长春,吉林大学,2007.
    [251]朱埗瑶,赵振国,界面化学基础[M],化学工业出版社,1996年9月第一版.
    [252] Q. W., Luo G. A.. Ana1. Claim. Acta[J],2000,379:134-137.
    [253]邹启光,周恭明.环境保护,2002,7:20-21.
    [254] Igami M, Nakanishi T, Ando T. Physica B,2000,284(2):1746-1747.
    [255] Ming Z, He D W, Zhang X Y, et al. Carbon,1997,35(10):1671-1673.
    [256] Vix-Guterl C, Dentzer J, Ehrburger P, et al. Carbon,2001,39(2):318-320.
    [257] Dai K, Shi L Y, Fang J H, et al. Materials Letters,2005,59:1989-1992.
    [258]褚有群,马淳安,朱英红.纳米碳管电极上氧的电催化还原[J].物理化学学报,2004,20(3):331-335.
    [259]王淑敏,李照山,屈建莹.多壁碳纳米管修饰玻碳电极伏安法测定氯霉素[J].化学研究,2007,18(3):83-86.
    [260]徐吉勇.碳纳米管膜修饰电极的电化学行为和应用研究[D].无锡:江南大学分析化学学院:17-19.
    [261]孙淑倩,碳纳米管修饰电极对生化出水的降解研究,上海,交通大学,2011.
    [262]孙元喜,郑丽英,肖小燕,周谷珍,碳纳米管修饰石墨电极的制备及应用[J],广州化工,2008,36(6):34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700