从分子到纳米体系的非线性光学性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今是迅猛发展的信息时代,光子材料对光信息处理、光通讯、光计算机等技术的发展,具有十分重要的战略意义。非线性光学(NLO)材料及NLO特性的研究是光通讯技术中的一个重要的研究领域。它也是目前国际前沿课题之一。开发和设计高性能的NLO材料是这一领域发展的重要基础。本文采用从头算(abinitio)和密度泛函(DFT)等量子化学方法,对从小分子到纳米管的一些体系的非线性光学性质进行了深入的理论研究。主要贡献如下:
     一、惰性原子插入氟化氢体系(HRgF):在QCISD(T)/aug-cc-pVTZ水平得到了具有全部实频的稀有气体插入氟化氢结构HRgF(Rg=He,Ar,Kr)。在QCISD/aug-cc-pVQZ水平上得到,它们的静态第一超极化率分别是8a.u.(HF),384a.u.(HHeF),737a.u.(HArF),以及465a.u.(HKrF)。由于稀有气体原子(Rg)的插入,β0值从8a.u.(HF)到384~737a.u.(HRgF),明显地增大了大约50~90倍。本工作第一次发现了HRgF(Rg=He,Ar,Kr)的β0值的Rg原子序数依赖性。β0值的顺序是非单调性的HHeF HKrF,而不是HHeF 稀有气体原子序数依赖性是非单调的。对于β0的控制因素,由于β0值的大小次序与激发态/基态偶极矩差(Δμ)大小一致,因此Δμ值是β0值一个主要控制因素。对于H-Rg键本质,由于短的H-He键(只有0.811)的WBI为0.51,揭示了H-He键是个半键;而长的H-Ar (1.341)和H-Kr键(1.479),由于WBI约为0.8,H-Ar和H-Kr键几乎都是单键。
     二、2个Li原子掺杂带有一对二氟苯子环的体系中,由于这种新的配体具有新奇的推-拉电子联合效应,导致第一超极化率的极大增加。确立了一种增大第一超极化率的新策略。在MP2/6-311++G(d,p)水平上,β0值的顺序是2.9×10~2(配体UD)<<5.9×10~3(LL)<1.9×10~4(H-L)<2.3×10~4(HF-L)<3.2×10~4(L-L)<7.8×10~5a.u.(HF-LF)。结果表明带有配体的边式推-拉电子效应的HF-LF有最大的β0值。从结构UD到HF-LF,边式推-拉电子效应带来β0值的2700倍增加。这显示了推-拉电子的联合效应是高效的提高β0值的新策略。在结构HF-LF中,由于长程电荷迁移跃迁,导致小的ΔE值和非常大的Δμ值(18.085a.u.),从而带来了相当大的β0值(7.8×10~5a.u.)。有趣的是,配体的一对子环可以显示不同的电子效应。在结构H-L和HF-LF中,具有较长Li-子环距离的左环显示了推电子效应,而具有较短Li-子环距离的右环显示了拉电子效应。
     三、实际的碳纳米管(CNT)中,存在着各种类型的缺陷,这会影响碳纳米管的电学、热力学、机械特性。可是,缺陷是怎样影响非线性光学(NLO)特性未见报道。本文首次发现拓扑缺陷(SW)、单缺失缺陷(SV)、双缺失缺陷(DV)对纳米管的静态第一超极化率(β0)的作用。对于八个缺欠碳纳米管和一个对应的完美纳米管,β0值的顺序是0(Perfect)<5.0×10~2(DV585-z)<5.3×10~2(SW5577-z)<4.6×10~3(DV585-xz)<6.0×10~3(DV555777)<7.3×10~3(SV-xz)<1.1×10~4(SV-z)<3.3×10~4(SW5577-xz)<2.2×10~5a.u.(SW57-75)。结果表明,由于缺陷降低了跃迁能,从而大大的提高了β0值。我们得到了4种有趣的缺陷与β0值之间关系:(1)缺陷大大增大了β0。(2)对提高β0值,SW和DV缺陷的方向是一个重要的因素。例如,SW5577结构的β0值3.3×10~4(缺陷接近xz方向)>>5.3×10~2a.u.(缺陷沿着管轴z方向)。(3)有趣的是,不是缺失缺陷而是拓扑缺陷能带来最大的β0值(结构SW57-75的β0值是2.2×10~5a.u.)。(4)对于拓扑SW缺陷,分离的5-7对缺陷(57-75,β0值为2.2×10~5a.u.)比融合的缺陷(5577,3.3×10~4a.u.)有更大的β0值。本工作建议了一种引入合适的缺陷来提高CNT非线性光学响应的新策略。
In today's high-tech world, photonic materials have wide application in manyfields, such as optical communication, optical process of information, opticalcomputer, etc. The research of the nonlinear optical (NLO) materials and the NLOproperties is the important field of the optical communication technology. It is alsoone of the present international frontier topics. The searching and designing ofhigh-performance NLO materials are important base in the field. In this paper, thestructures and nonlinear optical properties of some important structures from smallmolecule systems to Nanomolecule are investigated by using the quantum chemicalmethods-ab initio and density functional theory (DFT). The main contributions of thispaper are as following:
     1.The three structures of rare gas inserted fluorohydrides HRgF(Rg=He, Ar andKr) with all real frequencies are obtained at the QCISD(T)/aug-cc-pVTZ level. Thestatic first hyperpolarizabilities (β0) at the QCISD/aug-cc-pVQZ level are8a.u.(HF),384a.u.(HHeF),737a.u.(HArF), and465a.u.(HKrF). The β0value remarkablyincreases by about50–90times from8a.u.(HF) to384–737a.u.(HRgF) due to theinserted rare gas (Rg). The Rg atomic number dependence of β0for HRgF (Rg=He, Ar,and Kr) is found at the first time. The order of β0is unmonotonic to be HHeF HKrF. The Rg atomic number dependence of β0relates to both the geometric effect(expanded H…F distance by Rg) and the electronic effect of Rg. Thus, the rare gasatomic number dependence of β0is unmonotonic.
     2. A new strategy of the combination effects of both push and pull electrons of thecomplexant to enhance the first hyperpolarizability is performed with two Li atomdoped complexants with a pair of difluorophenyl subunit rings. Large variance of thestatic first hyperpolarizabilities (β0) are exhibited at the MP2/6-311++G(d,p) level.The order of the β0values is2.9×10~2(complexant UD)<<5.9×10~3(LL)<1.9×10~4(H-L)<2.3×10~4(HF-L)<3.2×10~4(L-L)<7.8×10~5a.u.(HF-LF). It is found thatHF-LFwith the edge-type push–pull electronic effect of the complexant has the largestβ0. This work may contribute to the development of potential high-performance nonlinear optical materials.
     3. This paper exhibits the role of defects on the static first hyperpolarizability (β0)for topological Stone-Wales (SW), single vacancy (SV) and double vacancy (DV)defects. For eight carbon nanotubes with defects and one relevant perfect nanotube,the obtained order of the b0values is0(Perfect)<5.0×10~2(DV585-z)<5.3×10~2(SW5577-z)<4.6×10~3(DV585-xz)<6.0×10~3(DV555777)<7.3×10~3(SV-xz)<1.1×10~4(SV-z)<3.3×10~4(SW5577-xz)<2.2×10~5a.u.(SW57-75). Four interestingrelationships between the defect and the β0value are observed.(1) The defects bring alarge increase of the β0values.(2) For the SW and DV defects, the direction of thedefect is an important factor to enhance the β0value.(3) Interestingly, not vacancydefects but the topological defect can bring the largest β0value.(4) For thetopological SW defects, the separate pentagon-heptagon pair defect may be moreefficient than the fused one to enhance the β0value.
引文
[1] FRANKEN P A, HILL A E, PETERS C W, WEINREICH G. Generation ofOptical Harmonics [J]. Phys. Rev. Lett.,1961,7(4):118-119.
    [2]张福学,孙慷.压电学[M].北京:国防工业出版社,1984.
    [3] KANIS D R, RATNER M A, MARKS T J. Design and construction of molecularassemblies with large second-order optical nonlinearities. Quantum chemicalaspects [J]. Chem. Rev.(Washington, DC, U. S.),1994,94(1):195-242.
    [4] CHEN C-T, LIU G-Z. Recent advances in nonlinear optical and electro-opticalmaterials [J]. Annu. Rev. Mater. Sci.,1986,16:203-243.
    [5] WILLIAMS D J. Nonlinear Optical Properties of Organic and PolymericMaterials[M]. Kansas: AMERICAN CHEMICAL SOCIETY,1983.
    [6] CHEMLA D S, ZYSS J. Nonlinear optical properties of organic molecules andcrystals[M]. Orlando: Academic Press,1987.
    [7] FRAZIER C C, HARVEY M A, COCKERHAM M P, HAND H M,CHAUCHARD E A, LEE C H. Second-harmonic generation intransition-metal-organic compounds [J]. J. Phys. Chem.,1986,90(22):5703-5706.
    [8] MARDER S R, GORMAN C B, TIEMANN B G, PERRY J W, BOURHILL G,MANSOUR K. Relation Between Bond-Length Alternation and SecondElectronic Hyperpolarizability of Conjugated Organic Molecules [J]. Science,1993,261(5118):186-189.
    [9] MARDER S R, CHENG L-T, TIEMANN B G, FRIEDLI A C,BLANCHARD-DESCE M, PERRY J W, SKINDH J J. Large FirstHyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond LengthAlternation and Aromaticity [J]. Science,1994,263(5146):511-514.
    [10] BLANCHARD-DESCE M, ALAIN V, BEDWORTH P V, MARDER S R, FORTA, RUNSER C, BARZOUKAS M, LEBUS S, WORTMANN R. LargeQuadratic Hyperpolarizabilities with Donor–Acceptor Polyenes ExhibitingOptimum Bond Length Alternation: Correlation Between Structure andHyperpolarizability [J]. Chem. Eur. J.,1997,3(7):1091-1104.
    [11] OUDAR J L, CHEMLA D S. Hyperpolarizabilities of the nitroanilines and theirrelations to the excited state dipole moment [J]. J. Chem. Phys.,1977,66(6):2664-2668.
    [12] LEVINE B F, BETHEA C G. Second and third order hyperpolarizabilities oforganic molecules [J]. J. Chem. Phys.,1975,63(6):2666-2682.
    [13] LEVINE B F, BETHEA C G. Molecular hyperpolarizabilities determined fromconjugated and nonconjugated organic liquids [J]. Appl. Phys. Lett.,1974,24(9):445-447.
    [14] OUDAR J L. Optical nonlinearities of conjugated molecules. Stilbene derivativesand highly polar aromatic compounds [J]. J. Chem. Phys.,1977,67(2):446-457.
    [15] CHENG L T, TAM W, MARDER S R, STIEGMAN A E, RIKKEN G,SPANGLER C W. Experimental investigations of organic molecular nonlinearoptical polarizabilities.2. A study of conjugation dependences [J]. J. Phys. Chem.,1991,95(26):10643-10652.
    [16] HUIJTS R A, HESSELINK G L J. Length dependence of the second-orderpolarizability in conjugated organic molecules [J]. Chem. Phys. Lett.,1989,156(2–3):209-212.
    [17] DEHU C, MEYERS F, HENDRICKX E, CLAYS K, PERSOONS A, MARDERS R, BREDAS J L. Solvent Effects on the Second-Order Nonlinear OpticalResponse of.pi.-Conjugated Molecules: A Combined Evaluation throughSelf-Consistent Reaction Field Calculations and Hyper-Rayleigh ScatteringMeasurements [J]. J. Am. Chem. Soc.,1995,117(40):10127-10128.
    [18] MARDER S R, GORMAN C B, MEYERS F, PERRY J W, BOURHILL G, BRDAS J-L, PIERCE B M. A Unified Description of Linear and NonlinearPolarization in Organic Polymethine Dyes [J]. Science,1994,265(5172):632-635.
    [19] BOURHILL G, BREDAS J-L, CHENG L-T, MARDER S R, MEYERS F,PERRY J W, TIEMANN B G. Experimental Demonstration of the Dependence ofthe First Hyperpolarizability of Donor-Acceptor-Substituted Polyenes on theGround-State Polarization and Bond Length Alternation [J]. J. Am. Chem. Soc.,1994,116(6):2619-2620.
    [20] WU I-Y, LIN J T, LUO J, SUN S-S, LI C-S, LIN K J, TSAI C, HSU C-C, LINJ-L. Syntheses and Reactivity of Ruthenium σ-Pyridylacetylides [J].Organometallics,1997,16(10):2038-2048.
    [21] WHITTALL I R, HUMPHREY M G, PERSOONS A, HOUBRECHTS S.Organometallic Complexes for Nonlinear Optics.3.1Molecular QuadraticHyperpolarizabilities of Ene-, Imine-, and Azo-Linked Ruthenium σ-Acetylides:X-ray Crystal Structure of Ru((E)-4,4‘-C CC6H4CHCHC6H4NO2)(PPh3)2(η-C5H5)[J]. Organometallics,1996,15(7):1935-1941.
    [22] WENSELEERS W, W. GERBRANDIJ A, GOOVAERTS E, HELENA GARCIAM, PAULA ROBALO M, J. MENDES P, C. RODRIGUES J, R. DIAS A.Hyper-Rayleigh scattering study of [small eta]5-monocyclopentadienyl-metalcomplexes for second order non-linear optical materials [J]. J. Mater. Chem.,1998,8(4):925-930.
    [23] CHENG L T, TAM W, EATON D F. Quadratic hyperpolarizabilities of Group6Ametal carbonyl complexes [J]. Organometallics,1990,9(11):2856-2857.
    [24] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln [J]. Annalender Physik,1927,389(20):457-484.
    [25] HEHRE W J, RADOM L, SCHLEYER P V, POPLE J. Ab initio molecularorbital theory[M]. New York: Wiley,1986.
    [26]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1985.
    [27]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    [28] JANKOWSKI K, SOKOLOWSKI A. Ab initio studies of electron correlation inrare-earth ions. I. Intrashell correlation for4f2in Pr3+[J]. J. Phys. B: At. Mol.Phys.,1981,14:3345-3353.
    [29] POPLE J A, SEEGER R, KRISHNAN R. Variational configuration interactionmethods and comparison with perturbation theory [J]. Int. J. Quant. Chem.,1977,12(S11):149-163.
    [30] CASIDA M E, JAMORSKI C, CASIDA K C, SALAHUB D R. Molecularexcitation energies to high-lying bound states from time-dependentdensity-functional response theory: Characterization and correction of thetime-dependent local density approximation ionization threshold [J]. J. Chem.Phys.,1998,108(11):4439-4449.
    [31] KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivative studies inconfiguration--interaction theory [J]. J. Chem. Phys.,1980,72(8):4654-4655.
    [32] BROOKS B R, LAIDIG W D, SAXE P, GODDARD J D, YAMAGUCHI Y,SCHAEFER III H F. Analytic gradients from correlated wave functions via thetwo-particle density matrix and the unitary group approach [J]. J. Chem. Phys.,1980,72(8):4652-4653.
    [33] SALTER E A, TRUCKS G W, BARTLETT R J. Analytic energy derivatives inmany-body methods. I. First derivatives [J]. J. Chem. Phys.,1989,90(3):1752-1766.
    [34] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadraticconfiguration interaction. A general technique for determining electroncorrelation energies [J]. J. Chem. Phys.,1987,87(10):5968-5975.
    [35] CIOSLOWSKI J, NANAYAKKARA A. A new robust algorithm for fullyautomated determination of attractor interaction lines in molecules [J]. Chem.Phys. Lett.,1994,219(1–2):151-154.
    [36] SCHLEGEL H B, ROBB M A. MC SCF gradient optimization of theH2CO→H2+CO transition structure [J]. Chem. Phys. Lett.,1982,93(1):43-46.
    [37] EADE R H A, ROBB M A. Direct minimization in mc scf theory. thequasi-newton method [J]. Chem. Phys. Lett.,1981,83(2):362-368.
    [38] ESPINOSA E, ALKORTA I, ELGUERO J, MOLINS E. From weak to stronginteractions: A comprehensive analysis of the topological and energeticproperties of the electron density distribution involving X-H F-Y systems [J]. J.Chem. Phys.,2002,117(12):5529-5542.
    [39] ADAMO C, BARONE V. Toward reliable density functional methods withoutadjustable parameters: The PBE0model [J]. J. Chem. Phys.,1999,110(13):6158-6170.
    [40] LABANOWSKI J K, ANDZELM J W. Density functional methods inchemistry[M]. New York: Springer-Verlag New York, Inc.,1991.
    [41] FUKUI K. Variational principles in a chemical reaction [J]. Int. J. Quant. Chem.,1981,20(S15):633-642.
    [42]FUKUI K, TACHIBANA A, YAMASHITA K. Toward chemodynamics [J]. Int. J.Quant. Chem.,1981,20(S15):621-632.
    [43] ZHAO H, SUN C, ZHANG R, XI H, LI Z. Theoretical study on the reactionmechanism of (CH3)3CO+CO [J]. Sci. China, Ser. B: Chem.,2005,48(1):18-24.
    [44] THOMAS L H. The calculation of atomic fields [J]. Math. Proc. Cambridge.,1927,23(05):542-548.
    [45] FERMI E. Un metodo statistico per la determinazione di alcune proprieta dell'atomo [J]. Rend. Accad. Lincei,1927,6:602-607.
    [46] DIRAC P A M. Note on Exchange Phenomena in the Thomas Atom [J]. Math.Proc. Cambridge.,1930,26(03):376-385.
    [47] WEIZS CKER C F V. Zur Theorie der Kernmassen [J]. Zeitschrift für Physik AHadrons and Nuclei,1935,96(7):431-458.
    [48] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Phys. Rev.,1964,136(3B): B864-B871.
    [49] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange andCorrelation Effects [J]. Phys. Rev.,1965,140(4A): A1133-A1138.
    [50] SLATER J C. Quantum Theory of Molecules and Solids: Electronic structure ofmolecules[M]. McGraw-Hill,1974.
    [51] COMSTOCK M J. The Challenge of d and f Electrons[M]. American ChemicalSociety,1989.
    [52] PARR R G, YANG W. Density-functional theory of atoms and molecules[M].Oxford University Press,1994.
    [53] POPLE J A, GILL P M W, JOHNSON B G. Kohn—Sham density-functionaltheory within a finite basis set [J]. Chem. Phys. Lett.,1992,199(6):557-560.
    [54] FORESMAN J B, HEAD-GORDON M, POPLE J A, FRISCH M J. Toward asystematic molecular orbital theory for excited states [J]. J. Phys. Chem.,1992,96(1):135-149.
    [55] RAGHAVACHARI K, POPLE J A. Calculation of one-electron properties usinglimited configuration interaction techniques [J]. Int. J. Quant. Chem.,1981,20(5):1067-1071.
    [56] PAN Q-J, ZHANG H-X. Ab Initio Study on Luminescent Properties andAurophilic Attraction of [Au2(dpm)(i-mnt)] and Its Related Au(I) Complexes(dpm=bis(diphosphino)methane and i-mnt=i-malononitriledithiolate)[J].Organometallics,2004,23(22):5198-5209.
    [57] PAN Q-J, ZHANG H-X. An ab Initio Study on Luminescent Properties andAurophilic Attraction of Binuclear Gold(I) Complexes with PhosphinothioetherLigands [J]. Inorg. Chem.,2003,43(2):593-601.
    [58] PAN Q-J, ZHANG H-X. Aurophilic attraction and excited-state properties ofbinuclear Au(I) complexes with bridging phosphine and/or thiolate ligands: Anab initio study [J]. J. Chem. Phys.,2003,119(8):4346-4352.
    [59] YANG L, REN A-M, FENG J-K, LIU X-J, MA Y-G, ZHANG M, LIU X-D,SHEN J-C, ZHANG H-X. Theoretical Studies of Ground and Excited ElectronicStates in a Series of Halide Rhenium(I) Bipyridine Complexes [J]. J. Phys. Chem.A,2004,108(32):6797-6808.
    [60] LIAO Y, FENG J-K, YANG L, REN A-M, ZHANG H-X. Theoretical Study onthe Electronic Structure and Optical Properties of Mercury-ContainingDiethynylfluorene Monomer, Oligomer, and Polymer [J]. Organometallics,2004,24(3):385-394.
    [61] VAN GISBERGEN S J A, GROENEVELD J A, ROSA A, SNIJDERS J G,BAERENDS E J. Excitation Energies for Transition Metal Compounds fromTime-Dependent Density Functional Theory. Applications to MnO4-, Ni(CO)4,and Mn2(CO)10[J]. J. Phys. Chem. A,1999,103(34):6835-6844.
    [62] HALLS M D, SCHLEGEL H B. Molecular Orbital Study of the First ExcitedState of the OLED Material Tris(8-hydroxyquinoline)aluminum(III)[J]. Chem.Mater.,2001,13(8):2632-2640.
    [63] BOYS S F, BERNARDI F. The calculation of small molecular interactions by thedifferences of separate total energies. Some procedures with reduced errors [J].Mol. Phys.,1970,19(4):553-566.
    [64] WOON D E. Benchmark calculations with correlated molecular wave functions.V. The determination of accurate ab initio intermolecular potentials for He[sub2],Ne[sub2], and Ar[sub2][J]. J. Chem. Phys.,1994,100(4):2838-2850.
    [65] TAO F-M, PAN Y-K. M ller-Plesset perturbation investigation of the He2potential and the role of midbond basis functions [J]. J. Chem. Phys.,1992,97(7):4989-4995.
    [66] HAY P J, WADT W R. Ab initio effective core potentials for molecularcalculations. Potentials for the transition metal atoms Sc to Hg [J]. J. Chem.Phys.,1985,82(1):270-283.
    [67] PANICH A M. NMR study of the F-H F hydrogen bond. Relation betweenhydrogen atom position and F-H F bond length [J]. Chem. Phys.,1995,196(3):511-519.
    [68] TAO F-M. Bond functions, basis set superposition errors and other practicalissues with ab initio calculations of intermolecular potentials [J]. Int. Rev. Phys.Chem.,2001,20(4):617-643.
    [69] KHRIACHTCHEV L, PETTERSSON M, RUNEBERG N, LUNDELL J,RASANEN M. A stable argon compound [J]. Nature,2000,406(6798):874-876.
    [70] JIM NEZ-HALLA C ó C, FERN NDEZ I, FRENKING G. Is it Possible ToSynthesize a Neutral Noble Gas Compound Containing a Ng-Ng Bond? ATheoretical Study of H-Ng-Ng-F (Ng=Ar, Kr, Xe)[J]. Angew. Chem. Int. Ed.,2009,48(2):366-369.
    [71]PANEK J, LATAJKA Z, LUNDELL J. DFT calculations of HRgX (Rg=rare gas;X=halogen) molecules [J]. Phys. Chem. Chem. Phys.,2002,4(12):2504-2510.
    [72] BIHARY Z, CHABAN G M, GERBER R B. Delayed formation dynamics ofHArF and HKrF in rare-gas matrices [J]. J. Chem. Phys.,2003,119(21):11278-11284.
    [73] KHRIACHTCHEV L, PETTERSSON M, LIGNELL A, R S NEN M. A MoreStable Configuration of HArF in Solid Argon [J]. J. Am. Chem. Soc.,2001,123(35):8610-8611.
    [74] LI T-H, LIU Y-L, LIN R-J, YEH T-Y, HU W-P. On the stability of noble gasmolecules [J]. Chem. Phys. Lett.,2007,434(1–3):38-41.
    [75] JOHANSSON M, HOTOKKA M, PETTERSSON M, R S NEN M. Quantumchemical potential energy surfaces for HXeCl [J]. Chem. Phys.,1999,244(1):25-34.
    [76] NEMUKHIN A V, GRIGORENKO B L, KHRIACHTCHEV L, TANSKANENH, PETTERSSON M, R S NEN M. Intermolecular Complexes of HXeOH withWater: Stabilization and Destabilization Effects [J]. J. Am. Chem. Soc.,2002,124(36):10706-10711.
    [77] KHRIACHTCHEV L, ISOKOSKI K, COHEN A, R S NEN M, GERBER R B. ASmall Neutral Molecule with Two Noble-Gas Atoms: HXeOXeH [J]. J. Am.Chem. Soc.,2008,130(19):6114-6118.
    [78] TANSKANEN H, KHRIACHTCHEV L, LUNDELL J, KILJUNEN H, R S NENM. Chemical Compounds Formed from Diacetylene and Rare-Gas Atoms:HKrC4H and HXeC4H [J]. J. Am. Chem. Soc.,2003,125(52):16361-16366.
    [79] MCDOWELL S A C. Comparison of the polarizabilities of HRgF (Rg=He, Ar,Kr) molecules [J]. Chem. Phys. Lett.,2004,396(4–6):346-349.
    [80] WONG M W. Prediction of a Metastable Helium Compound: HHeF [J]. J. Am.Chem. Soc.,2000,122(26):6289-6290.
    [81] LUNDELL J, CHABAN G M, BENNY GERBER R. Combined ab initio andanharmonic vibrational spectroscopy calculations for rare gas containingfluorohydrides, HRgF [J]. Chem. Phys. Lett.,2000,331(2–4):308-316.
    [82] RUNEBERG N, PETTERSSON M, KHRIACHTCHEV L, LUNDELL J,RASANEN M. A theoretical study of HArF, a newly observed neutral argoncompound [J]. J. Chem. Phys.,2001,114(2):836-841.
    [83] PAPADOPOULOS M G, AVRAMOPOULOS A. The Linear and Non-LinearOptical Properties of Some Noble Gas Compounds [J]. AIP Conf. Proc.,2007,963(1):316-328.
    [84] AVRAMOPOULOS A, REIS H, LI J, PAPADOPOULOS M G. The DipoleMoment, Polarizabilities, and First Hyperpolarizabilities of HArF. AComputational and Comparative Study [J]. J. Am. Chem. Soc.,2004,126(19):6179-6184.
    [85] HOLKA F, AVRAMOPOULOS A, LOBODA O, KELL V, PAPADOPOULOSM G. The (hyper)polarizabilities of AuXeF and XeAuF [J]. Chem. Phys. Lett.,2009,472(4–6):185-189.
    [86] PLUTA T, AVRAMOPOULOS A, PAPADOPOULOS M G, LESZCZYNSKI J.On the origin of the large electron correlation contribution to thehyperpolarizabilities of some diacetylene rare gas compounds [J]. J. Chem. Phys.,2008,129(14):144308.
    [87] MA F, LI Z-R, XU H-L, LI Z-J, LI Z-S, AOKI Y, GU F L. Lithium Salt Electridewith an Excess Electron Pair A Class of Nonlinear Optical Molecules forExtraordinary First Hyperpolarizability [J]. J. Phys. Chem. A,2008,112(45):11462-11467.
    [88] CHEN W, LI Z-R, WU D, LI Y, SUN C-C. Li[sub3]--O--Li[sub3] molecule: Ametal-nonmetal-metal sandwichlike compound with a distending electron cloud[J]. J. Chem. Phys.,2005,123(16):164306-5.
    [89] BUCKINGHAM A D. Permanent and induced molecular moments andlong-range intermolecular forces [J]. Adv. Chem. Phys.,1967,12:107-142.
    [90] PULAY P. Second and third derivatives of variational energy expressions:Application to multiconfigurational self-consistent field wave functions [J]. J.Chem. Phys.,1983,78(8):5043-5051.
    [91] DYKSTRA C E, JASIEN P G. Derivative Hartree—Fock theory to all orders [J].Chem. Phys. Lett.,1984,109(4):388-393.
    [92] GUILLAUME M, CHAMPAGNE B, MARKOVA N, ENCHEV V, CASTET F.Ab Initio Investigation on the Second-Order Nonlinear Optical Responses inKeto Enol Equilibria of Salicylideneanilines [J]. J. Phys. Chem. A,2007,111(39):9914-9923.
    [93] JACQUEMIN D, QUINET O, CHAMPAGNE B, ANDRE J-M. Second-ordernonlinear optical coefficient of polyphosphazene-based materials: A theoreticalstudy [J]. J. Chem. Phys.,2004,120(19):9401-9409.
    [94] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A,CHEESEMAN J R, MONTGOMERY J A, JR., VREVEN T, KUDIN K N,BURANT J C, MILLAM J M, IYENGAR S S, TOMASI J, BARONE V,MENNUCCI B, COSSI M, SCALMANI G, REGA N, PETERSSON G A,NAKATSUJI H, HADA M, EHARA M, TOYOTA K, FUKUDA R,HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H,KLENE M, LI X, KNOX J E, HRATCHIAN H P, CROSS J B, ADAMO C,JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J,CAMMI R, POMELLI C, OCHTERSKI J W, AYALA P Y, MOROKUMA K,VOTH G A, SALVADOR P, DANNENBERG J J, ZAKRZEWSKI V G,DAPPRICH S, DANIELS A D, STRAIN M C, FARKAS O, MALICK D K,RABUCK A D, RAGHAVACHARI K, FORESMAN J B, ORTIZ J V, CUI Q,BABOUL A G, CLIFFORD S, CIOSLOWSKI J, STEFANOV B B, LIU G,LIASHENKO A, PISKORZ P, KOMAROMI I, MARTIN R L, FOX D J, KEITHT, AL-LAHAM M A, PENG C Y, NANAYAKKARA A, CHALLACOMBE M,GILL P M W, JOHNSON B, CHEN W, WONG M W, GONZALEZ C, POPLE JA. GAUSSIAN03[CP]. Gaussian Inc., Wallingford, CT: C.02.2004.
    [95] R. I I. DENNINGTON, TODD K, MILLAM J, EPPINNETT K, HOVELL W L,GILLILAND R. GaussView [CP]. Semichem, Inc., Shawnee Mission, KS:3.09.2003.
    [96] YEN S-Y, MOU C-H, HU W-P. Strong hydrogen bonding between neutralnoble-gas molecules (HNgF, Ng=Ar, Kr, and Xe) and hydrogen fluoride: atheoretical study [J]. Chem. Phys. Lett.,2004,383(5–6):606-611.
    [97] CLEMENTI E, RAIMONDI D L. Atomic Screening Constants from SCFFunctions [J]. J. Chem. Phys.,1963,38(11):2686-2689.
    [98] CLEMENTI E, RAIMONDI D L, REINHARDT W P. Atomic ScreeningConstants from SCF Functions. II. Atoms with37to86Electrons [J]. J. Chem.Phys.,1967,47(4):1300-1307.
    [99] BRATSCH S G. Revised Mulliken electronegativities: I. Calculation andconversion to Pauling units [J]. J. Chem. Educ.,1988,65(1):34.
    [100] SUN X-Y, LI Z-R, WU D, SUN C-C, GUDOWSKI S, TAO F-M, JANDA K C.Asymmetrical linear structures including three-electron hemibonds or otherinteractions in the (ABA)-type triatomic cations: Ne3+,(He-Ne-He)+,(Ar-Ne-Ar)+,(Ar-O-Ar)+,(He-O-He)+, and (Ar-He-Ar)+[J]. J. Chem. Phys.,2005,123(13):134304-9.
    [101] WILLETTS A, RICE J E, BURLAND D M, SHELTON D P. Problems in thecomparison of theoretical and experimental hyperpolarizabilities [J]. J. Chem.Phys.,1992,97(10):7590-7599.
    [102] KAMADA K, UEDA M, NAGAO H, TAWA K, SUGINO T, SHMIZU Y,OHTA K. Molecular Design for Organic Nonlinear Optics: Polarizability andHyperpolarizabilities of Furan Homologues Investigated by Ab InitioMolecular Orbital Method [J]. J. Phys. Chem. A,2000,104(20):4723-4734.
    [103] EATON D F. Nonlinear Optical Materials [J]. Science,1991,253(5017):281-287.
    [104] CHENG W-D, XIANG K-H, PANDEY R, PERNISZ U C. Calculations ofLinear and Nonlinear Optical Properties of H Silsesquioxanes [J]. J. Phys.Chem. B,2000,104(29):6737-6742.
    [105] ICHIDA M, SOHDA T, NAKAMURA A. Third-Order Nonlinear OpticalProperties of C60CT Complexes with Aromatic Amines [J]. J. Phys. Chem. B,2000,104(30):7082-7084.
    [106] GESKIN V M, LAMBERT C, BR DAS J-L. Origin of High Second-andThird-Order Nonlinear Optical Response in Ammonio/Borato DiphenylpolyeneZwitterions: the Remarkable Role of Polarized Aromatic Groups [J]. J. Am.Chem. Soc.,2003,125(50):15651-15658.
    [107] NAKANO M, FUJITA H, TAKAHATA M, YAMAGUCHI K. TheoreticalStudy on Second Hyperpolarizabilities of Phenylacetylene Dendrimer: Towardan Understanding of Structure Property Relation in NLO Responses of FractalAntenna Dendrimers [J]. J. Am. Chem. Soc.,2002,124(32):9648-9655.
    [108] LONG N J, WILLIAMS C K. Metal Alkynyl σ Complexes: Synthesis andMaterials [J]. Angew. Chem. Int. Ed.,2003,42(23):2586-2617.
    [109] KIRTMAN B, CHAMPAGNE B, BISHOP D M. Electric Field Simulation ofSubstituents in Donor Acceptor Polyenes: A Comparison with Ab InitioPredictions for Dipole Moments, Polarizabilities, and Hyperpolarizabilities [J].J. Am. Chem. Soc.,2000,122(33):8007-8012.
    [110] MARDER S R, TORRUELLAS W E, BLANCHARD-DESCE M, RICCI V,STEGEMAN G I, GILMOUR S, BR DAS J-L, LI J, BUBLITZ G U, BOXERS G. Large Molecular Third-Order Optical Nonlinearities in PolarizedCarotenoids [J]. Science,1997,276(5316):1233-1236.
    [111] LE BOUDER T, MAURY O, BONDON A, COSTUAS K, AMOUYAL E,LEDOUX I, ZYSS J, LE BOZEC H. Synthesis, Photophysical and NonlinearOptical Properties of Macromolecular Architectures Featuring OctupolarTris(bipyridine) Ruthenium(II) Moieties: Evidence for a SupramolecularSelf-Ordering in a Dentritic Structure [J]. J. Am. Chem. Soc.,2003,125(40):12284-12299.
    [112] CLAYS K, WOSTYN K, PERSOONS A, MAIORANA S, PAPAGNI A,DAUL C A, WEBER V. Experimental study of the second-order non-linearoptical properties of tetrathia-[7]-helicene [J]. Chem. Phys. Lett.,2003,372(3–4):438-442.
    [113] LI Y, LI Z-R, WU D, LI R-Y, HAO X-Y, SUN C-C. An ab Initio Prediction ofthe Extraordinary Static First Hyperpolarizability for the Electron-SolvatedCluster (FH)2{e}(HF)[J]. J. Phys. Chem. B,2004,108(10):3145-3148.
    [114] CHEN W, LI Z-R, WU D, GU F-L, HAO X-Y, WANG B-Q, LI R-J, SUN C-C.The static polarizability and first hyperpolarizability of the water trimer anion:Ab initio study [J]. J. Chem. Phys.,2004,121(21):10489-10494.
    [115] CHAMPAGNE B, SPASSOVA M, JADIN J-B, KIRTMAN B. Ab initioinvestigation of doping-enhanced electronic and vibrational secondhyperpolarizability of polyacetylene chains [J]. J. Chem. Phys.,2002,116(9):3935-3946.
    [116] DYE J L. Electrides: From1D Heisenberg Chains to2D Pseudo-Metals [J].Inorg. Chem.,1997,36(18):3816-3826.
    [117] ICHIMURA A S, DYE J L, CAMBLOR M A, VILLAESCUSA L A. TowardInorganic Electrides [J]. J. Am. Chem. Soc.,2002,124(7):1170-1171.
    [118] CHEN W, LI Z-R, WU D, LI Y, SUN C-C, GU F L. The Structure and theLarge Nonlinear Optical Properties of Li@Calix[4]pyrrole [J]. J. Am. Chem.Soc.,2005,127(31):10977-10981.
    [119] XU H-L, LI Z-R, WU D, WANG B-Q, LI Y, GU F L, AOKI Y. Structures andLarge NLO Responses of New Electrides: Li-Doped Fluorocarbon Chain [J]. J.Am. Chem. Soc.,2007,129(10):2967-2970.
    [120] CHEN W, LI Z-R, WU D, LI Y, SUN C-C, GU F L, AOKI Y. NonlinearOptical Properties of Alkalides Li+(calix[4]pyrrole)M-(M=Li, Na, and K):Alkali Anion Atomic Number Dependence [J]. J. Am. Chem. Soc.,2006,128(4):1072-1073.
    [121] WANG F-F, LI Z-R, WU D, WANG B-Q, LI Y, LI Z-J, CHEN W, YU G-T, GUF L, AOKI Y. Structures and Considerable Static First Hyperpolarizabilities:New Organic Alkalides (M+@n6adz)M'-(M, M'=Li, Na, K; n=2,3) withCation Inside and Anion Outside of the Cage Complexants [J]. J. Phys. Chem.B,2008,112(4):1090-1094.
    [122] JING Y-Q, LI Z-R, WU D, LI Y, WANG B-Q, GU F L, AOKI Y. Effect of theComplexant Shape on the Large First Hyperpolarizability of AlkalidesLi+(NH3)4M [J]. ChemPhysChem,2006,7(8):1759-1763.
    [123] JING Y-Q, LI Z-R, WU D, LI Y, WANG B-Q, GU F L. What Is the Role of theComplexant in the Large First Hyperpolarizability of Sodide SystemsLi(NH3)nNa (n=14)?[J]. J. Phys. Chem. B,2006,110(24):11725-11729.
    [124] MUHAMMAD S, XU H, LIAO Y, KAN Y, SU Z. Quantum MechanicalDesign and Structure of the Li@B10H14Basket with a Remarkably EnhancedElectro-Optical Response [J]. J. Am. Chem. Soc.,2009,131(33):11833-11840.
    [125] OHNISHI S-I, ORIMOTO Y, GU F L, AOKI Y. Nonlinear optical properties ofpolydiacetylene with donor-acceptor substitution block [J]. J. Chem. Phys.,2007,127(8):084702-11.
    [126] CHEN W, LI Z-R, WU D, LI R-Y, SUN C-C. Theoretical Investigation of theLarge Nonlinear Optical Properties of (HCN)n Clusters with Li Atom [J]. J.Phys. Chem. B,2005,109(1):601-608.
    [127] LI Z-J, WANG F-F, LI Z-R, XU H-L, HUANG X-R, WU D, CHEN W, YUG-T, GU F L, AOKI Y. Large static first and second hyperpolarizabilitiesdominated by excess electron transition for radical ion pair salts M2+TCNQ-(M=Li, Na, K)[J]. Phys. Chem. Chem. Phys.,2009,11(2):402-408.
    [128] LI Z-J, LI Z-R, WANG F-F, LUO C, MA F, WU D, WANG Q, HUANG X-R.A Dependence on the Petal Number of the Static and Dynamic FirstHyperpolarizability for Electride Molecules: Many-Petal-Shaped Li-DopedCyclic Polyamines [J]. J. Phys. Chem. A,2009,113(12):2961-2966.
    [129] LI Z-J, LI Z-R, WANG F-F, LUO C, MA F, XU H-L, HUANG X-R. Cis–transisomerization and spin multiplicity dependences on the static firsthyperpolarizability for the two-alkali-metal-doped saddle[4]pyrrole compounds[J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling(Theoretica Chimica Acta),2009,122(5):305-311.
    [130] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A,CHEESEMAN J R, MONTGOMERY J A, JR., VREVEN T, KUDIN K N,BURANT J C, MILLAM J M, IYENGAR S S, TOMASI J, BARONE V,MENNUCCI B, COSSI M, SCALMANI G, REGA N, PETERSSON G A,NAKATSUJI H, HADA M, EHARA M, TOYOTA K, FUKUDA R,HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H,KLENE M, LI X, KNOX J E, HRATCHIAN H P, CROSS J B, BAKKEN V,ADAMO C, JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEVO, AUSTIN A J, CAMMI R, POMELLI C, OCHTERSKI J W, AYALA P Y,MOROKUMA K, VOTH G A, SALVADOR P, DANNENBERG J J,ZAKRZEWSKI V G, DAPPRICH S, DANIELS A D, STRAIN M C, FARKASO, MALICK D K, RABUCK A D, RAGHAVACHARI K, FORESMAN J B,ORTIZ J V, CUI Q, BABOUL A G, CLIFFORD S, CIOSLOWSKI J,STEFANOV B B, LIU G, LIASHENKO A, PISKORZ P, KOMAROMI I,MARTIN R L, FOX D J, KEITH T, AL-LAHAM M A, PENG C Y,NANAYAKKARA A, CHALLACOMBE M, GILL P M W, JOHNSON B,CHEN W, WONG M W, GONZALEZ C, POPLE J A. Gaussian03[CP].Gaussian, Inc., Wallingford, CT: E.01.2004.
    [131] KALIA S, SHARMA A, KAITH B. Ab initio study of gas phase andwater-assisted tautomerization of maleimide and formamide [J]. J. Chem. Sci.,2007,119(6):617-624.
    [132] VANCE F W, HUPP J T. Probing the Symmetry of the Nonlinear OpticChromophore Ru(trans-4,4'-diethylaminostyryl-2,2'-bipyridine)32+: Insightfrom Polarized Hyper-Rayleigh Scattering and Electroabsorption (Stark)Spectroscopy [J]. J. Am. Chem. Soc.,1999,121(16):4047-4053.
    [133] DHENAUT C, LEDOUX I, SAMUEL I D W, ZYSS J, BOURGAULT M,BOZEC H L. Chiral metal complexes with large octupolar opticalnonlinearities [J]. Nature,1995,374(6520):339-342.
    [134] BOSSI A, LICANDRO E, MAIORANA S, RIGAMONTI C, RIGHETTO S,STEPHENSON G R, SPASSOVA M, BOTEK E, CHAMPAGNE B.Theoretical and Experimental Investigation of Electric Field Induced SecondHarmonic Generation in Tetrathia[7]helicenes [J]. J. Phys. Chem. C,2008,112(21):7900-7907.
    [135] SANGUINET L, POZZO J-L, RODRIGUEZ V, ADAMIETZ F, CASTET F,DUCASSE L, CHAMPAGNE B. Acido-and Phototriggered NLO PropertiesEnhancement [J]. J. Phys. Chem. B,2005,109(22):11139-11150.
    [136] COE B J, HARRIS J A, HALL J J, BRUNSCHWIG B S, HUNG S-T,LIBAERS W, CLAYS K, COLES S J, HORTON P N, LIGHT M E,HURSTHOUSE M B, GAR N J, ORDUNA J. Syntheses and QuadraticNonlinear Optical Properties of Salts Containing BenzothiazoliumElectron-Acceptor Groups [J]. Chem. Mater.,2006,18(25):5907-5918.
    [137] NAKANO M, KISHI R, OHTA S, TAKAHASHI H, KUBO T, KAMADA K,OHTA K, BOTEK E, CHAMPAGNE B. Relationship between Third-OrderNonlinear Optical Properties and Magnetic Interactions in Open-Shell Systems:A New Paradigm for Nonlinear Optics [J]. Phys. Rev. Lett.,2007,99(3):033001.
    [138] COE B J, HARRIS J A, JONES L A, BRUNSCHWIG B S, SONG K, CLAYSK, GAR N J, ORDUNA J, COLES S J, HURSTHOUSE M B. Syntheses andProperties of Two-Dimensional Charged Nonlinear Optical ChromophoresIncorporating Redox-Switchable cis-Tetraammineruthenium(II) Centers [J]. J.Am. Chem. Soc.,2005,127(13):4845-4859.
    [139] KANG H, FACCHETTI A, JIANG H, CARIATI E, RIGHETTO S, UGO R,ZUCCACCIA C, MACCHIONI A, STERN C L, LIU Z, HO S-T, BROWN E C,RATNER M A, MARKS T J. Ultralarge Hyperpolarizability Twisted π-ElectronSystem Electro-Optic Chromophores: Synthesis, Solid-State andSolution-Phase Structural Characteristics, Electronic Structures, Linear andNonlinear Optical Properties, and Computational Studies [J]. J. Am. Chem.Soc.,2007,129(11):3267-3286.
    [140] NAKANO M, OHTA S, TOKUSHIMA K, KISHI R, KUBO T, KAMADA K,OHTA K, CHAMPAGNE B, BOTEK E, TAKAHASHI H. First and secondhyperpolarizabilities of donor-acceptor disubstituted diphenalenyl radicalsystems [J]. Chem. Phys. Lett.,2007,443(1-3):95-101.
    [141] BOTEK E, SPASSOVA M, CHAMPAGNE B, ASSELBERGHS I,PERSOONS A, CLAYS K. Hyper-Rayleigh scattering of neutral and chargedhelicenes [J]. Chem. Phys. Lett.,2005,412(4-6):274-279.
    [142] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A,CHEESEMAN J R, SCALMANI G, BARONE V, MENNUCCI B,PETERSSON G A, NAKATSUJI H, CARICATO M, LI X, HRATCHIAN H P,IZMAYLOV A F, BLOINO J, ZHENG G, SONNENBERG J L, HADA M,EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M,NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, VREVEN T,MONTGOMERY J A, JR., PERALTA J E, OGLIARO F, BEARPARK M,HEYD J J, BROTHERS E, KUDIN K N, STAROVEROV V N, KOBAYASHIR, NORMAND J, RAGHAVACHARI K, RENDELL A, BURANT J C,IYENGAR S S, TOMASI J, COSSI M, REGA N, MILLAM N J, KLENE M,KNOX J E, CROSS J B, BAKKEN V, ADAMO C, JARAMILLO J,GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J, CAMMI R,POMELLI C, OCHTERSKI J W, MARTIN R L, MOROKUMA K,ZAKRZEWSKI V G, VOTH G A, SALVADOR P, DANNENBERG J J,DAPPRICH S, DANIELS A D, FARKAS O, FORESMAN J B, ORTIZ J V,CIOSLOWSKI J, FOX D J. Gaussian09[CP]. Gaussian, Inc., Wallingford CT:A.02.2009.
    [143] LI B, LI L, WANG B, LI C Y. Alternating patterns on single-walled carbonnanotubes [J]. Nat Nano,2009,4(6):358-362.
    [144] FRANKLIN A D, CHEN Z. Length scaling of carbon nanotube transistors [J].Nat Nano,2010,5(12):858-862.
    [145] JOH D Y, KINDER J, HERMAN L H, JU S-Y, SEGAL M A, JOHNSON J N,CHANGARNET K L, PARK J. Single-walled carbon nanotubes as excitonicoptical wires [J]. Nat Nano,2011,6(1):51-56.
    [146] VOSGUERITCHIAN M, LEMIEUX M C, DODGE D, BAO Z. Effect ofSurface Chemistry on Electronic Properties of Carbon Nanotube Network ThinFilm Transistors [J]. ACS Nano,2010,4(10):6137-6145.
    [147] AHN J-H, KIM H-S, LEE K J, JEON S, KANG S J, SUN Y, NUZZO R G,ROGERS J A. Heterogeneous Three-Dimensional Electronics by Use ofPrinted Semiconductor Nanomaterials [J]. Science,2006,314(5806):1754-1757.
    [148] BAUGHMAN R H, ZAKHIDOV A A, DE HEER W A. Carbon Nanotubes-theRoute Toward Applications [J]. Science,2002,297(5582):787-792.
    [149] HU J, ODOM T W, LIEBER C M. Chemistry and Physics in One Dimension:Synthesis and Properties of Nanowires and Nanotubes [J]. Acc. Chem. Res.,1999,32(5):435-445.
    [150] PETTES M T, SHI L. Thermal and Structural Characterizations of IndividualSingle-, Double-, and Multi-Walled Carbon Nanotubes [J]. Adv. Funct. Mater.,2009,19(24):3918-3925.
    [151] PUMERA M, SASAKI T, IWAI H. Relationship between Carbon NanotubeStructure and Electrochemical Behavior: Heterogeneous Electron Transfer atElectrochemically Activated Carbon Nanotubes [J]. Chem. Asian J.,2008,3(12):2046-2055.
    [152] TSETSERIS L, PANTELIDES S T. Adsorbate-Induced Defect Formation andAnnihilation on Graphene and Single-Walled Carbon Nanotubes [J]. J. Phys.Chem. B,2009,113(4):941-944.
    [153] LU A J, PAN B C. Nature of Single Vacancy in Achiral Carbon Nanotubes [J].Phys. Rev. Lett.,2004,92(10):105504.
    [154] FAGAN S B, DA SILVA L B, MOTA R. Ab initio Study of Radial DeformationPlus Vacancy on Carbon Nanotubes: Energetics and Electronic Properties [J].Nano Lett.,2003,3(3):289-291.
    [155] TERRONES M, TERRONES H, BANHART F, CHARLIER J-C, AJAYAN PM. Coalescence of Single-Walled Carbon Nanotubes [J]. Science,2000,288(5469):1226-1229.
    [156] HANSSON A, PAULSSON M, STAFSTR S. Effect of bending and vacancieson the conductance of carbon nanotubes [J]. Phys. Rev. B,2000,62(11):7639.
    [157] PAN B C, YANG W S, YANG J. Formation energies of topological defects incarbon nanotubes [J]. Phys. Rev. B,2000,62(19):12652.
    [158] LU X, CHEN Z, SCHLEYER P V R. Are Stone-Wales Defect Sites AlwaysMore Reactive Than Perfect Sites in the Sidewalls of Single-Wall CarbonNanotubes?[J]. J. Am. Chem. Soc.,2005,127(1):20-21.
    [159] SUENAGA K, WAKABAYASHI H, KOSHINO M, SATO Y, URITA K,IIJIMA S. Imaging active topological defects in carbon nanotubes [J]. NatNano,2007,2(6):358-360.
    [160] CHOI H J, IHM J, LOUIE S G, COHEN M L. Defects, Quasibound States, andQuantum Conductance in Metallic Carbon Nanotubes [J]. Phys. Rev. Lett.,2000,84(13):2917.
    [161] XIAO B, ZHAO J-X, DING Y-H, SUN C-C. Theoretical Investigation of theInteraction between Carbon Monoxide and Carbon Nanotubes withSingle-Vacancy Defects [J]. ChemPhysChem,2010,11(16):3505-3510.
    [162] WATTS P C P, MUREAU N, TANG Z, MIYAJIMA Y, CAREY J D, SILVA S RP. The importance of oxygen-containing defects on carbon nanotubes for thedetection of polar and non-polar vapours through hydrogen bond formation [J].Nanotechnology,2007,18(17):175701.
    [163] SUN K, STROSCIO M A, DUTTA M. Thermal conductivity of carbonnanotubes [J]. J. Appl. Phys.,2009,105(7):074316.
    [164] BOCKRATH M, LIANG W, BOZOVIC D, HAFNER J H, LIEBER C M,TINKHAM M, PARK H. Resonant Electron Scattering by Defects inSingle-Walled Carbon Nanotubes [J]. Science,2001,291(5502):283-285.
    [165] KOSTYRKO T, BARTKOWIAK M, MAHAN G D. Reflection by defects in atight-binding model of nanotubes [J]. Phys. Rev. B,1999,59(4):3241.
    [166] KOSTYRKO T, BARTKOWIAK M, MAHAN G D. Localization in carbonnanotubes within a tight-binding model [J]. Phys. Rev. B,1999,60(15):10735.
    [167] CHICO L, OACUTE, PEZ SANCHO M P, MU OZ M C.Carbon-Nanotube-Based Quantum Dot [J]. Phys. Rev. Lett.,1998,81(6):1278.
    [168] MAN OIS F, POZZO J-L, PAN J, ADAMIETZ F, RODRIGUEZ V, DUCASSEL, CASTET F, PLAQUET A, CHAMPAGNE B. Two-Way Molecular Switcheswith Large Nonlinear Optical Contrast [J]. Chem. Eur. J.,2009,15(11):2560-2571.
    [169] BOTEK E, CASTET F, CHAMPAGNE B. Theoretical Investigation of theSecond-Order Nonlinear Optical Properties of Helical Pyridine–PyrimidineOligomers [J]. Chem. Eur. J.,2006,12(34):8687-8695.
    [170] SANGUINET L, POZZO J-L, GUILLAUME M, CHAMPAGNE B, CASTETF, DUCASSE L, MAURY E, SOULI J, MAN OIS F, ADAMIETZ F,RODRIGUEZ V. Acidoswitchable NLO-phores: Benzimidazolo[2,3-b]oxazolidines [J]. J. Phys. Chem. B,2006,110(22):10672-10682.
    [171] KIRTMAN B, BONNESS S, RAMIREZ-SOLIS A, CHAMPAGNE B,MATSUMOTO H, SEKINO H. Calculation of electric dipole(hyper)polarizabilities by long-range-correction scheme in density functionaltheory:A systematic assessment for polydiacetylene and polybutatrieneoligomers [J]. J. Chem. Phys.,2008,128(11):114108.
    [172] GUILLAUME M, CHAMPAGNE B. Modeling the electric field third-ordernonlinear responses of an infinite aggregate of hexatriene chains using theelectrostatic interaction model [J]. Phys. Chem. Chem. Phys.,2005,7(18):3284-3289.
    [173] BULAT F A, TORO-LABBE A, CHAMPAGNE B, KIRTMAN B, YANG W.Density-functional theory (hyper)polarizabilities of push-pull pi-conjugatedsystems: Treatment of exact exchange and role of correlation [J]. J. Chem.Phys.,2005,123(1):014319.
    [174] LIU Z-B, ZHOU Z-J, LI Y, LI Z-R, WANG R, LI Q-Z, LI Y, JIA F-Y, WANGY-F, LI Z-J, CHENG J-B, SUN C-C. Push-pull electron effects of thecomplexant in a Li atom doped molecule with electride character: a newstrategy to enhance the first hyperpolarizability [J]. Phys. Chem. Chem. Phys.,2010,12(35):10562-10568.
    [175] DE DOMINICIS L, FANTONI R, BOTTI S, ASILYAN L. A symmetry basedapproach to evaluation of carbon nanotube electronic hyperpolarizability [J].Laser Phys. Lett.,2004,1(12):598-601.
    [176] DE DOMINICIS L, FANTONI R. Effects of electrons statistic on carbonnanotubes hyperpolarizability frequency dependence determined with sum overstates method [J]. J. Raman Spectrosc.,2006,37(6):669-674.
    [177] XIAO D, BULAT F A, YANG W, BERATAN D N. A Donor NanotubeParadigm for Nonlinear Optical Materials [J]. Nano Lett.,2008,8(9):2814-2818.
    [178] XU H-L, WANG F-F, LI Z-R, WANG B-Q, WU D, CHEN W, YU G-T, GU FL, AOKI Y. The nitrogen edge-doped effect on the static firsthyperpolarizability of the supershort single-walled carbon nanotube [J]. J.Comput. Chem.,2009,30(7):1128-1134.
    [179] MA F, ZHOU Z-J, LI Z-R, WU D, LI Y, LI Z-S. Lithium salt of end-substitutednanotube: Structure and large nonlinear optical property [J]. Chem. Phys. Lett.,2010,488(4–6):182-186.
    [180] NAKANO M, NAGAI H, FUKUI H, YONEDA K, KISHI R, TAKAHASHI H,SHIMIZU A, KUBO T, KAMADA K, OHTA K, CHAMPAGNE B, BOTEK E.Theoretical study of third-order nonlinear optical properties in squarenanographenes with open-shell singlet ground states [J]. Chem. Phys. Lett.,2008,467(1-3):120-125.
    [181] YONEDA K, NAKANO M, KISHI R, TAKAHASHI H, SHIMIZU A, KUBOT, KAMADA K, OHTA K, CHAMPAGNE B, BOTEK E. Third-ordernonlinear optical properties of trigonal, rhombic and bow-tie graphenenanoflakes with strong structural dependence of diradical character [J]. Chem.Phys. Lett.,2009,480(4-6):278-283.
    [182] KISHI R, NAKANO M, OHTA S, TAKEBE A, NATE M, TAKAHASHI H,KUBO T, KAMADA K, OHTA K, CHAMPAGNE B, BOTEK E. Finite-FieldSpin-Flip Configuration Interaction Calculation of the SecondHyperpolarizabilities of Singlet Diradical Systems [J]. J. Chem. TheoryComput.,2007,3(5):1699-1707.
    [183] FUKUI H, KISHI R, MINAMI T, NAGAI H, TAKAHASHI H, KUBO T,KAMADA K, OHTA K, CHAMPAGNE B T, BOTEK E, NAKANO M.Theoretical Study on Second Hyperpolarizabilities of Singlet Diradical SquarePlanar Nickel Complexes Involving o-Semiquinonato Type Ligands [J]. J. Phys.Chem. A,2008,112(36):8423-8429.
    [184] YAMAGUCHI K. The electronic structures of biradicals in the unrestrictedHartree-Fock approximation [J]. Chem. Phys. Lett.,1975,33(2):330-335.
    [185] HEREBIAN D, WIEGHARDT K E, NEESE F. Analysis and Interpretation ofMetal-Radical Coupling in a Series of Square Planar NickelComplexes:Correlated Ab Initio and Density Functional Investigation of[Ni(LISQ)2](LISQ=3,5-di-tert-butyl-o-diiminobenzosemiquinonate(1-))[J]. J.Am. Chem. Soc.,2003,125(36):10997-11005.
    [186] JACQUEMIN D, PERPETE E A, MEDVED M, SCALMANI G, FRISCH M J,KOBAYASHI R, ADAMO C. First hyperpolarizability of polymethineiminewith long-range corrected functionals [J]. J. Chem. Phys.,2007,126(19):191108.
    [187] KAMIYA M, SEKINO H, TSUNEDA T, HIRAO K. Nonlinear optical propertycalculations by the long-range-corrected coupled-perturbed Kohn--Shammethod [J]. J. Chem. Phys.,2005,122(23):234111.
    [188] CHAMPAGNE B, PERPETE E A, VAN GISBERGEN S J A, BAERENDS E-J,SNIJDERS J G, SOUBRA-GHAOUI C, ROBINS K A, KIRTMAN B.Assessment of conventional density functional schemes for computing thepolarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initioinvestigation of polyacetylene chains [J]. J. Chem. Phys.,1998,109(23):10489-10498.
    [189] CHAMPAGNE B, PERP TE E A, JACQUEMIN D, VAN GISBERGEN S J A,BAERENDS E-J, SOUBRA-GHAOUI C, ROBINS K A, KIRTMAN B.Assessment of Conventional Density Functional Schemes for Computing theDipole Moment and (Hyper)polarizabilities of Push-Pull π-Conjugated Systems[J]. J. Phys. Chem. A,2000,104(20):4755-4763.
    [190] NOJEH A, SHAN B, CHO K, PEASE R F W. Ab Initio Modeling of theInteraction of Electron Beams and Single-Walled Carbon Nanotubes [J]. Phys.Rev. Lett.,2006,96(5):056802.
    [191] WON C Y, JOSEPH S, ALURU N R. Effect of quantum partial charges on thestructure and dynamics of water in single-walled carbon nanotubes [J]. J. Chem.Phys.,2006,125(11):114701.
    [192] JACQUEMIN D, PERP TE E A, CIOFINI I, ADAMO C, VALERO R, ZHAOY, TRUHLAR D G. On the Performances of the M06Family of DensityFunctionals for Electronic Excitation Energies [J]. J. Chem. Theory Comput.,2010,6(7):2071-2085.
    [193] LI R, ZHENG J, TRUHLAR D G. Density functional approximations forcharge transfer excitations with intermediate spatial overlap [J]. Phys. Chem.Chem. Phys.,2010,12(39):12697-12701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700