基于特征保持的网格模型处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三维硬件扫描技术和软件建模技术的不断发展,三维几何模型已经越来越常见,成为一种新的数字媒体形式,在许多领域得到广泛应用,例如:计算机动画、游戏,工业和机械设计、计算机仿真、数据可视化、医疗诊断等。在过去十几年里,网格模型的建模、渲染、编辑等技术取得重要发展。在网格处理中,模型显著特征的获取是一个基础问题。显著特征是指网格模型中相对比较重要的区域,该区域包含了独特的、重要的信息,它对模型的后期处理具有重要的指导作用。传统的方法主要基于法向、曲率这样的纯几何属性来识别网格的特征,但很多情况下纯几何属性并不能准确找到网格的显著特征。例如传统方法一般把高曲率区域当作是重要特征,但是大量重复的细节特征即使具有较高曲率也容易被人的视觉系统抑制,反而被高曲率包围的平坦区域更容易引起观察者的注意。
     网格显著性(mesh saliency)是一种新的基于人的视觉特点来寻找模型中显著特征的方法。研究人员已经对图像的显著性进行了大量研究,并把它广泛应用于图像目标识别、图像检索、图像分割以及图像编辑等领域。网格模型因为更复杂,包含顶点位置、拓扑、法向、曲率、贴图等信息,对其进行显著性计算更为困难,时间复杂度也更高。因此针对网格显著性的研究比较少,其应用也较少。本文针对网格显著性的计算以及其在模型简化、模型缩放等技术中的应用展开深入研究,具体内容包括:
     (1)现有的网格显著性计算方法通常只考虑局部显著性,本文提出一种同时考虑顶点的局部显著性和全局显著性的网格显著性计算方法。该算法以网格中顶点的离散平均曲率为基础属性来计算网格的显著性,先在不同的邻域范围内对顶点的曲率进行高斯卷积,然后根据人类视觉的中央一周围(center-surround)机制,使用多尺度高斯差分算子(Difference of Gaussian)计算顶点的局部显著性。为提高全局显著性的计算效率,该算法依据高斯卷积后的曲率对顶点进行简单聚类,然后以聚类为单位计算每类顶点同所有其它顶点的曲率差作为该类顶点的全局显著性。最后,把局部显著性和全局显著性进行加权合并,得到网格模型的显著性图。
     (2)网格模型的简化是指在保持模型重要特征的基础上尽可能地减少模型中几何元素的数量。本文把网格显著性计算的结果应用于网格模型的简化,提出一种新的基于边折叠的模型简化算法。在计算折叠边的折叠代价时,同时考虑模型的几何特征和视觉显著性。视觉显著性的值作为权重使显著边获得更大的折叠代价,因此模型的重要视觉特征在简化过程中得到了更好的保护,生成的简化模型具有更好的视觉效果。
     (3)网格的非均匀缩放是指在保持网格敏感特征不变的基础上,沿不同方向调整模型的大小。同一个网格模型在沿不同的方向缩放时表现出不同的敏感性,现有的网格显著性因为没有考虑方向因素,无法直接应用于网格缩放。本文提出一种新的适用于网格缩放的显著性计算方法。首先给出一种区域描述因子,反应了该区域对某一缩放方向的敏感程度,然后基于该描述因子计算区域同它的邻域的对比度,以此作为区域的显著性。为了避免被模型上的细小特征误导,采用了一种层次式的计算方法。对网格模型构造一个层次式分割,在粗约、中等和精细三个不同的分割层次上计算网格的显著性,并把各层次的计算结果用非线性的方法合成到一起。基于模型的显著性图,提出一种网格的非均匀缩放方法,把模型的每条边看做一个弹簧,通过边的伸缩来缩放模型。算法通过显著性控制每条边的缩放比例,并引入一个Laplacian项来防止模型产生严重形变。
     (4)以往的网格缩放算法通常只能产生具有较好视觉效果的缩放模型,无法精确保持模型的重要特征。本文提出一种网格模型的带约束快速缩放算法,能够对模型进行全局尺寸调整,同时精确保持局部细节。该算法把待缩放模型置于一个二次B样条体中,通过调整B样条体的控制点间接实现模型的缩放。为了实现带约束缩放,B样条体的控制点被分成三类分别进行处理。其中,和模型关键特征相关的控制点引入硬约束,从而实现模型特征的精确保持,其它控制点的分布则通过使目标能量最小的优化方法求得,使模型的变形尽量均匀分布到全局。
With the development of3D scanner and modeling technology,3D geometry mod-els are becoming more and more popular which are widely used as an emerging type of digital media in computer animation, computer game, industrial and mechanical de-sign, computer simulation,3D visualization, medical diagnosis and so on. In the past decades, we have witnessed significant advances in the modeling, rendering and edit-ing of3D meshes. In the mesh processing, acquirement of salient features is a basic task. Salient features are important regions which include distinctive information and can guide the following mesh processing. The previous methods focus on using purely geometric measures such as normal and curvature to find the features. But a purely geometric measure may fail to find correct regions in many cases. For example, region-s with high curvature are usually regarded as important ones by traditional methods. However, densely repeated details, even if high in curvature, are suppressed by the hu-man visual system. A flat region in the middle of repeated high-curvature bumps will be perceived to be important.
     Mesh saliency is a new perception-inspired metric for regional importance. The image saliency has been studied extensively, and used widely in object recognition, image retrieval, image segmentation and editing. However, there are few studies on mesh saliency. The computation of mesh saliency is a challenging job, because the mesh models have more complex information than images such as vertex, topology, normal, curvature, texture and so on. In this thesis, we have performed an indepth study on mesh saliency, and discussed its application in mesh simplification and mesh resizing. The main contributions are as follows:
     (1) In the previous methods, only local contrast is used to compute the mesh salien-cy. We propose a new method for saliency computation, which considers both local contrast and global rarity. According to the center-surround mechanism of human vi-sual system, the method performs a Gauss convolution on mean curvature of mesh, and uses multi-scale DoG (Difference of Gaussian) operator to compute the local contrast. To improve the computational efficiency, the method applies a simple clustering method on the mesh vertices based on Gaussian filtered curvature, and compute the global rarity of every vertex cluster to other vertices. Local contrast and global rarity are combined to get the final mesh saliency map.
     (2) Mesh simplification is to reduce the geometry elements of mesh, while trying to preserve its important features. We apply the saliency map to the mesh simplification, and propose a new simplification method based on edge collapse. When computing the collapsing cost, the method considers both geometric measure and visual saliency value. The saliency value works as a weight, and makes the salient edges have bigger collapsing cost. The method preserves the salient features well in the processing of simplification, and gives more visually appealing results.
     (3) Non-homogeneously mesh scaling will resize the model in different directions, and leave the vulnerable features unchanged. Existing mesh saliency can not be used in mesh resizing directly because of the neglect of resizing direction. We propose a new mesh saliency that is suitable for mesh resizing. Firstly, we bring up a region descriptor based on its vulnerability to a resizing direction, and use this descriptor to compute the region's saliency based on its contrast to neighboring regions. We build hierarchical coarse-to-fine segmentations of the input mesh, and evaluate the saliency value on different levels of segmentations. Finally these saliency values are integrated into one saliency map after applying non-linear suppression. Equipped with the saliency map, a framework for non-homogeneous mesh resizing is presented. We regard every edge as a spring, and scale the mesh by stretching the edge. We also add an Laplacian item to the energy function to avoid dramatic shape changes.
     (4) The previous mesh resizing approaches usually create models with no visible artifacts, while can not precisely preserve the important features in an engineering sense. We present a novel approach for non-homogeneous mesh resizing, which can precisely preserve mesh features. The resizing is achieved by warping a B-spline volumetric grid over the mesh. Control points of B-spline volume are divided into three categories, and processed separately. The control points related to the key features are hard constrained to precisely preserve the features. And the other control points are scaled by a quadratic optimization to distribute the distortion globally.
引文
[1]James Gain, Dominique Bechmann. A survey of spatial deformation from a user-centered perspective[J]. ACM Transactions on Graphics (TOG),2008,27(4):107.
    [2]Shi-Min Hu, Hui Zhang, Chiew-Lan Tai, Jia-Guang Sun. Direct manipulation of ffd:efficient explicit solutions and decomposible multiple point constraints [J]. The Visual Computer,2001,17(6):370-379.
    [3]Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, Tom Sanocki. Harmonic coordinates for character articulation[J]. ACM Transactions on Graphics (TOG), 2007,26(3):71.
    [4]Tao Ju, Scott Schaefer, Joe Warren. Mean value coordinates for closed triangular meshes[J]. ACM Transactions on Graphics (TOG),2005,24(3):561-566.
    [5]Tao Ju, Qian-Yi Zhou, Michiel van de Panne, Daniel Cohen-Or, Ulrich Neu-mann. Reusable skinning templates using cage-based deformations [J]. ACM Transactions on Graphics (TOG),2008,27(5):122.
    [6]Yaron Lipman, David Levin, Daniel Cohen-Or. Green coordinates [J]. ACM Transactions on Graphics (TOG),2008,27(3):78.
    [7]Laurent Itti, Christof Koch, Ernst Niebur, et al. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on pattern analysis and machine intelligence,1998,20(11):1254-1259.
    [8]Xiaodi Hou, Liqing Zhang. Saliency detection:A spectral residual approach. In Proceedings of CVPR. IEEE,2007,1-8.
    [9]Tao Chen, Ming-Ming Cheng, Ping Tan, Ariel Shamir, Shi-Min Hu. S-ketch2photo:internet image montage[J]. ACM Transactions on Graphics (TOG), 2009,28(5):124.
    [10]Ueli Rutishauser, Dirk Walther, Christof Koch, Pietro Perona. Is bottom-up at-tention useful for object recognition? In Proceedings of CVPR. IEEE,2004, volume 2,37-44.
    [11]Byoung Chul Ko, Jae-Yeal Nam. Object-of-interest image segmentation based on human attention and semantic region clustering[J]. JOS A A,2006,23(10):2462-2470.
    [12]Jun-Yan Zhu, Jiajun Wu, Yichen Wei, Eric Chang, Zhuowen Tu. Unsupervised object class discovery via saliency-guided multiple class learning. In Proceedings of CVPR. IEEE,2012,3218-3225.
    [13]Yu-Fei Ma, Lie Lu, Hong-Jiang Zhang, Mingjing Li. A user attention model for video summarization. In Proceedings of the tenth international conference on Multimedia. ACM,2002,533-542.
    [14]Yu-Fei Ma, Hong-Jiang Zhang. A model of motion attention for video skimming. In Proceedings of International Conference on Image Processing. IEEE,2002, volume 1,129-132.
    [15]Charilaos Christopoulos, Athanassios Skodras, Touradj Ebrahimi. The jpeg2000 still image coding system:an overview[J]. Consumer Electronics, IEEE Trans-actions on,2000,46(4):1103-1127.
    [16]Shai Avidan, Ariel Shamir. Seam carving for content-aware image resizing[J]. ACM Transactions on graphics (TOG),2007,26(3):10.
    [17]Michael Rubinstein, Ariel Shamir, Shai Avidan. Improved seam carving for video retargeting[J]. ACM transactions on graphics (TOG),2008,27(3):16.
    [18]Yael Pritch, Eitam Kav-Venaki, Shmuel Peleg. Shift-map image editing. In Proceedings of 12th International Conference on Computer Vision. IEEE,2009, 151-158.
    [19]Yu-Fei Ma, Hong-Jiang Zhang. Contrast-based image attention analysis by us-ing fuzzy growing. In Proceedings of the eleventh international conference on Multimedia. ACM,2003,374-381.
    [20]Yu-Shuen Wang, Chiew-Lan Tai, Olga Sorkine, Tong-Yee Lee. Optimized scale-and-stretch for image resizing[J]. ACM Transactions on Graphics (TOG),2008, 27(5):118.
    [21]Guo-Xin Zhang, Ming-Ming Cheng, Shi-Min Hu, Ralph R Martin. A shape-preserving approach to image resizing[J]. Computer Graphics Forum,2009, 28(7):1897-1906.
    [22]Huisi Wu, Yu-Shuen Wang, Kun-Chuan Feng, Tien-Tsin Wong, Tong-Yee Lee, Pheng-Ann Heng. Resizing by symmetry-summarization[J]. ACM Transactions on Graphics (TOG),2010,29(6):159.
    [23]Meng Ding, Ruo-Feng Tong. Content-aware copying and pasting in images[J]. The Visual Computer,2010,26(6-8):721-729.
    [24]Radhakrishna Achanta, Sheila Hemami, Francisco Estrada, Sabine Susstrunk. Frequency-tuned salient region detection. In Proceedings of CVPR. IEEE,2009, 1597-1604.
    [25]Anne M Treisman, Garry Gelade. A feature-integration theory of attention[J]. Cognitive psychology,1980,12(1):97-136.
    [26]Christof Koch, Shimon Ullman. Shifts in selective visual attention:towards the underlying neural circuitry. In Matters of Intelligence, Springer,1987,115-141.
    [27]Stas Goferman, Lihi Zelnik-Manor, Ayellet Tal. Context-aware saliency detec-tion [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2012, 34(10):1915-1926.
    [28]Chenlei Guo, Qi Ma, Liming Zhang. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In Proceedings of CVPR. IEEE, 2008,1-8.
    [29]Radhakrishna Achanta, Francisco Estrada, Patricia Wils, Sabine Susstrunk. Salient region detection and segmentation. In Computer Vision Systems, Springer,2008,66-75.
    [30]JG Robson. Spatial and temporal contrast sensitivity functions of the visual sys-tem[J]. Journal of the Optical Society of America,1966,56(8):1141-1142.
    [31]Yun Zhai, Mubarak Shah. Visual attention detection in video sequences using spatiotemporal cues. In Proceedings of the 14th annualinternational conference on Multimedia. ACM,2006,815-824.
    [32]Ming-Ming Cheng, Guo-Xin Zhang, Niloy J Mitra, Xiaolei Huang, Shi-Min Hu. Global contrast based salient region detection. In Proceedings of CVPR. IEEE, 2011,409-416.
    [33]Tie Liu, Zejian Yuan, Jian Sun, Jingdong Wang, Nanning Zheng, Xiaoou Tang, Heung-Yeung Shum. Learning to detect a salient object[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2011,33(2):353-367.
    [34]Eleonora Vig, Michael Dorr, Thomas Martinetz, Erhardt Barth. Intrinsic dimen-sionality predicts the saliency of natural dynamic scenes [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2012,34(6):1080-1091.
    [35]Chang Ha Lee, Amitabh Varshney, David W Jacobs. Mesh saliency[J]. ACM Transactions on Graphics (TOG),2005,24(3):659-666.
    [36]Miquel Feixas, Mateu Sbert, Francisco Gonzalez. A unified information-theoretic framework for viewpoint selection and mesh saliency[J]. ACM Trans-actions on Applied Perception (TAP),2009,6(1):1.
    [37]Yu-Shen Liu, Min Liu, Daisuke Kihara, Karthik Ramani. Salient critical points for meshes. In Proceedings of symposium on Solid and physical modeling. ACM, 2007,277-282.
    [38]Ran Gal, Daniel Cohen-Or. Salient geometric features for partial shape matching and similarity [J]. ACM Transactions on Graphics (TOG),2006,25(1):130-150.
    [39]Andre Maximo, Robert Patro, Amitabh Varshney, R Farias. A robust and ro-tationally invariant local surface descriptor with applications to non-local mesh processing[J]. Graphical Models,2011,73(5):231-242.
    [40]Jinliang Wu, Xiaoyong Shen, Wei Zhu, Ligang Liu. Mesh saliency with global rarity[J]. Graphical Models,2013,75(5):255-264.
    [41]Youngmin Kim, Amitabh Varshney. Saliency-guided enhancement for volume visualization[J]. Visualization and Computer Graphics, IEEE Transactions on, 2006,12(5):925-932.
    [42]Youngmin Kim, Amitabh Varshney, David W Jacobs, Francois Guimbretiere. Mesh saliency and human eye fixations [J]. ACM Transactions on Applied Per-ception (TAP),2010,7(2):12.
    [43]Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lu-cas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg, et al. The digital michelangelo project:3d scanning of large statues. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,2000,131-144.
    [44]William J Schroeder, Jonathan A Zarge, William E Lorensen. Decimation of triangle meshes[J]. ACM Siggraph Computer Graphics,1992,26(2):65-70.
    [45]Andrea Ciampalini, Paolo Cignoni, Claudio Montani, Roberto Scopigno. Mul-tiresolution decimation based on global error[J]. The visual computer,1997, 13(5):228-246.
    [46]潘志庚,马小虎,石教英.虚拟环境中多细节层次模型自动生成算法[J].软件学报,1996,7(9):526-531.
    [47]Zoe J Wood, Hugues Hoppe, Mathieu Desbrun, Peter Shroder. Removing excess topology from isosurfaces[J]. ACM Transactions on graphics,2004,23(2):190-208.
    [48]Jarek Rossignac, Paul Borrel. Multi-resolution 3D approximations for rendering complex scenes[M]. Springer,1993.
    [49]Kok-Lim Low, Tiow-Seng Tan. Model simplification using vertex-clustering. In Proceedings of the 1997 symposium on Interactive 3D graphics. ACM,1997, 75-ff.
    [50]David Luebke, Carl Erikson. View-dependent simplification of arbitrary polyg-onal environments. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1997,199-208.
    [51]Tamy Boubekeur, Marc Alexa. Mesh simplification by stochastic sampling and topological clustering[J]. Computers & Graphics,2009,33(3):241-249.
    [52]Thomas Gerstner, Renato Pajarola. Topology preserving and controlled topology simplifying multiresolution isosurface extraction. In Proceedings of the confer-ence on Visualization'00. IEEE Computer Society Press,2000,259-266.
    [53]Takayuki Kanaya, Yuji Teshima, Ken-ichi Kobori, Koji Nishio. A topology-preserving polygonal simplification using vertex clustering. In Proceedings of the 3rd international conference on Computer graphics and interactive techniques in Australasia and South East Asia. ACM,2005,117-120.
    [54]Remi Ronfard, Jarek Rossignac. Full-range approximation of triangulated poly-hedra.[J]. Computer Graphics Forum,1996,15(3):67-76.
    [55]Michael Garland, Paul S Heckbert. Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,1997, 209-216.
    [56]Peter Lindstrom, Greg Turk. Fast and memory efficient polygonal simplification. In Visualization'98. Proceedings. IEEE,1998,279-286.
    [57]陶志良,潘志庚,石教英.基于能量评估的网格简化算法及其应用[J].软件学报,1997,8(12):881-888.
    [58]Jonathan Cohen, Marc Olano, Dinesh Manocha. Appearance-preserving simpli-fication. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM,1998,115-122.
    [59]Michael Garland, Paul S Heckbert. Simplifying surfaces with color and texture using quadric error metrics. In Proceedings of the conference on Visualization. IEEE Computer Society Press,1998,263-269.
    [60]Sun-Jeong Kim, Chang-Hun Kim, David Levin. Surface simplification using a discrete curvature norm[J]. Computers & Graphics,2002,26(5):657-663.
    [61]Bernd Hamann. A data reduction scheme for triangulated surfaces[J]. Computer aided geometric design,1994,11 (2):197-214.
    [62]Tran S Gieng, Bernd Hamann, Kenneth I Joy, Gregory L Schussman, Issac J Trotts. Smooth hierarchical surface triangulations. In Proceedings of the 8th conference on Visualization'97. IEEE Computer Society Press,1997,379-386.
    [63]Veysi Isler, Rynson WH Lau, WH Lau, Mark Green. Real-time multi-resolution modeling for complex virtual environments. In Symposium on virtual reality software and technology. Citeseer,1996.
    [64]周昆,潘志庚.基于三角形折叠的网格简化算法[J].计算机学报,1998,21(6):506-513.
    [65]周元峰,张彩明,贺平.体积平方度量下的特征保持网格简化方法[J][J].计算机学报,2009,32(2):203-212.
    [66]Peter Lindstrom, David Koller, William Ribarsky, Larry F Hodges, Nick Faust, Gregory A Turner. Real-time, continuous level of detail rendering of height field-s. In Proceedings of the 23rd annual conference on Computer graphics and inter-active techniques. ACM,1996,109-118.
    [67]Mark Duchaineau, Murray Wolinsky, David E Sigeti, Mark C Miller, Charles Aldrich, Mark B Mineev-Weinstein. Roaming terrain:real-time optimally adapt-ing meshes. In Proceedings of the 8th Conference on Visualization. IEEE Com-puter Society Press,1997,81-88.
    [68]Hugues Hoppe. Smooth view-dependent level-of-detail control and its applica-tion to terrain rendering. In Proceedings of Visualization. IEEE,1998,35-42.
    [69]Peter Lindstrom, Valerio Pascucci. Visualization of large terrains made easy. In Proceedings of Visualization. IEEE,2001,363-574.
    [70]Wolfgang Heidrich, Philipp Slusallek, Hans-Peter Seidel. Real-time generation of continuous levels of detail for height fields. In Proceedings of WSCG'98. 1998,315-322.
    [71]David Cline, Parris K. Egbert. Terrain decimation through quadtree morphing[J]. Visualization and Computer Graphics, IEEE Transactions on,2001,7(1):62-69.
    [72]Renato Pajarola. Large scale terrain visualization using the restricted quadtree triangulation. In Visualization'98. Proceedings. IEEE,1998,19-26.
    [73]Thomas W Sederberg, Scott R Parry. Free-form deformation of solid geometric models[J]. ACM Siggraph Computer Graphics,1986,20(4):151-160.
    [74]Ron MacCracken, Kenneth I Joy. Free-form deformations with lattices of ar-bitrary topology. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM,1996,181-188.
    [75]Alan H Barr. Global and local deformations of solid primitives[J]. ACM Siggraph Computer Graphics,1984,18(3):21-30.
    [76]Karan Singh, Eugene Fiume. Wires:a geometric deformation technique. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM,1998,405-414.
    [77]Yu-Kuang Chang, Alyn P Rockwood. A generalized de casteljau approach to 3d free-form deformation. In Proceedings of the 21st annual conference on Com-puter graphics and interactive techniques. ACM,1994,257-260.
    [78]Francis Lazarus, Sabine Coquillart, Pierre Jancene. Axial deformations:an intu-itive deformation technique[J]. Computer-Aided Design,1994,26(8):607-613.
    [79]William M Hsu, John F Hughes, Henry Kaufman. Direct manipulation of free-form deformations [J]. ACM Siggraph Computer Graphics,1992,26(2):177-184.
    [80]Yaron Lipman, Johannes Kopf, Daniel Cohen-Or, David Levin. Gpu-assisted positive mean value coordinates for mesh deformations [J]. Symposium on Ge-ometry Processing,2007,257:117-123.
    [81]Igor Guskov, Wim Sweldens, Peter Schroder.. Multiresolution signal processing for meshes. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,1999, 325-334.
    [82]Leif Kobbelt, Swen Campagna, Jens Vorsatz, Hans-Peter Seidel. Interactive multi-resolution modeling on arbitrary meshes. In Proceedings of the 25th an-nual conference on Computer graphics and interactive techniques. ACM,1998, 105-114.
    [83]Denis Zorin, Peter Schroder, Wim Sweldens. Interactive multiresolution mesh editing. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,1997, 259-268.
    [84]Scott Kircher, Michael Garland. Editing arbitrarily deforming surface animation-s[J]. ACM Transactions on Graphics (TOG),2006,25(3):1098-1107.
    [85]Mario Botsch, Leif Kobbelt. An intuitive framework for real-time freeform mod-eling[J]. ACM Transactions on Graphics (TOG),2004,23(3):630-634.
    [86]Leif P Kobbelt, Thilo Bareuther, Hans-Peter Seidel. Multiresolution shape de-formations for meshes with dynamic vertex connectivity[J]. Computer Graphics Forum,2000,19(3):249-260.
    [87]Marc Alexa, Daniel Cohen-Or, David Levin. As-rigid-as-possible shape inter-polation. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,2000, 157-164.
    [88]Takeo Igarashi, Tomer Moscovich, John F Hughes. As-rigid-as-possible shape manipulation [J]. ACM Transactions on Graphics (TOG),2005,24(3):1134-1141.
    [89]Scott Schaefer, Travis McPhail, Joe Warren. Image deformation using moving least squares[J]. ACM Transactions on Graphics (TOG),2006,25(3):533-540.
    [90]Olga Sorkine, Marc Alexa. As-rigid-as-possible surface modeling. In Sympo-sium on Geometry processing.2007, volume 4.
    [91]Marc Alexa. Differential coordinates for local mesh morphing and deforma-tion[J]. The Visual Computer,2003,19(2):105-114.
    [92]Yaron Lipman, Olga Sorkine, Daniel Cohen-Or, David Levin, Christian Rossi, H-P Seidel. Differential coordinates for interactive mesh editing. In Proceedings of Shape Modeling Applications. IEEE,2004,181-190.
    [93]Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rossl, H-P Seidel. Laplacian surface editing. In Proceedings of the 2004 Eurographic-s/ACM SIGGRAPH symposium on Geometry processing. ACM,2004,175-184.
    [94]Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, Heung-Yeung Shum. Mesh editing with poisson-based gradient field manipulation [J]. ACM Transactions on Graphics (TOG),2004,23(3):644-651.
    [95]Huai-Yu Wu, Chunhong Pan, Qing Yang, Jia Pan, Songde Ma. Mean-value lapla-cian coordinates for triangular meshes. In Computer Graphics, Imaging and Vi-sualisation,2006 International Conference on. IEEE,2006,156-160.
    [96]OK-C Au, Chiew-Lan Tai, Ligang Liu, Hongbo Fu. Dual laplacian editing for meshes[J]. Visualization and Computer Graphics, IEEE Transactions on,2006, 12(3):386-395.
    [97]Alla Sheffer, Vladislav Kraevoy. Pyramid coordinates for morphing and defor-mation. In 3D Data Processing, Visualization and Transmission,2004.3DPVT 2004. Proceedings.2nd International Symposium on. IEEE,2004,68-75.
    [98]Yaron Lipman, Olga Sorkine, David Levin, Daniel Cohen-Or. Linear rotation-invariant coordinates for meshes[J]. ACM Transactions on Graphics (TOG), 2005,24(3):479-487.
    [99]Vladislav Kraevoy, Alla Sheffer. Mean-value geometry encoding[J]. Internation-al Journal of Shape Modeling,2006,12(1):29-46.
    [100]Hongxin Zhang, Dong Xu, Hujun Bao. Material-aware differential mesh defor-mation using sketching interface[J]. The Visual Computer,2008,24(2):85-93.
    [101]Tiberiu Popa, Dan Julius, Alla Sheffer. Material-aware mesh deformations. In Shape Modeling and Applications,2006. SMI 2006. IEEE International Confer-ence on. IEEE,2006,22-22.
    [102]Wenwu Yang, Jieqing Feng, Xiaogang Jin. Shape deformation with tunable stiff-ness[J]. The Visual Computer,2008,24(7-9):495-503.
    [103]Hiroshi Masuda, Yasuhiro Yoshioka, Yoshiyuki Furukawa. Preserving form features in interactive mesh deformation[J]. Computer-Aided Design,2007, 39(5):361-368.
    [104]Pifu Zhang, Caiming Zhang, Fuhua Cheng. Constrained shape scaling of trimmed nurbs surfaces. In Proceedings of 1999 ASME Design Theory and Methodology Conference.1999.
    [105]Caiming Zhang, Pifu Zhang, Fuhua Cheng. Constrained scaling of trimmed nurb-s surfaces based on fix-and-stretch approach[J]. Computer-Aided Design,2001, 33(1):103-112.
    [106]伯彭波,张彩明.带约束的曲面放缩[J].软件学报,2003,14(10):1806-1812.
    [107]Vladislav Kraevoy, Alla Sheffer, Ariel Shamir, Daniel Cohen-Or. Non-homogeneous resizing of complex models[J]. ACM Transactions on Graphics (TOG),2008,27(5):111.
    [108]Natasha Gelfand, Leonidas J Guibas. Shape segmentation using local slippage analysis. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH sympo-sium on Geometry processing. ACM,2004,214-223.
    [109]Kun-Peng Wang, Cai-Ming Zhang. Content-aware model resizing based on sur-face deformation [J]. Computers & Graphics,2009,33(3):433-438.
    [110]何军,张彩明.保持特征的三维网格模型尺寸调整[J].计算机学报,2009,1:32.
    [111]Ran Gal, Olga Sorkine, Niloy J Mitra, Daniel Cohen-Or. iwires:an analyze-and-edit approach to shape manipulation[J]. ACM Transactions on Graphics (TOG), 2009,28(3):33.
    [112]Youyi Zheng, Hongbo Fu, Daniel Cohen-Or, Oscar Kin-Chung Au, Chiew-Lan Tai. Component-wise controllers for structure-preserving shape manipulation [J]. Computer Graphics Forum,2011,30(2):563-572.
    [113]Dominik Alexander Klein, Simone Frintrop. Center-surround divergence of fea-ture statistics for salient object detection. In Computer Vision (ICCV),2011 IEEE International Conference on. IEEE,2011,2214-2219.
    [114]VA Casagrande, TT Norton. Lateral geniculate nucleus:a review of its physiol-ogy and function[J]. The neural basis of visual function,1991,4:41-84.
    [115]Robert W Rodieck. Quantitative analysis of cat retinal ganglion cell response to visual stimuli[J]. Vision research,1965,5(12):583-601.
    [116]Holger Winnemoller. Xdog:Advanced image stylization with extended difference-of-gaussians. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering. ACM,2011,147-156.
    [117]David G Lowe. Object recognition from local scale-invariant features. In Com-puter vision,1999. The proceedings of the seventh IEEE international conference on. Ieee,1999, volume 2,1150-1157.
    [118]David G Lowe. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision,2004,60(2):91-110.
    [119]Wolfgang Einhauser, Peter Konig. Does luminance-contrast contribute to a saliency map for overt visual attention?[J]. European Journal of Neuroscience, 2003,17(5):1089-1097.
    [120]Mark Meyer, Mathieu Desbrun, Peter Schroder, Alan H Barr. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and mathematics Ⅲ, Springer,2003,35-57.
    [121]Gabriel Taubin. Estimating the tensor of curvature of a surface from a polyhe-dral approximation. In Computer Vision,1995. Proceedings., Fifth International Conference on. IEEE,1995,902-907.
    [122]Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Levy, Mathieu Des-brun. Anisotropic polygonal remeshing[J]. ACM Transactions on Graphics (TOG),2003,22(3):485-493.
    [123]David Cohen-Steiner, Jean-Marie Morvan. Restricted delaunay triangulations and normal cycle. In Proceedings of the nineteenth annual symposium on Com-putational geometry. ACM,2003,312-321.
    [124]Jeremy M Wolfe. Guided search 2.0 a revised model of visual search[J]. Psy-chonomic bulletin & review,1994,1(2):202-238.
    [125]Herbert Aron David. The method of paired comparisons[M], volume 12. DTIC Document,1963.
    [126]Qiong Yan, Li Xu, Jianping Shi, Jiaya Jia. Hierarchical saliency detection. In Computer Vision and Pattern Recognition (CVPR),2013 IEEE Conference on. IEEE,2013,1155-1162.
    [127]Marco Attene, Bianca Falcidieno, Michela Spagnuolo. Hierarchical mesh seg-mentation based on fitting primitives[J]. The Visual Computer,2006,22(3):181-193.
    [128]Michael Garland, Andrew Willmott, Paul S Heckbert. Hierarchical face cluster-ing on polygonal surfaces. In Proceedings of the 2001 symposium on Interactive 3D graphics. ACM,2001,49-58.
    [129]George Celniker, Dave Gossard. Deformable curve and surface finite-elements for free-form shape design[J]. ACM SIGGRAPH computer graphics,1991, 25(4):257-266.
    [130]Ramon F Sarraga. Recent methods for surface shape optimization [J]. Computer Aided Geometric Design,1998,15(5):417-436.
    [131]Eric Harold Mansfield. The bending and stretching of plates[M]. Cambridge University Press,2005.
    [132]Ansel C Ugural, Saul K Fenster. Advanced strength and applied elasticity[M]. Pearson Education,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700