金属离子—分子络合物光解实验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属离子-分子络合物的光诱导反应在许多生物、化学以及物理过程中扮演着重要角色。本论文采用激光溅射和超音速膨胀技术,产生了两种离子-分子络合物Mg~+(OCNC_2H_5)_n 和Mg~+-cytosine,并在反射式飞行时间质谱仪中研究了它们的光解行为。
    在230–440 nm 光谱范围测量了镁离子-异氰酸乙酯分子络合物Mg~+(OCNC_2H_5)_n(n = 1-3)的光解行为光谱。对于二元络合物Mg~+-OCNC_2H_5的光解,既观测到非反应的汽化产物Mg+,也观测到两个弱的反应产物Mg~+OCN 和C_2H_5~+ ;对于多配位体络合物Mg~+(OCNC_2H_5)_(2-3) 的光解,仅观测
    到非反应的蒸发产物。利用密度泛函理论的B3LYP/6-31+G**方法,对络合物Mg~+(OCNC_2H_5)_n(n = 1-3)的光解进行了理论研究。对于Mg~+(OCNC_2H_5)_(1-2,实验测量的光解行为光谱与理论计算的吸收谱符合得很好。在Mg~+与C_2H_5NCO 分子络合化过程中,提出一种新的轨道杂化机制,对络合物Mg~+-OCNC_2H_5 构型中出现的接近直线的Mg~+-O-C-N-C 骨架结构给予了合理解释。
    在Mg~+(3 2~P←3 2~S)原子跃迁的两侧,研究了金属镁离子-碱基分子络合物Mg~+-cytosine 的光诱导反应。在Mg~+原子跃迁的红端和蓝端分别观测到5 个和6 个解离通道。利用密度泛函理论的B3LYP/6-311+G~(**)方法,研究了胞嘧啶分子的互变异构化现象。利用密度泛函理论的B3LYP/6-31+G**方法,优化了4 种Mg~+-cytosine 母体络合物的基态构型,计算了各个解离通道的反应能。根据理论计算结果,对实验观测的解离通道给予了合理解释。
Photo-induced reactions in metal ion-molecular complexes play animportant role in a wide range of biological, chemical, and physical processes.
    Ion-molecule complexes of Mg~+(OCNC_2H_5)_n and Mg~+-cytosine wereproduced in a laser-ablation supersonic expansion source, followed byphotodissociation investigation in the reflection time-of-flight mass spectrometer(RTOFMS).
    Photodissociation action spectra of Mg+(OCNC_2H_5)_(1-3) were recorded in thespectral range of 230-440 nm. Except for minor reactive products Mg+OCN andC2H5 at short wavelengths from the photo-reaction of the singly solvatedcomplex Mg~+(OCNC_2H_5), only evaporation products were observed from thephotodissociation of Mg~+(OCNC_2H_5)_n (n=1-3). Theoretical study was performedon the photodissociation of Mg~+(OCNC_2H_5)_(1-3) at B3LYP/6-31+G~(**) level. Thecalculated absorption spectra of Mg~+(OCNC_2H_5)_(1-2) agree well with observedphotodissociation action spectra. An sp hybridization mechanism was proposedfor the complexation of Mg+ and C2H5NCO, which rationalizing the nearly linearbackbone of Mg~+-O-C-N-C in the complex of Mg~+(OCNC_2H_5).
    Photo-induced reactions in the magnesium cation-base molecule complex ofMg+-cytosine have been studied on both sides of the Mg~+ (3 2~P ←3 2~S) atomictransition (~280 nm). The evaporation product, Mg~+, as well as other four and fivereactive products were observed in the long and short wavelength regions,respectively. The tautomerism of neutral cytosine in gas phase was investigated by
    B3LYP/6-311+G** method. The ground-state geometries of the complexescomposed of magnesium cation and the low-lying tautomers of cytosine werefully optimized at the B3LYP/6-31+G** level. The bond dissociation energies(BDEs) of the complexes for the channels we observed were calculated at thesame theoretical level. Based on the calculations, the dissociation pathways of thecomplexes of Mg+-cytosine were given a reasonable interpretation.
引文
1. M. Elhanine, L. Dukan, P. Ma?tre, W. H. Breckenridge, S. Massick, B. Soep, Solvation of magnesium and singly ionized magnesium atoms in NH3 clusters: theory and experiment, J. Chem. Phys., 2000 (112): 10912-10925.
    2. F. Misaizu, P. L. Houston, N. Nishi, H. Shinohara, T. Kondow, M. Kinoshita, Formation of protonated ammonia cluster ions: two-photon ionization study, J. Chem. Phys., 1993 (98): 336-341.
    3. L. Operti, E. C. Tews, T. J. MacMahon, B. S. Freiser, Thermochemical properties of gas-phase MgOH and MgO determined by Fourier Transfer Mass Spectroscopy, J. Am. Chem. Soc., 1989 (111): 9152-9156.
    4. L. Operti, E. C. Tews, B. S. Freiser, Determination of gas-phase ligand binding energies to Mg~+ by FTMS techniques, J. Am. Chem. Soc., 1988 (110): 3847-3853.
    5. D. E. Lessen, R. L. Asher, P. J. Brucat, Energy dependent photochemistry in the predissociation of V(OCO)~+, J. Chem. Phys., 1991 (95): 1414-1416.
    6. D. E. Lessen, R. L. Asher, P. J. Brucat, Vibrational structure of an electrostatically bound ion-water complex, J. Chem. Phys., 1990 (93): 6102-6103.
    7. T. Shoeib, R. K. Milburn, G. K. Koyanagi, V. V. Lavrov, D. K. Bohme, K. W. Michael Siu, A. C. Hopkinson, A study of complexes Mg(NH_3)_n~+and Ag(NH_3)_n~+ , where n = 1 –8: competition between direct coordination and solvation through hydrogen bonding, Int. J. Mass Spectrom., 2000 (201):87-100.
    8. C. Jouvet, C. Lardeux-Dedonder, M. Richard-Viard, D.Solgadi, A. Tramer, Reactivity of molecular clusters in the gas phase. Proton-transfer reaction in
     neutral phenol-(NH_3)_n and phenol-(C_2H_5NH_2)_n, J. Phys. Chem., 1990 (94):
     5041-5048.
    9. T. Droz, R. Knochenmuss, S. Leutwyler, Excited-state proton transfer in gas-phase clusters: 2-naphthol-(NH_3)_n, J. Chem. Phys., 1990 (93): 4520-4532.
    10.J. I. Lee, D. C. Sperry, J. M. Farrar, Spectroscopy and reactivity of size-selected Mg~+-methanol clusters, J. Chem. Phys., 2001 (114): 6180-6189.
    11.J. Qian, A. J. Midey, S. G. Donnelly, J. I. Lee, and J. M. Farrar, Solvated metal cation photochemistry. Electronic state-selective reaction versus evaporation in Sr~+(CH_3OH)/Sr~+(CH_3OD), Chem. Phys. Lett., 1995 (244): 414-420.
    12.D. C. Sperry, A. J. Midey, J. I. Lee, J. Qian, and J. M. Farrar, Spectroscopic studies of mass selected clusters of Sr+ solvated by H_2O and D_2O, J. Chem. Phys., 1999 (111): 8469-8480.
    13.M. H. Shen, J. M. Farrar, Size-dependent effects in the photodissociation spectra of Sr~+(NH_3)n, n = 1 –4, J. Phys. Chem., 1989 (93):4386-4389.
    14.M. H. Shen, J. M. Farrar, Absorption spectra of size-selected solvated metal cations: electronic states, symmetries, and orbitals in Sr~+(NH_3)_(1, 2) and Sr~+(H_2O)_(1,2,) J. Chem. Phys., 1991 (94):3322-3331.
    15.S. G. Donnelly, J. M. Farrar, Size-dependent photodissociation cross sections for Sr~+(NH_3)_n, n = 3 –6: Rydberg state formation and electron transfer, J. Chem. Phys., 1993 (98):5450-5459.
    16.L. N. Ding, P. D. Kleiber, Y. C. Cheng, M. A.Young, S. V. Oneil, and W. C.Stwalley, Photofragmentation dynamics of Mg(CO_2)~+_(1,2,) J. Chem. Phys., 1995 (102): 5235-5245.
    17.L. N. Ding, P. D. Kleiber, M. A. Young, W. C. Stwalley, A. M. Lyyra, Photodissociation spectroscopy of Mg~(2+) (1 2~Σ_u~+ -2~Σ_g~+ ), Phys. Rev. A, 1993
     (48): 2024-2030.
    18.W.-Y. Lu, R.-G. Liu, T.-H. Wong, J. Chen, P. D. Kleiber, Photoinduced charge transfer dissociation of Al+-ethene, -propene, and –butene, J. Phys. Chem. A, 2002 (106): 725-730.
    19.W.-Y. Lu, T.-H. Wong, P. D. Kleiber, Photochemistry of Zn~+(CH_4), Chem. Phys. Lett., 2001 (347): 183-188.
    20.W.-Y. Lu, P. D. Kleiber, M. A. Young, K.-H. Yang, Photodissociation spectroscopy of Zn~+(C_2H_2), J. Chem. Phys., 2001 (115): 5823-5829.
    21.W.-Y. Lu, P. D. Kleiber, Photochemical dynamics of Mg~+-acetaldehyde: C-H vs. C-C bond activation pathways, Chem. Phys. Lett., 2001 (338): 291-296.
    22.J. H. Holmes, P. D. Kleiber, D. A. Olsgaard, K.-H. Yang, Photodissociation spectroscopy of Ca~+(C_2H_4), J. Chem. Phys., 2000 (112): 6583-6589.
    23.Y. C. Cheng, J. Chen, L. N. Ding, T.-H. Wong, P. D. Kleiber, D.-K. Liu, Photodissociation spectroscopy of MgCH_4~+ , J. Chem. Phys., 1996 (104): 6452-6459.
    24.T.-H. Wong, P. D. Kleiber, Electronic orbital alignment effects in the reaction Mg~* (3p 1~P_1) + CH_4 →MgH + CH_3, J. Chem. Phys., 1995 (102): 6476-6480.
    25.J. Chen, T.-H. Wong, P. D. Kleiber, Photofragmentation spectroscopy of MgC_2H_4~+ , Chem. Phys. Lett., 1997 (279): 185-190.
    26.J. Chen, Y. C. Cheng, P. D. Kleiber, Photodissociation spectroscopy of CaCH_4~+, J. Chem. Phys., 1997 (106): 3884-3890.
    27.J. Chen, T.-H. Wong, Y. C. Cheng, K. Montgomery, P. D. Kleiber, Photodissociation spectroscopy and dynamics of MgC_2H_4~+ , J. Chem. Phys., 1998 (108): 2285-2296.
    28.F. Misaizu, K. Tsukamoto, M. Sanekata, K. Fuke, Photoionization of clusters of Cs atoms solvated with H2O, NH3 and CH_3CN, Chem. Phys. Lett., 1992 (188):241-246.
    29.F. Misaizu, M. Sanekata, K. Fuke, and S. Iwata, Photodissociation study on Mg~+(H_2O)_n, n = 1 –5: electronic structure and photoinduced intracluster reaction, J. Chem. Phys., 1994 (100): 1161-1170.
    30.M. Sanekata, F. Misaizu, and K. Fuke, Photodissociation study on Ca~+(H_2O)_n, n = 1 –6: electron structure and photoinduced dehydrogenation reaction, J. Chem. Phys., 1996 (104): 9768-9778.
    31.S. Yoshida, N. Okai, K. Fuke, Photodissociation of Mg~+(NH_3) ion, Chem. Phys. Lett., 2001 (347):93-100.
    32.M. Levy, S. L. Miller, The stability of the RNA bases: implications for the origin of life, Proc. Natl. Acad. Sci. USA, 1998 (95): 7933-7938.
    33.C. S. Yeh, K. F. Willey, d. L. Robbins, J. S. Pilgrim, M. A. Duncan, Photodissociation spectroscopy of the Mg~+-CO_2 complex and its isotopic analogs, J. Chem. Phys., 1993 (98): 1867-1875.
    34.J. E. Reddic, S. H. Pullins, M. A. Duncan, Photodissociation spectroscopy of the Ca+-Ne complex, J. Chem. Phys., 2000 (112): 4974-4982.
    35.K. N. Kirschner, B. Ma, J. P. Bowen, M. A. Duncan, Theoretical investigation of the Ca~+-N_2 and Ca~(2+)-N_2 complexes, Chem. Phys. Lett., 1998 (295): 204-210.
    36.J. E. Reddic, M. A. Duncan, Photodissociation spectroscopy of the Mg~+-C_2H_2 π-complex, Chem. Phys. Lett., 1999 (312): 96-100.
    37.K. F. Willey, C. S. Yeh, D. L. Robbins, M. A. Duncan, Charge transfer in the photodissociation of metal ion-benzene complexes, J. Phys. Chem., 1992 (96): 9106-9111.
    38.K. F. Willey, P. Y. Cheng, M. B. Bishop, M. A. Duncan, Charge-transfer photochemistry in ion-molecule cluster complexes of silver, J. Am. Chem. Soc., 1991 (113): 4721-4728.
    39.P. D. Kleiber, J. Chen, Spectroscopy and chemical dynamics of weakly bound alkaline-earth metal ion-H2 and alkaline-earth ion-hydrocarbon complexes, Int. Rev. Phys. Chem., 1998 (17): 1-34.
    40.M. A. Duncan, Spectroscopy of metal ion complexes: gas-phase models for solvation, Annu. Rev. Phys. Chem., 1997 (48): 69-93.
    41.S. Hoyau, K. Norrman, T. B. McMahon, G. Ohanessian, A quantitative basis for a scale of Na~+ affinities of organic and small biological molecules in the gas phase, J. Am. Chem. Soc., 1999 (121): 8864-8875.
    42.T. D. M?rk, A. W. Castleman, Jr., Adv. At. Mol. Phys., 1985 (30) 65.
    43.A. W. Castleman, Jr., R. G. Keesee, Chem. Rev., 1986 (86) 589.
    44.A. W. Castleman, Jr., S. Wei, Annu. Rev. Phys. Chem., 1994 (45) 685.
    45.M. T. Rodgers, P. B. Armentrout, Noncovalent interactions of nucleic acid bases (uracil, thymine, and adenine) with alkali metal ions. Threshold collision-induced dissociation and theoretical studies, J. Am. Chem. Soc., 2000 (122):8548-8558.
    46.P. B. Armentrout, M. T. Rodgers, An absolute sodium affinity scale: threshold collision-induced dissociation experiments and ab initio theory, J. Phys. Chem. A, 2000 (104):2238-2247.47.P. B. Armentrout, B. L. Tjelta, Dramatic ligand effects on gas-phase transition-metal reactivity and selectivity: studies of Fe~+, Fe~+(H_2O), and Fe~+(CO) with propane, Organometallics, 1997 (16): 5372-5374.
    48.C. W. Bauschlicher Jr., The ground and low-lying excited states of MgH_2~+ , Chem. Phys. Lett., 1993 (201): 11-14.
    49.C. W. Bauschlicher Jr., H. Partridge, S. R. Langhoff, Theoretical study of metal noble-gas positive ions, J. Chem. Phys., 1989 (91): 4733-4737.
    50.C. W. Bauschlicher Jr., H. Partridge, A determination of Mg+-ligand binding energies, J. Phys. Chem., 1991 (95): 3946-3950.
    51.C. W. Bauschlicher Jr., S. R. Langhoff, H. Partridge, The binding energies of Cu~+-(H_2O)_n and Cu~+-(NH_3)+n (n = 1 –4), J. Chem. Phys., 1991 (94): 2068-2072.
    52.K. Hashimoto, S. He, K. Morokuma, Structures, stabilities and ionization potentials of Na(H_2O)_n and Na(NH_3)_n (n = 1 –6) clusters. An ab initio MO study, Chem. Phys. Lett., 1993 (206): 297-304.
    53.K. Hashimoto, K. Morokuma, Ab initio theoretical study of “surface”and “interior”structures of the Na(H_2O)_4 cluster and its cation, Chem. Phys. Lett., 1994 (223): 423-430.
    54.K. Hashimoto, K. Morokuma, Ab initio molecular orbital study of Na(H_2O)_n (n = 1 –6) clusters and their ions. Comparison of electronic structure of the “surface”and “interior”complexes, J. Am. Chem. Soc., 1994 (116): 11436-11443.
    55.K. Hashimoto, K. Morokuma, Ab initio MO study of Na(NH_3)_n (n = 1 –6) clusters and their ions: a systematic comparison with hydrated Na clusters, J. Am. Chem. Soc., 1995 (117): 4151-4159.
    56.K. Ohshimo, H. Tsunoyama, Y. Yamakita, F. Misaizu, K. Ohno, Photoionization and density functional study of clusters of alkali metal atoms solvated with acetonitrile molecules, M(CH_3CN)_n (M = Li and Na), Chem. Phys. Lett., 1999 (301): 356-364.
    57.E. M. Cabaleiro-Lago, M. A. Ríos, Ab initio study of M(CH_3CN)_n clusters (M = Li~+, Na~+, Mg~(2+)) in the gas phase, Chem. Phys., 2000 (254): 11-23.
    58.L. N. Ding, M. A. Young, P. D. Kleiber, W. C. Stwalley, A. M. Lyyra, J. Phys. Chem., 1993 (97): 2181-2185.
    59.L. N. Ding, P. D. Kleiber, Y. C. Cheng, M. A. Young, S. V. O’Neil, J. Chem. Phys., 1995 (102): 5235-5245.
    60.C. S. Yeh, J. S. Pilgrim, K. F. Willey, D. L. Robbins, and M. A. Duncan, Spectroscopy of weakly-bound magnesium ion complexes, Int. Rew. Phys. Chem., 1994 (13):231-262.
    61.K. F. Willey, C. S. Yeh, D. L. Robbins, J. S. Pilgrim, and M. A. Duncan, Photodissociation spectroscopy of Mg~+-H_2O and Mg~+-D_2O, J Chem. Phys., 1992 (97):8886-8895.
    62.C. W. Bauschlicher, Jr., M. Sodupe, and H. Partridge, A theoretical study of the positive and dipositive ions of M(NH_3)_n and M(H_2O)_n for M = Mg, Ca, or Sr, J. Chem. Phys., 1992 (96): 4453-4463.
    63.Sodupe, M.; Bauschlicher, Jr., C. W. Chem. Phys. Lett., A theoretical study of the spectroscopy of MgH_2O~+ and MgCH_3OH~+, 1992 (195):494-499.
    64.W. Lu, S. Yang, Reactions of alkaline earth metal ions with methanol clusters, J. Phys. Chem. A, 1998 (102):825-840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700