基于中红外飞秒激光场的原子分子电离行为若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超短强激光与物质的相互作用,超越了传统微扰论框架内的非线性光学的范畴,进入了极端非线性光学区域,成为当代物理学研究的重要前沿。在该区域内,超短强激光与原子分子相互作用,呈现出一系列有趣且新颖的高度非线性物理现象,如阈上电离、非顺序双电离、高次谐波辐射产生、库仑爆炸等。强激光场中原子分子电离过程是理解这些极端非线性过程的基础,对它的研究不仅有助于在原子级时间和空间尺度上理解电子动力学,还将推动分子结构及动力学超快成像技术的发展,从而为观测和控制分子化学反应过程奠定基础。
     然而,长期以来,受限于超短强激光技术,绝大多数强场电离实验研究都局限于飞秒钛宝石激光输出的波段(800nm附近)。近几年,基于光参量放大技术的可调谐中红外超短激光脉冲的出现和发展,开辟了强场物理领域中迄今很少探索到的参量空间,使强场电离研究更容易深入到隧穿电离甚至深隧穿电离区域,为完整的强场电离物理图像的形成创造了可能性。
     本论文系统地开展了稀有气体原子以及同核双原子分子与中红外波段超短强激光相互作用引起的电离实验研究,通过测量原子分子在不同激光参数(如激光波长和强度)条件下的电离离子产量以及光电子能量和角分布,观察到了强场电离过程中的一些重要新现象和新效应。结合合适理论模型,阐明了这些现象和效应的物理起因,揭示出原子实库仑势以及分子基态结构等对强场电离过程的重要影响。主要工作和创新性成果如下:
     1实验上系统研究了中红外波长下稀有气体原子(Ar, Kr和Xe)和双原子分子气体(N2和O2)的阈上电离行为。首次观测到在中红外波长下阈上电离光电子能谱中出现的两个新奇低能结构,即非常低能结构(Very Low-Energy Structure, VLES)和较高低能结构(High Low-Energy Structure, HLES)。这两个结构在所有研究气体中均出现,但呈现出不同的激光参数依赖关系。结合半经典理论模型,从电子能谱,二维动量分布以及初始相位分布等方面分析了这两结构的形成机制,揭示出原子实库仑势与出射电子之间的长程库仑相互作用是这两个结构形成的物理起因。
     2基于半经典理论模型,引入库仑势软化参数进一步甄别原子实库仑势对VLES和HLES的具体影响。研究发现,虽然这两个结构的形成都来自于电子与原子实库仑势的相互作用,但是它们的形成对应不同的物理机制,即VLES源于电子与原子实在较短距离内的相互作用,而HLES可归结于较远距离内的相互作用。
     3实验上研究并比较了不同中红外波长下同核双原子分子(N2和O2)与电离势相近的对照原子(Xe和Ar)之间电离行为的差异。首次观察到,与近红外波长下的实验结果相比,在中红外波长下O2分子相对于Xe原子发生了与光强和波长皆有关系的电离抑制现象;而N2分子的电离率与其对照原子Ar基本一样,并且不随着光强和波长改变而变化,其行为类似于无结构的原子。结合散射矩阵理论计算,我们很好地重复了实验结果并揭示出由于O2分子基态波函数具有反键对称性,来自不同氧原子核的电离电子波包间会发生相消干涉,该干涉效应引起的分子电离抑制随着激光波长和强度的减小而逐渐增强,从而产生了实验观察到的电离抑制对波长和光强的强烈依赖现象。我们的研究澄清了长期以来对双原子分子(02)在强场中出现奇特电离抑制现象背后物理机制的争议。
Ultrashort intense laser-matter interactions, which have broken up the framework of the traditional nonlinear optics, have reached the realm of extreme nonlinear optics and become an important frontier research field in modern physics. In this realm, the interactions of ultrafast intense laser with atoms and molecules lead in a series of interesting and novel highly nonlinear phenomena, such as above threshold ionization (ATI), nonsequential double ionization(NSDI), high-order harmonic generation (HHG) and Coulomb explosion. Research on the strong field ionization of atoms and molecules, which is a fundamental process, not only provides ways for understanding the dynamics of electrons in atomic time and spatial scales, but also greatly prompts the development of ultrafast imaging of the molecular structure and dynamics, opening a new avenue for monitoring and controlling the chemical reaction of molecules.
     However, limited by the ultrafast laser technology, most studies on strong field ionization of atoms and molecules have been practically confined to Ti:Sapphire laser wavelength (i.e., around800nm). Until recently, with the rapid advancement of the optical parametric amplification (OPA) technique, intense wavelength-tunable mid-infrared femtosecond laser pulses becomes available, opening new avenues for research in the strong field atomic and molecular physics. Intense laser with long wavelengths offers a convenient experimental knob to push the ionization regime into the unprecedented deep tunneling limits and facilitate a comprehensive understanding of the strong field ionization.
     In this dissertation, by virtue of the intense wavelength-tunable mid-infrared femtosecond laser, we perform a systematic experimental investigation on the ionization process of various noble gas atoms and homonuclear diatomic molecules under different laser parameters, i.e., wavelength and intensity, and have discovered several novel strong field atomic phenomena and effects. The underlying physical mechanisms behind these findings are uncovered by comparing the experimental data with appropriate theoretical simulations. Our works reveal an important influence of the atomic and molecular structure and the molecular orbital symmetry on the strong field ionization. The major achievements and innovations are listed as follows:
     1. We have performed a systematic investigation on the ATI process of the noble gas atoms (Ar, Kr and Xe) and the diatomic molecules (N2and O2) exposed to the intense mid-infrared laser fields. The low-energy part of the measured ATI photoelectron spectra exhibits two unexpected peak-like structures with different energies, i.e., the very low-energy structure (VLES) and the high low-energy structure (HLES). The two structures were observed in all atomic and molecular species investigated and thus seemed to be universal. Moreover, it is found that VLES and HLES exhibit different dependences of laser parameters. These experimental features have been well reproduced by a semiclassical model simulation. By analyzing in detail the calculated photoelectron energy spectra, two-dimensional electron momentum distributions and the initial tunnel ionization phase distributions, we are able to ascribe the production of the low-energy structure to the long-range Coulomb interaction between the parent ionic Coulomb potential and the outgoing electron.
     2. Resorting to a semiclassical model including a Coulomb potential (CP) softened by different softening parameters, we further reveal that though the very low-energy structure (VLES) and the high low-energy structure (HLES) are both due to the interaction between the ionic CP and the electron, the two structures have different physical mechanisms:the VLES can be attributed to the electron-parent ion Coulomb interaction at a rather small distance and the HLES is more likely to be ascribed to the electron-parent ion Coulomb interaction at large distance.
     3. We have performed a comparison study of the ionization process of molecules (N2and O2) and their companion atoms (Ar and Xe) with mid-infrared laser wavelengths. Experimental data recorded at a mid-infrared laser wavelength and its comparison with that at a near-infrared wavelength revealed a peculiar wavelength and intensity dependence of the suppressed ionization of O2with respect to its companion atom of Xe, while N2behaves like a structureless atom. It is found that the S-matrix theory calculation can reproduce well the experimental observations and unambiguously identifies that the ionization suppression of O2is due to the effect of destructive interference between ionizing wave packets emitted from the two atomic centers of O2with an antibonding molecular ground state. Our results clarify the underlying physical mechanism of the peculiar ionization suppression behavior of molecule O2, which has been a hot topic of debate for decades.
引文
[1]T. H. Maiman. Stimulated Optical Radiation in Ruby[J]. Nature,1960 (187):493-494.
    [2]周炳琨,高以智,陈倜嵘,陈家骅.激光原理[M].北京:国防工业出版社,2000.
    [3]J. C. Diels, W. Rudolph. Ultrashort laser pulse phenomena:fundamentals,techniques,and applications on a femtosecond time scale[M]. San Diego:Academic Press,2006.
    [4]K. Yamanouchi. Lectures on ultrafast intense laser science 1 [M]. Germany:Springer,2011.
    [5]M. Protopapas, C. H. Keitel, P. L. Knight. Atomic physics with super-high intensity lasers[J]. Rep. Prog. Phys.,1997 (60):389-486.
    [6]T. Brabec, F. Krausz. Intense few-cycle laser fields:Frontiers of nonlinear optics[J]. Rev. Mod. Phys.,2000 (72):545-591.
    [7]G A. Mourou, V. Yanovsky. Relativistic Optics:A Gateway to Attosecond Physics[J]. Opt. Photon. News,2004 (15):40-45.
    [8]S. W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, V. Yanovsky. Generation and characterization of the highest laser intensities (1022 W/cm2)[J]. Opt. Lett.,2004 (29):2837-2839.
    [9]A. Pierre, F. D. Louis. The physics of attosecond light pulses[J]. Rep. Prog. Phys.,2004 (67): 813-855.
    [10]F. Krausz, M. Ivanov. Attosecond physics[J]. Rev. Mod. Phys.,2009 (81):163-234.
    [11]P. B. Corkum, F. Krausz. Attosecond science[J]. Nature Phys.,2007 (3):381-387.
    [12]A. L. Schawlow, C. H. Townes. Infrared and Optical Masers[J]. Phys.Rev.,1958 (112): 1940-1949.
    [13]F. J. Mcclung, R. W. Hellwarth. Giant Optical Pulsations from Ruby[J]. Appl. Opt.,1962 (1): 103-105.
    [14]蓝信钜.激光技术[M].北京:科学出版社,2003.
    [15]W. E. Lamb, Jr. Theory of an Optical Maser[J]. Phys.Rev.,1964 (134):A1429-A1450.
    [16]L. E. Hargrove, R. L. Fork, M. A. Pollack. Locking of He-Ne laser modes induced by synchronous intracavity modulation,[J]. Appl. Phys. Lett.,1964 (5):4-5.
    [17]R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, W. J. Tomlinson. Femtosecond white-light continuum pulses[J]. Opt. Lett.,1983 (8):1-3.
    [18]D. E. Spence, P. N. Kean, W. Sibbett.60-fsec pulse generation from a self-mode-locked Ti:sapphire laser[J]. Opt. Lett.,1991 (16):42-44.
    [19]J. a. D. Au, D. Kopf, F. Morier-Genoud, M. Moser, U. Keller.60-fs pulses from a diode-pumped Nd:glass laser[J]. Opt. Lett,1997 (22):307-309.
    [20]D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kartner, V. Scheuer, G Angelow, T. Tschudi. Generation of 20-fs pulses by a prismless Cr4+:YAG laser[J]. Opt. Lett.,2002 (27):61-63.
    [21]P. Wagenblast, R. Ell, U. Morgner, F. Grawert, F. X. Kartner. Diode-pumped 10-fs Cr3+:LiCAF laser[J]. Opt. Lett.,2003 (28):1713-1715.
    [22]F. X. Kartner. Few-cycle laser pulse generation and its applications[M]. Springer,2004.
    [23]M. D. Perry, G. Mourou. Terawatt to Petawatt Subpicosecond Lasers[J]. Science,1994 (264): 917-924.
    [24]M. D. Perry. Multilayer Dielectric Gratings:Increasing the Power of the Light[J]. Sci. Tech. Rev.,1995 (September):24.
    [25]D. Strickland, G Mourou. Compression of Amplified Chirped Optical Pulses[J]. Opt. Commun.,1985 (55):447-449.
    [26]E. Matsubara, K. Yamane, T. Sekikawa, M. Yamashita. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber[J]. J. Opt. Soc. Am. B,2007 (24): 985-989.
    [27]A. Suda, M. Hatayama, K. Nagasaka, K. Midorikawa. Generation of sub-10-fs,5-mJ-optical pulses using a hollow fiber with a pressure gradient[J]. Appl. Phys. Lett.,2005 (86):111116.
    [28]M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, K. Nagasaka. Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon:constant gas pressure versus differential gas pressure[J]. J. Opt. Soc. Am. B,2003 (20):2002-2011.
    [29]S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, K. Midorikawa. Generation of 5.0 fs,5.0 mJ pulses at 1kHz using hollow-fiber pulse compression[J]. Opt. Lett.,2010 (35):1887-1889.
    [30]S. E. Harris, M. K. Oshman, R. L. Byer. Observation of Tunable Optical Parametric Fluorescence[J]. Phys.Rev.Lett.,1967 (18):732-734.
    [31]R. W. Boyd. Nonlinear Optics[M]. San Diego:Academic Press,1992.
    [32]G Cerullo, S. De Silvestri. Ultrafast optical parametric amplifiers[J]. Rev. Sci. Instrum., 2003 (74):1-18.
    [33]P. Agostini, L. F. Dimauro. Atoms in high intensity mid-infrared pulses[J], Contemp. Phys., 2008(49):179-197.
    [34]S. Witte, K. S. E. Eikema. Ultrafast optical parametric chirped-pulse amplification[J]. IEEE. J. Sel. Top. Quant,2012 (18):296.
    [35]A. Dubietis, G. Jonusauskas, A. Piskarskas. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal[J]. Opt. Commun.,1992 (88):437-440.
    [36]I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, J. L. Collier. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers[J]. Opt. Commun.,1997(144):125-133.
    [37]C. Vozzi, M. Negro, S. Stagira. Strong-field phenomena driven by mid-infrared ultrafast sources[J]. J. Mod. Opt.,2012 (59):1283-1302. [38] P. Agostini. High Intensity Physics Scaled to Mid-Infrared Wavelengths[J].201185-109.
    [39]赫光生,刘颂豪.强光光学[M].北京:科学出版社,2011.
    [40]W. Becker, F. Grasbon, R. Kopold, D. B. Milosevic, G G Paulus, H. Walther. Above-threshold ionization:From classical features to quantum effects[J]. Adv. Atom. Mol. Opt. Phys.,2002 (48):35-98.
    [41]A. Becker, F. H. M. Faisal. Intense-field many-body S-matrix theory[J]. J. Phys. B,2005 (38):R1-R56.
    [42]V. G. S., D. N. B. Ionization of the xenon atom by the electric field of ruby laser emission [J].Jetp Lett.,1965(1):66-74.
    [43]J. L. Hall, E. J. Robinson, L. M. Branscomb. Laser Double-Quantum Photodetachment of I[J]. Phys.Rev.Lett.,1965 (14):1013-1016.
    [44]F. Fabre, Et Al. Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06um[J]. J. Phys.B,1982(15):1353-1369.
    [45]G. Petite, F. Fabre, P. Agostini, M. Crance, M. Aymar. Nonresonant multiphoton ionization of cesium in strong fields:Angular distributions and above-threshold ionization[J]. Phys.Rev.A, 1984 (29):2677-2689.
    [46]L. A. Lompre, G. Mainfray, C. Manus, J. Thebault. Multiphoton ionization of rare gases by a tunable-wavelength 30-psec laser pulse at 1.06 μm[J]. Phys.Rev.A,1977 (15):1604-1612.
    [47]L. A. Lompre, A.L'huillier, G. Mainfray, C. Manus. Laser-intensity effects in the energy distributions of electrons produced in multiphoton ionization of rare gases[J]. Europhys. Lett., 1985 (2):1906-1912.
    [48]F. H. M. Faisal. Theory of multiphoton processes[M]. New York:Plenum,1987.
    [49]P. Agostini, F. Fabre, G. Mainfray, G. Petite, N. K. Rahman. Free-Free Transitions Following Six-Photon Ionization of Xenon Atoms[J]. Phys.Rev.Lett.,1979 (42):1127-1130.
    [50]E. Karule. Two-photon ionisation of atomic hydrogen simultaneously with one-photon ionisation[J]. J. Phys. B,1978 (11):441-447.
    [51]G. G. Paulus. Multiphotonionisation mit intensiven, ultrakurzen Laserpulsen[M]. Munchen: Utz,1996.
    [52]Y. Gontier, M. Trahin. Energetic electron generation by multiphoton absorption[J]. J. Phys. B,1980 (13):4383.
    [53]Y. Gontier, M. Poirier, M. Trahin. Multiphoton absorptions above the ionisation threshold[J]. J. Phys. B,1980 (13):1381.
    [54]F. Yergeau, Et Al. Above-threshold ionisation without space charge[J]. J. Phys. B,1986 (19): L663-L669.
    [55]P. Kruit, F. H. Read. Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier[J]. Journal of Physics E:Scientific Instruments,1983 (16):313.
    [56]P. Kruit, J. Kimman, H. G. Muller, M. J. Van Der Wiel. Electron spectra from multiphoton ionization of xenon at 1064,532, and 355 nm[J]. Phys.Rev.A,1983 (28):248-255.
    [57]L. Lompre, A. L'huillier, G. Mainfray, C. Manus. Laser-intensity effects in the energy distributions of electrons produced in multiphoton ionization of rare gases[J]. J. Opt. Soc. Am. B, 1985 (2):1906-1912.
    [58]W. Xiong, Et Al. Multiphoton ionisation of rare gases by a CO2 laser:electron spectroscopy[J]. J. Phys. B,1988 (21):L159-L164.
    [59]P. Agostini, P. Breger, A. L'hiuillier, H. G. Muller, G. Petite, A. Antonetti, A. Migus. Giant Stark shifts in multiphoton ionization[J]. Phys.Rev.Lett.,1989 (63):2208-2211.
    [60]M. P. D. Boer, H. G. Muller. A systematic study of AC Stark shifts in xenon at super-high laser intensities[J]. J. Phys. B,1994 (27):721.
    [61]R. R. Freeman, P. H. Bucksbaum. Investigations of above-threshold ionization using subpicosecond laser pulses[J]. J. Phys. B,1991 (24):325.
    [62]P. H. Bucksbaum, R. R. Freeman, M. Bashkansky, T. J. Mcilrath. Role of the ponderomotive potential in above-threshold ionization[J]. J. Opt. Soc. Am. B,1987 (4):760-764.
    [63]R. B. Vrijen, J. H. Hoogenraad, H. G. Muller, L. D. Noordam. Rydberg Excitation in Xenon by the Rising Edge of a Femtosecond Laser-Pulse[J]. Phys.Rev.Lett.,1993 (70):3016-3018.
    [64]R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M. E. Geusic. Above-threshold ionization with subpicosecond laser pulses[J]. Phys.Rev.Lett.,1987 (59): 1092-1095.
    [65]L. V. Keldysh. Ionization in Field of a Strong Electromagnetic Wave[J]. Sov. Phys. JETP, 1965 (20):1307-1314.
    [66]H. R. Reiss. Unsuitability of the Keldysh parameter for laser fields[J]. Phys.Rev.A,2010 (82):023418.
    [67]B.Yang, K.J. Schafer, B. Walker, K. C. Kulander, P. Agostini, L. F. Dimauro. Intensity-dependent scattering rings in high order above-threshold ionization[J]. Phys.Rev.Lett, 1993 (71):3770-3773.
    [68]G. G. Paulus, W. Nicklich, H. Xu, P. Lambropoulos, H. Walther. Plateau in above threshold ionization spectra[J]. Phys.Rev.Lett.,1994 (72):2851-2854.
    [69]P. B. Corkum. Plasma perspective on strong field multiphoton ionization[J]. Phys.Rev.Lett., 1993 (71):1994-1997.
    [70]G. G. Paulus, Et Al. Investigation of Above-Threshold Ionization with Femtosecond Pulses: Connection Between Plateau and Angular Distribution of the Photoelectrons[J]. Europhys. Lett., 1994 (27):267-272.
    [71]G. G. Paulus, W. Nicklich, F. Zacher, P. Lambropoulos, H. Walther. High-order above-threshold ionization of atomic hydrogen using intense, ultrashort laser pulses[J]. J. Phys. B,1996 (29):L249-L256.
    [72]J. Wassaf, V. Veniard, R. Taieb, A. Maquet. Strong field atomic ionization:Origin of high-energy structures in photoelectron spectra[J]. Phys.Rev.Lett.,2003 (90):13003.
    [73]F. Grasbon, G. G. Paulus, S. L. Chin, H. Walther, B. Muth, Ouml, J. Hm, A. Becker, F. H. M. Faisal. Signatures of symmetry-induced quantum-interference effects observed in above-threshold-ionization spectra of molecules[J]. Phys.Rev.A,2001 (63):041402.
    [74]C. Cornaggia. Molecular rescattering signature in above-threshold ionization[J]. Phys.Rev.A,2008 (78):R041401.
    [75]X. Y. Jia, W. D. Li, J. Fan, J. Liu, J. Chen. Suppression effect in the nonsequential double ionization of molecules by an intense laser field[J]. Phys.Rev.A,2008 (77):063407.
    [76]T. Zuo, A. D. Bandrauk, P. B. Corkum. Laser-induced electron diffraction:A new tool for probing ultrafast molecular dynamics[J]. Chem. Phys. Lett.,1996 (259):313-320.
    [77]M. Okunishi, T. Morishita, G. Prumper, K. Shimada, C. D. Lin, S. Watanabe, K. Ueda. Experimental Retrieval of Target Structure Information from Laser-Induced Rescattered Photoelectron Momentum Distributions[J]. Phys.Rev.Lett.,2008 (100):143001.
    [78]M. Pont, M. Gavrila. Stabilization of atomic hydrogen in superintense, high-frequency laser fields of circular polarization[J]. Phys.Rev.Lett.,1990 (65):2362-2365.
    [79]K. Burnett, V. Reed, P. Knight. Atoms in ultra-intense laser fields[J]. J. Phys. B,1999 (26): 561.
    [80]徐克尊.高等原子分子物理学[M].北京:科学出版社,2002.
    [81]A. L'huillier, L. A. Lompre, G Mainfray, C. Manus. Multiply charged ions induced by multiphoton absorption in rare gases at 0.53 mum[J]. Phys.Rev.A,1983 (27):2503.
    [82]D. N. Fittinghoff, P. R. Bolton, B. Chang, K. C. Kulander. Observation of nonsequential double ionization of helium with optical tunneling[J]. Phys.Rev.Lett.,1992 (69):2642-2645.
    [83]B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, K. C. Kulander. Precision Measurement of Strong Field Double Ionization of Helium[J]. Phys.Rev.Lett.,1994 (73): 1227-1230.
    [84]M. V. Ammosov, N. B. Delone, V. P. Krainov. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field[J]. Sov. Phys. JETP,1986 (64):1191-1194.
    [85]M. Y. Kuchiev. ATI as a source for multiply charged ion production in a laser field[J]. J. Phys. B,1995 (28):5093-5115.
    [86]U. Eichmann, M. Dorr, H. Maeda, W. Becker, W. Sandner. Collective Multielectron Tunneling Ionization in Strong Fields[J]. Phys.Rev.Lett.,2000 (84):3550-3553.
    [87]D. N. Fittinghoff, P. R. Bolton, B. Chang, K. C. Kulander. Polarization dependence of tunneling ionization of helium and neon by 120-fs pulses at 614 nm[J]. Phys.RevA,1994 (49): 2174-2177.
    [88]R. Dorner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, H. Schmidt-Bocking. Cold Target Recoil Ion Momentum Spectroscopy:a'momentum microscope' to view atomic collision dynamics[J]. Phys. Rep.,2000 (330):95-192.
    [89]T. Weber, M. Weckenbrock, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, F. Afaneh, G. Urbasch, M. Vollmer, H. Giessen, Ouml, R. Rner. Recoil-Ion Momentum Distributions for Single and Double Ionization of Helium in Strong Laser Fields[J]. Phys.Rev.Lett.,2000 (84):443-446.
    [90]R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, Schr, Ouml, C. D. Ter, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Kom, K. Hoffmann, W. Sandner. Momentum Distributions of Nen+ Ions Created by an Intense Ultrashort Laser Pulse[J]. Phys.Rev.Lett.,2000 (84):447-450.
    [91]T. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, R. Dorner. Correlated electron emission in multiphoton double ionization[J]. Nature,2000 (405):658-661.
    [92]R. Kopold, W. Becker, H. Rottke, W. Sandner. Routes to Nonsequential Double Ionization[J]. Phys.Rev.Lett.,2000 (85):3781-3784.
    [93]B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, Schr, Ouml, C. D. Ter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Hr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, W. Sandner. Separation of Recollision Mechanisms in Nonsequential Strong Field Double Ionization of Ar:The Role of Excitation Tunneling[J]. Phys.Rev.Lett.,2001 (87):043003.
    [94]P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich. Generation of Optical Harmonics[J]. Phys.Rev.Lett.,1961 (7):118-119.
    [95]A. Mcpherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. Mcintyre, K. Boyer, C. K. Rhodes. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. J. Opt. Soc. Am. B,1987 (4):595-601.
    [96]C. Winterfeldt, C. Spielmann, G. Gerber. Colloquium:Optimal control of high-harmonic generation[J]. Rev. Mod. Phys.,2008 (80):117.
    [97]J. L. Krause, K. J. Schafer, K. C. Kulander. High-order harmonic generation from atoms and ions in the high intensity regime[J]. Phys.Rev.Lett.,1992 (68):3535-3538.
    [98]E. A. Gibson, A. Paul, N. Wagner, R. A. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, H. C. Kapteyn. Coherent Soft X-ray Generation in the Water Window with Quasi-Phase Matching[J]. Science,2003 (302):95-98.
    [99]E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, K. Midorikawa. Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media[J]. Phys.Rev.Lett.,2008 (101):253901.
    [100]E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg. Single-Cycle Nonlinear Optics[J]. Science,2008 (320):1614-1617.
    [101]J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve. Tomographic imaging of molecular orbitals[J]. Nature,2004 (432):867-871.
    [102]P. H. Bucksbaum, A. Zavriyev, H. G Muller, D. W. Schumacher. Softening of the H2+ molecular bond in intense laser fields[J]. Phys.Rev.Lett.,1990 (64):1883-1886.
    [103]A. Zavriyev, P. H. Bucksbaum, H. G. Muller, D. W. Schumacher. Ionization and dissociation of H2 in intense laser fields at 1.064 mum,532 nm, and 355 nm[J]. Phys.Rev.A, 1990 (42):5500-5514.
    [104]L. J. Frasinski, K. Codling, P. Hatherly, J. Barr, I. N. Ross, W. T. Toner. Femtosecond dynamics of multielectron dissociative ionization by use of a picosecond laser[J]. Phys.Rev.Lett., 1987 (58):2424-2427.
    [105]P. Agostini, L. F. Dimauro. Atomic and molecular ionization dynamics in strong laser fields: from optic to x rays[J]. Advances in Atomic, Molecular and Optical Physics,2012 (61):118-158.
    [106]C. I. Blaga, J. Xu, A. D. Dichiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. Dimauro, C. D. Lin. Imaging ultrafast molecular dynamics with laser-induced electron diffraction[J]. Nature,2012 (483):194-197.
    [107]H. Niikura, F. Legare, R. Hasbani, A. D. Bandrauk, M. Y. Ivanov, D. M. Villeneuve, P. B. Corkum. Sub-laser-cycle electron pulses for probing molecular dynamics[J]. Nature,2002 (417): 917-922.
    [108]H. Niikura, F. Legare, R. Hasbani, M. Y. Ivanov, D. M. Villeneuve, P. B. Corkum. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs[J]. Nature, 2003 (421):826-829.
    [109]A. Talebpour, C. Y. Chien, S. L. Chin. The effects of dissociative recombination in multiphoton ionization of O2[J]. J. Phys. B,1996 (29):L677-L680.
    [110]S. L. Chin, Y. Liang, J. E. Decker, F. A. Ilkov, M. V. Ammosov. Tunnel Ionization of Diatomic-Molecules by an Intense CO2 Laser[J]. J. Phys. B,1992 (25):L249-L255.
    [111]C. Guo, M. Li, J. P. Nibarger, G N. Gibson. Single and double ionization of diatomic molecules in strong laser fields[J]. Phys.Rev.A,1998 (58):R4271-R4274.
    [112]J. H. Posthumus. The dynamics of small molecules in intense laser fields[J]. Rep. Prog. Phys.,2004 (67):623.
    [113]B. Muth, Ouml, J. Hm, A. Becker, F. H. M. Faisal. Suppressed Molecular Ionization for a Class of Diatomics in Intense Femtosecond Laser Fields[J]. Phys.Rev.Lett.,2000 (85): 2280-2283.
    [114]A. Jaronacute-Becker, A. Becker, F. H. M. Faisal. Ionization of N2, O2, and linear carbon clusters in a strong laser pulse[J]. Phys.Rev.A,2004 (69):023410.
    [115]T. K. Kjeldsen, L. B. Madsen. Strong-field ionization of diatomic molecules and companion atoms:Strong-field approximation and tunneling theory including nuclear motion[J]. Phys.Rev.A,2005 (71):023411.
    [116]V. I. Usachenko, S. I. Chu. Strong-field ionization of laser-irradiated light homonuclear diatomic molecules:A generalized strong-field approximation-linear combination of atomic orbitals model[J]. Phys.Rev.A,2005 (71):063410.
    [117]M. Okunishi, R. Itaya, K. Shimada, G Priimper, K. Ueda, M. Busuladzic, A. Gazibegovic-Busuladzic, D. B. Milosevic, W. Becker. Two-Source Double-Slit Interference in Angle-Resolved High-Energy Above-Threshold Ionization Spectra of Diatoms[J]. Phys.Rev.Lett., 2009 (103):043001.
    [118]H. Kang, W. Quan, Y. Wang, Z. Lin, M. Wu, H. Liu, X. Liu, B. B. Wang, H. J. Liu, Y. Q. Gu, X. Y. Jia, J. Liu, J. Chen, Y. Cheng. Structure Effects in Angle-Resolved High-Order Above-Threshold Ionization of Molecules[J]. Phys.Rev.Lett.,2010 (104):203001.
    [119]Z. Lin, X. Jia, C. Wang, Z. Hu, H. Kang, W. Quan, X. Lai, X. Liu, J. Chen, B. Zeng, W. Chu, J. Yao, Y. Cheng, Z. Xu. Ionization Suppression of Diatomic Molecules in an Intense Midinfrared Laser Field[J]. Phys.Rev.Lett.,2012 (108):223001.
    [120]C. C. J. Roothaan. New Developments in Molecular Orbital Theory[J]. Rev. Mod. Phys., 1951 (23):69-89.
    [121]H. D. Cohen, U. Fano. Interference in the Photo-Ionization of Molecules[J]. Phys.Rev., 1966 (150):30-33.
    [122]I. N. Levine. Quantum Chemistry[M]. Englewood Cliffs,New Jersery:Prentice-Hall,1974.
    [123]T. Kanai, S. Minemoto, H. Sakai. Quantum interference during high-order harmonic generation from aligned molecules[J]. Nature,2005 (435):470-474.
    [124]M. R. Hermann, J. A. Fleck, Jr. Split-operator spectral method for solving the time-dependent Schrodinger equation in spherical coordinates[J]. Phys.Rev.A,1988 (38): 6000-6012.
    [125]J. H. Eberly, Q. Su, J. Javanainen. Nonlinear Light Scattering Accompanying Multiphoton Ionization[J]. Phys.Rev.Lett.,1989 (62):881-884.
    [126]V. C. Reed, K. Burnett. Ionization of atoms in intense laser pulses using the Kramers-Henneberger transformation[J]. Phys.Rev.A,1990 (42):3152-3155.
    [127]C. I. Blaga, F. Catoire, P. Colosimo, G G Paulus, H. G. Muller, P. Agostini, L. F. Dimauro. Strong-field photoionization revisited[J]. Nature Phys.,2009 (5):335-338.
    [128]W. Becker, S. Long, J. K. Mciver. Higher-harmonic production in a model atom with short-range potential[J]. Phys.Rev.A,1990 (41):4112-4115.
    [129]L.D.Landu, E.M.Lifshitz. Quantum Mechanics:Non-Relativistic Theory[M]. Oxford: Pergamon,1977.
    [130]Perelomo.Am, V. S. Popov, M. V. Terentev. Ionization of Atoms in an Alternating Electric Field[J]. Sov. Phys. JETP,1966 (23):924.
    [131]L.B. Fu, J. Liu, J. Chen, S. G. Chen. Classical collisional trajectories as the source of strong-field double ionization of helium in the knee regime[J]. Phys.Rev.A,2001 (63):043416.
    [132]W. Becker, H. Rottke. Many-electron strong-field physics[J]. Contemp. Phys.,2008 (49): 199-223.
    [133]W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, Z. Z. Xu. Classical Aspects in Above-Threshold Ionization with a Midinfrared Strong Laser Field[J]. Phys.Rev.Lett,2009 (103):093001.
    [134]X. M. Tong, Z. X. Zhao, C. D. Lin. Theory of molecular tunneling ionization[J]. Phys.Rev.A,2002 (66):033402.
    [135]V. I. Usachenko, S.I. Chu. Strong-field ionization of laser-irradiated light homonuclear diatomic molecules:A generalized strong-field approximation-linear combination of atomic orbitals model[J]. Phys.Rev.A,2005 (71):063410.
    [136]B. Shan, X. M. Tong, Z. Zhao, Z. Chang, C. D. Lin. High-order harmonic cutoff extension of the O2 molecule due to ionization suppression[J]. Phys.Rev.A,2002 (66):061401.
    [137]Z. X. Zhao, X. M. Tong, C. D. Lin. Alignment-dependent ionization probability of molecules in a double-pulse laser field[J]. Phys.Rev.A,2003 (67):043404.
    [138]C. Lin, X. Tong, Z. Zhao. Effects of orbital symmetries on the ionization rates of aligned molecules by short intense laser pulses[J]. J. Mod. Opt.,2006 (53):21-33.
    [139]J. Dura, A. Grun, P. K. Bates, S. M. Teichmann, T. Ergler, A. Senftleben, T. Pfliiger, C. D. Schroter, R. Moshammer, J. Ullrich, A. Jaron-Becker, A. Becker, J. Biegert. Wavelength Dependence of the Suppressed Ionization of Molecules in Strong Laser Fields[J]. The Journal of Physical Chemistry A,2011 (116):2662-2668.
    [140]J. A. Wheeler. On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure[J]. Phys.Rev.,1937 (52):1107-1122.
    [141]W. Heisenberg. Die beobachtbaren Grossen in der Theorie der Elementarteilchen. I[J]. Z. Phys.,1943 (120):513.
    [142]W. Heisenberg. Die beobachtbaren Grossen in der Theorie der Elementarteilchen. II[J]. Z. Phys.,1943 (120):673-702.
    [143]H. R. Reiss. Progress in Ultrafast Intense Laser Science Ⅲ[M]. Springer:Berlin Heidelberg, 2008:1-31
    [144]H. R. Reiss. Semiclassical Electrodynamics of Bound Systems in Intense Fields[J]. Phys.Rev.A,1970 (1):803-818.
    [145]H. R. Reiss. Effect of an intense electromagnetic field on a weakly bound system[J]. Phys.Rev.A,1980 (22):1786.
    [146]F. H. M. Faisal. Multiple Absorption of Laser Photons by Atoms[J]. J. Phys. B,1973 (6): L89-L92.
    [147]D. S. Guo, T. berg, B. Crasemann. Scattering theory of multiphoton ionization in strong fields[J]. Phys.Rev.A,1989 (40):4997.
    [148]L. D. Landau, E. M. Lifshitz. Quantum Mechanics[M]. New York:Pergamon,1977.
    [149]W. C. Wiley, I. H. Mclaren. Time-of-Flight Mass Spectrometer with Improved Resolution[J]. Rev. Sci. Instrum.,1955 (26):1150-1157.
    [150]C. C. Chen, C. S. Su. A Time-of-Flight Mass-Spectrometer with an Accelerating Field in the Reflecting System[J]. International Journal of Mass Spectrometry and Ion Processes,1993 (124):37-43.
    [151]T. Unruh, J. Neuhaus, W. Petry. The high-resolution time-of-flight spectrometer [J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment,2007 (580):1414-1422.
    [152]姚建辁.新性光学频率变换及激光调谐技术[M].北京:科学出版社,1995.
    [153]付玉喜.中红外波段强场超快激光驱动产生高次谐波辐射的研究[D].上海:中国科学院上海光学精密机械研究所,2010.
    [154]龙金友.二硫化碳与对二氟苯分子激发态的超快非绝热动力学研究[D].武汉:中国科学院武汉物理与数学研究所,2012.
    [155]A. T. Eppink, D. H. Parker. Velocity map imaging of ions and electrons using electrostatic lenses:Application in photoelectron and photofragment ion imaging of molecular oxygen[J]. Rev. Sci. Instrum.,1997 (68):3477-3484.
    [156]Z. Karny, R. N. Zare. Effect of vibrational excitation on the molecular beam reactions of Ca and Sr with HF and DF[J]. J. Chem. Phys.,1978 (68):3360-3365.
    [157]W. R. Leo. Techniques for nuclear and particle physics experiments:a how-to approach[M]. Germany:Springer Verlag,1994.
    [158]康会鹏.强激光场中原子分子阈上电离的实验研究[D].武汉:中国科学院武汉物理与数学研究所,2011.
    [159]P. B. Corkum, N. H. Burnett, F. Brunel. Above-threshold ionization in the long-wavelength limit[J]. Phys.Rev.Lett.,1989 (62):1259-1262.
    [160]K. J. Schafer, B. Yang, L. F. Dimauro, K. C. Kulander. Above threshold ionization beyond the high harmonic cutoff[J]. Phys.Rev.Lett.,1993 (70):1599-1602.
    [161]G. G. Paulus, W. Becker, W. Nicklich, H. Walther. Rescattering effects in above-threshold ionization:a classical model[J]. J. Phys. B,1994 (27):L703-L708.
    [162]P. H. Marcus, H. B. Philip, H. G. Muller. Evidence for resonant effects in high-order ATI spectra[J]. J. Phys. B,1997 (30):L197-L205.
    [163]P. Hansch, M. A. Walker, L. D. Van Woerkom. Resonant hot-electron production in above-threshold ionization[J]. Phys.Rev.A,1997 (55):R2535-R2538.
    [164]G. G. Paulus, F. Grasbon, H. Walther, R. Kopold, W. Becker. Channel-closing-induced resonances in the above-threshold ionization plateau[J]. Phys.Rev.A,2001 (64):021401.
    [165]R. Kopold, W. Becker, M. Kleber, G. G. Paulus. Channel-closing effects in high-order above-threshold ionization and high-order harmonic generation[J]. J. Phys. B,2002 (35): 217-232.
    [166]H. G Muller, F. C. Kooiman. Bunching and Focusing of Tunneling Wave Packets in Enhancement of High-Order Above-Threshold Ionization[J]. Phys.Rev.Lett.,1998 (81): 1207-1210.
    [167]R. Moshammer, J. Ullrich, B. Feuerstein, D. Fischer, A. Dorn, C. D. Schroter, J. R. Crespo Lopez-Urrutia, C. Hoehr, H. Rottke, C. Trump, M. Wittmann, G. Korn, W. Sandner. Rescattering of Ultralow-Energy Electrons for Single Ionization of Ne in the Tunneling Regime[J]. Phys.Rev.Lett.,2003 (91):113002.
    [168]J. Chen, C. H. Nam. Ion momentum distributions for He single and double ionization in strong laser fields[J]. Phys.Rev.A,2002 (66):053415.
    [169]K. I. Dimitriou, Arb, Oacute, D. G, S. Yoshida, E. Persson, Burgd, Ouml, J. Rfer. Origin of the double-peak structure in the momentum distribution of ionization of hydrogen atoms driven by strong laser fields[J]. Phys.Rev.A,2004 (70):061401.
    [170]A. Rudenko, K. Zrost, C. D. Schroter, V. L. B. D. Jesus, B. Feuerstein, R. Moshammer, J. Ullrich. Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime[J]. J. Phys. B,2004 (37):L407.
    [171]C. Guo. Ellipticity effects on nonsequential double ionization of diatomic molecules in strong laser fields[J]. J. Phys. B,2005 (38):L323-L328.
    [172]P. Colosimo, G Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G G Paulus, H. G Muller, P. Agostini, L. F. Dimauro. Scaling strong-field interactions towards the classical limit[J]. Nature Phys.,2008 (4):386-389.
    [173]C. Y. Wu, Y. D. Yang, Y. Q. Liu, Q. H. Gong, M. Wu, X. Liu, X. L. Hao, W. D. Li, X. T. He, J. Chen. Characteristic Spectrum of Very Low-Energy Photoelectron from Above-Threshold Ionization in the Tunneling Regime[J]. Phys.Rev.Lett.,2012 (109):043001.
    [174]J. Chen, J. Fan, Y. Li, S. P. Yang. Semiclassical theory of molecular nonsequential double ionization[J]. Phys.Rev.A,2007 (76):013418.
    [175]Y. Li, J. Chen, S. P. Yang, J. Liu. Alignment effect in nonsequential double ionization of diatomic molecules in strong laser fields[J]. Phys.Rev.A,2007 (76):023401.
    [176]J. Chen, B. Zeng, X. Liu, Y. Cheng, Z. Xu. Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom[J]. New. J. Phys.,2009 (11):113021.
    [177]X. Hao, G Wang, X. Jia, W. Li, J. Liu, J. Chen. Nonsequential double ionization of Ne in an elliptically polarized intense laser field[J]. Phys.Rev.A,2009 (80):023408.
    [178]N. B. Delone, V. P. Krainov. Energy and Angular Electron-Spectra for the Tunnel Ionization of Atoms by Strong Low-Frequency Radiation[J]. J. Opt. Soc. Am. B,1991 (8): 1207-1211.
    [179]J. Chen, J. Liu, W. M. Zheng. Characteristic photoelectron spectra and angular distributions of single and double ionization[J]. Phys.Rev.A,2002 (66):043410.
    [180]B. Hu, J. Liu, S. Chen, G. Plateau in above-threshold-ionization spectra and chaotic behavior in rescattering processes [J]. Phys. Lett. A,1997 (236):533.
    [181]J. Chen, J. Liu, S. G. Chen. Rescattering effect on phase-dependent ionization of atoms in two-color intense fields[J]. Phys.Rev.A,2000 (61):033402.
    [182]A. Kastner, U. Saalmann, J. M. Rost. Electron-Energy Bunching in Laser-Driven Soft Recollisions[J]. Phys.Rev.Lett.,2012 (108):033201.
    [183]D. Comtois, Et Al. Observation of Coulomb focusing in tunnelling ionization of noble gases[J]. J. Phys. B,2005 (38):1923-1933.
    [184]A. Rudenko, K. Zrost, E. Th, A. B. Voitkiv, B. Najjari, V. L. B. D. Jesus, B. Feuerstein, C. D. Schroter, R. Moshammer, J. Ullrich. Coulomb singularity in the transverse momentum distribution for strong-field single ionization[J]. J. Phys. B,2005 (38):L191.
    [185]T. Brabec, M. Y. Ivanov, P. B. Corkum. Coulomb focusing in intense field atomic processes[J]. Phys.Rev.A,1996 (54):R2551-R2554.
    [186]V. R. Bhardwaj, S. A. Aseyev, M. Mehendale, G. L. Yudin, D. M. Villeneuve, D. M. Rayner, M. Y. Ivanov, P. B. Corkum. Few Cycle Dynamics of Multiphoton Double Ionization[J]. Phys.Rev.Lett.,2001 (86):3522-3525.
    [187]C. P. Liu, K. Z. Hatsagortsyan. Wavelength and intensity dependence of multiple forward scattering of electrons at above-threshold ionization in mid-infrared strong laser fields[J]. J. Phys. B,2011 (44):095402.
    [188]C. Liu, K. Z. Hatsagortsyan. Origin of Unexpected Low Energy Structure in Photoelectron Spectra Induced by Midinfrared Strong Laser Fields[J]. Phys.Rev.Lett.,2010 (105):113003.
    [189]T. M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, D. Bauer. Low-Energy Structures in Strong Field Ionization Revealed by Quantum Orbits[J]. Phys.Rev.Lett.,2010 (105):253002.
    [190]C. Liu, K. Z. Hatsagortsyan. Coulomb focusing in above-threshold ionization in elliptically polarized midinfrared strong laser fields[J]. Phys.Rev.A,2012 (85):023413.
    [191]C. Lemell, K. I. Dimitriou, X.M. Tong, S. Nagele, D. V. Kartashov, J. Burgdorfer, S. Grafe. Low-energy peak structure in strong-field ionization by midinfrared laser pulses: Two-dimensional focusing by the atomic potential[J]. Phys.Rev.A,2012 (85):011403.
    [192]L. F. Dimauro, P. Agostini. Ionization Dynamics in Strong Laser Fields[J]. Adv. Atom. Mol. Opt. Phys.,1995 (35):79-120.
    [193]C. Guo. Multielectron Effects on Single-Electron Strong Field Ionization[J]. Phys.Rev.Lett., 2000 (85):2276-2279.
    [194]I. V. Litvinyuk, K. F. Lee, P. W. Dooley, D. M. Rayner, D. M. Villeneuve, P. B. Corkum. Alignment-Dependent Strong Field Ionization of Molecules[J]. Phys.Rev.Lett.,2003 (90): 233003.
    [195]X. M. Tong, Z. X. Zhao, C. D. Lin. Probing Molecular Dynamics at Attosecond Resolution with Femtosecond Laser Pulses[J]. Phys.Rev.Lett.,2003 (91):233203.
    [196]A. S. Alnaser, S. Voss, X. M. Tong, C. M. Maharjan, P. Ranitovic, B. Ulrich, T. Osipov, B. Shan, Z. Chang, C. L. Cocke. Effects Of Molecular Structure on Ion Disintegration Patterns In Ionization of O2 and N2 by Short Laser Pulses[J]. Phys.Rev.Lett.,2004 (93):113003.
    [197]X. Chu, S. I. Chu. Role of the electronic structure and multielectron responses in ionization mechanisms of diatomic molecules in intense short-pulse lasers:An all-electron ab initio study[J]. Phys.Rev.A,2004 (70):061402.
    [198]D. Dundas, J. M. Rost. Molecular effects in the ionization of N2,O2,and F2 by intense laser fields[J]. Phys.Rev.A,2005 (71):013421.
    [199]D. A. Telnov, S. I. Chu. Effects of electron structure and multielectron dynamical response on strong-field multiphoton ionization of diatomic molecules with arbitrary orientation:An ?all-electron time-dependent density-functional-theory approach[J]. Phys.Rev.A,2009 (79): 041401.
    [200]D. Pavicic, K. F. Lee, D. M. Rayner, P. B. Corkum, D. M. Villeneuve. Direct Measurement of the Angular Dependence of Ionization for N2, O2, and CO2 in Intense Laser Fields[J]. Phys.Rev.Lett.,2007 (98):243001.
    [201]J. Wu, H. Zeng, C. Guo. Comparison Study of Atomic and Molecular Single Ionization in the Multiphoton Ionization Regime[J]. Phys.Rev.Lett.,2006 (96):243002.
    [202]P. Hansch, M. A. Walker, L. D. Van Woerkom. Eight-and nine-photon resonances in multiphoton ionization of xenon[J]. Phys.Rev.A,1998 (57):R709-R712.
    [203]M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavicic, H. C. Bandulet, H. Pepin, J. C. Kieffer, R. Dorner, D. M. Villeneuve, P. B. Corkum. Laser-Induced Electron Tunneling and Diffraction[J]. Science,2008 (320):1478-1482.
    [204]S. Baker, J. S. Robinson, C. A. Haworth, H. Teng, R. A. Smith, C. C. Chirila, M. Lein, J. W. G Tisch, J. P. Marangos. Probing Proton Dynamics in Molecules on an Attosecond Time Scale[J]. Science,2006 (312):424-427.
    [205]C. Cornaggia, J. Lavancier, D. Normand, J. Morellec, P. Agostini, J. P. Chambaret, A. Antonetti. Multielectron dissociative ionization of diatomic molecules in an intense femtosecond laser field[J]. Phys.Rev.A,1991 (44):4499-4505.
    [206]E. Wells, M. J. Dewitt, R. R. Jones. Comparison of intense-field ionization of diatomic molecules and rare-gas atoms[J]. Phys.Rev.A,2002 (66):013409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700