分子间相互作用体系的键,结构和性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Theoretical Studies on Bonds, Structures and Properties of Intermolecular Interaction Systems
  • 作者:孙晓颖
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2006
  • 导师:唐敖庆 ; 李志儒
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2006-04-01
摘要
本论文对分子间相互作用体系的键,结构和性质进行了理论研究。主要包括以下几个体系:
    (1)(He-Ne-He)~+体系的有趣的不对称线性结构已经被报道。在含稀有气体原子的(ABA)~+型的三原子阳离子的分子间相互体系Ne3~+,(Ar-He-Ar)~+, (Ar-Ne-Ar)~+, (Ar-O-Ar)~+和(He-O-He)~+中,使用CCSD(T)/aug-cc-pVDZ方法,并经Counterpoise校正,我们发现了五个新的不对称线性结构。并且揭示了这些不对称线性结构形成的原因是前两个原子的相互作用占优势。特别是发现了这些相互作用可分为四类:三电子σ型半键,三电子π型半键,弱的σ键和阳离子与原子之间的吸引。
    (2)含单碱金属的极性分子体系具有电子化物特性并且有大的非线性光学响应。为了了解增加碱金属原子引起相应体系的结构和性质的效应。使用从头算的方法优化Li_2(HF)n (n = 1~4)体系,得到带着实频的八个结构。根据Li_2子体系的成键特征,这个八个结构被分成四类。由于Li_2子体系的弥散电子的存在,我们预测了Li_2(HF)_n (n = 1~4)(除了中心对称的4a结构之外)具有大的一阶超极化率(β_0) (1496–4700 au)。并且发现了提高一阶超极化率的方法。那就是在Li_2(HF)_n (n = 1~4)体系中,在带大正电荷的锂原子附近增加HF分子的数目并且在带着小正电荷或是负电荷的锂原子附近减少HF分子的数目。
    (3)我们发现了一个新的超原子Li(HF)_3Li,与已知的超原子不同,它是分子间相互作用的体系。这个Li(HF)_3Li有着金属-非金属-金属类似夹心型的结构。这个Li(HF)_3Li有着一个被额外电子云包围着的复杂核,
(1) By the counterpoise (CP) geometry optimization at the level ofCCSD(T)/aug-cc-pVDZ, the asymmetrical linear structures with all thereal frequencies were obtained for the triatomic cations of (ABA)~+ type:Ne_3~~+, (He-Ne-He)~+, (Ar-Ne-Ar)~+, (Ar-He-Ar)~+, (He-O-He)~+ and(Ar-O-Ar)~+. The validity of this optimization method is confirmed bythe comparing with the method of the potential energy surface for thecalculations of Ne_3~+ and (He-Ne-He)~+. Using the molecular orbitaltheory, it is found that the interaction within the triatomic cations isdominated by the contribution from the first two atoms while thecontribution from the third atom is small. This result is justified as adirect consequence of forming an asymmetrical linear structure.Specifically, four types of interaction within the triatomic cations are
    identified: three-electron σ-type hemibond, three-electron π-typehemibond, two-electron σ bond and the attraction between cation andatoms. For Ne3+, (He-Ne-He)+ and (He-O-He)+ clusters, it is shown thatthe electron correlation effect supports the asymmetry.(2) Using ab initio calculation, eight structures with all realfrequencies are obtained for the Li2(HF)n (n = 1 ~ 4) clusters.According to the bonding characteristic of the Li2 subunit, thesestructures are classified into four kinds. Firstly, one structure includesthe Li-Li covalent bond with about distance of Li2. Secondly, threestructures include {Li-Li}+ hemibonds with about distance of Li2+.Thirdly, one structure has {Li Li}+ with van der Waals Li-Li distance.Fourthly, three structures have Li+ ···Li with more than van der WaalsLi-Li distance. The Li2(HF)n clusters, except cluster 4a with the centralsymmetry, are predicted to have the large first hyperpolarizabilities (β0)(1496 – 4700 au)) due to the existence of the diffuse electrons of Li2subunit. We find that increasing the number of HF molecule near Liatom with the large positive charge (atom Li2) or decreasing thenumber of HF molecule near Li atom with the small positive ornegative charge (atom Li1), the β0 value is enhanced. Thus the methodof increasing the β0 value is that decreasing the number of HF moleculenear Li atom with the small positive or negative charge (atom Li1) and
    increasing the number of HF molecule near Li atom with the largepositive charge (atom Li2) in Li 2(HF) n (n = 1 ~ 4).(3) The structure and properties of the Li(HF)3Li cluster with C3hsymmetry are investigated using ab initio calculation. The Li(HF)3Li isa metal-nonmetal-metal sandwich-like cluster mainly connected by theintermolecular interactions. In the especial cluster, the (HF)3 containingthe triangular F ring with the negative charges is sandwiched inbetween two Li atom. It is interesting that under the action of thetriangular F ring with the negative charges, the valence electrons of twoLi atoms are pushed out to form the distended excess electron cloudthat surrounds the Li(HF)3Li as a core. So the Li(HF)3Li cluster showsnot only the electride characteristic but also new superatomcharacteristics. Some characteristics of the especial superatom arefound. (1) The superatom contains the double shell nucleus. Theinternal nucleus is the regular triangular ring made of three F atomswith the negative charge and the outer-shell nucleus is made of three Hand two Li atoms with the positive charge. (2) The bonding force of thissuperatom framework is mainly the intermolecular interaction force,the lithium bond, which is different from that (covalent bond or ionicbond) of the general superatoms. (3) The interaction between theouter-shell nucleus and the excess electron cloud is mainly the
    anti-excess-electron hydrogen bond. (4) The especial superatomexhibits the new aromaticity (NICS = -8.37 ppm at the center of theregular triangular F ring), which is the aromaticity found in the clusterof the intermolecular interaction. This is the new knowledge on thearomaticity. (5) The large polarizability of the superatom is revealed.Further, the vertical ionization energy (VIE) of the superatom is verylow, 4.51eV (smaller than 5.210eV of the alkaline-earth metal Ba) sothat it may be viewed as a super alkaline-earth metal atom.(4) Using ab initio calculation, three structures with all realfrequencies are obtained for the Li (HF)n (n = 1 ~ 4) clusters. Thedipole moments (μ), polarizabilities(α0) and the firsthyperpolarizabilities (β0) of Li(HF)n (n = 2 ~ 4) are investigated atMP2/6-311++G(3df,3pd) method. The large first hyperpolarizabilities(β0) (5572 ~ 11751 au) are found. It is revealed that the contributions ofLi polarized to α0 and β0 values are dominant.
引文
[1]. Clusters of Atoms and Molecules, edited by H. Haberland, Springer Series in Chemical Physics, Vol. 52 (Springer-Verlag, New York, 1994).
    [2]. M. Fieber, G. Broker, and A. Ding, Z. Phys. D: At., Mol. Clusters, 20, 21 (1991).
    [3]. N. E. Levinger, D. Ray, M. L. Alexander, and W. C. Lineberger, Photoabsorption and photofragmentation studies of Arn+ cluster ions, J. Chem.Phys. 89, 5654-5662 (1988).
    [4]. Z. Y. Chen, C. R. Albertoni, M. Hasegawa, R. Kuhn, and A.W. Castleman, Ar_3~+ photodissociation and its mechanisms, J. Chem. Phys. 91, 4019-4025 (1989).
    [5]. A. Bastida, N. Halberstadt, J. A. Beswick, F. X. Gadea, U. Buck, R. Galonska, and C. Lauenstein, Electron impact ionization of small argon clusters, Chem. Phys. Lett. 249, 1-6 (1996).
    [6]. A. Bastida, N. Halberstadt, J. A. Beswick, and F. X. Gadea, Modeling the production and fragmentation of Ar_3~+ after threshold photon impact ionization of Ar3, J. Chem. Phys. 104, 6907-6908 (1996).
    [7]. D. A. Kirkwood, C. A. Woodward, A. Mouhandes, A. J. Stace, A. Bastida, J. Zuniga, A. Requena, and F. X. Gadea, Experimental and theoretical study of the photofragmentation process: Ar_3~+ + h Ar_2~+ + Ar, J. Chem. Phys. 113, 2175-2181 (2000).
    [8]. T. Laarmann, A. Kanaev, K. von Haeften, J. Wabnitz, R. von Pietrowski, and T. M?ller, Evolution of the charge localization process in xenon cluster ions: From tetramer to dimer cores as a function of cluster size, J. Chem. Phys. 116, 7558-7563 (2002).
    [9]. N. L. Doltsinis and P. J. Knowles, Theoretical photoabsorption spectra of Ar_n~+ clusters, Chem. Phys. Lett. 325, 648-654 (2000).
    [10]. R. Parajuli, S. Matt, O. Echt, A. Stamatovic, P. Scheier, and T. D. Mark, Chem. Phys. Lett. 353, 288 (2002).
    [11]. I. Baccarelli, F. A.Gianturco, and F. J. Schneider, Phys. Chem. 101, 6054 (1997).
    [12]. M. F. Satterwhite and Gregory I. Gellene Ab initio QCISD(T) calculations of the ground potential energy surface of He~(3+), J. Phys. Chem. 99, 13397-13401 (1995).
    [13]. N.L.Doltsinis and P. Knowles, J. Mol. Phys., 96, 749 (1999).
    [14]. J. N. Murrell, F. Y. Naumkin, and C. R. Griffiths, Mol. Phys. 99, 225 (2001).
    [15]. K. Hiraoka, A. Shimizu, A. Minamitsu, M. Nasu, H. Wasada, and S. Yamabe, Formation of the trimer ion core in the heterogeneous rare gas cluster ions, J. Chem. Phys. 108, 6689-6697 (1998).
    [16]. Z. Huang and Z. H. Zhu. J. Mol. Struct. 440, 53 (1998).
    [17]. J. Seong, A. Rohrbacher, Z.-R. Li, K. C. Janda, F.-M. Tao, F. Spiegelmann and N. Halberstadt, Potential energy surfaces for HenNe+ ions: ab initio and diatomics-in-molecule results, J. Chem. Phys., 120, 7456-7463 (2004).
    [18]. B. Bra?da, D. Lauvergnat, and P. C. Hiberty, Symmetry-breaking and near-symmetry-breaking in three-electron-bonded radical cations, J. Chem. Phys., 115, 90-102 (2001).
    [19]. J. E. King and A. J. Illies. Two-Center Three-Electron Bonding Involving Tellurium, J. Phys. Chem. A. 108, 3581-3585 (2004)
    [20]. K.-D. Asmus, In sulfur-Centered Reactive Intermidiates in Chemistry and Biology;C.Chatgilialoglu and K.-D. Asmus, Eds.;Plenum Press: New York, 1990;p 155 and references therein.
    [21]. T. Clark, Odd-electron .sigma. bonds, J. Am. Chem. Soc. 110, 1672-1678 (1988) and references therein.
    [22]. C. Y. Ng, Adv. Chem. Phys. 52, 263 (1983).
    [23]. T. D. Mark and A. W. Castleman, Jr., Adv. At. Mol. Phys. 20, 66 (1985).
    [24]. A. W. Castleman, Jr. and R. G. Keesee, Chem. Rev. 86, 589 (1986).
    [25]. M. C. R. Symons and W. R. Bowman, J. Chem. Soc., Perkin Trans. 2, 975 (1990).
    [26]. M. Goez, J. Rozwadowski, and B. Marciniak, Angew. Chem., Int Ed. 37, 628 (1998).
    [27]. B. L. Miller, K. Kuczera, and C. Sch?neich, One-Electron Photooxidation of N-Methionyl Peptides. Mechanism of Sulfoxide and Azasulfonium Diastereomer Formation through Reaction of Sulfide Radical Cation Complexes with Oxygen or Superoxide, J. Am. Chem. Soc., 120, 3345-3356 (1998).
    [28]. S. Humbel, I. C?te, N. Hoffmann, and J. Bouquant, Three-Electron Binding between Carbonyl-like Compounds and Ammonia Radical Cation. Comparison with the Hydrogen Bonded Complex, J. Am. Chem. Soc., 121, 5507-5512 (1999).
    [29] X. Y. Sun, Z. R. Li, D. Wu, C. C. Sun, S. Gudowski, F.M. Tao, and K. C. Janda, Asymmetrical Linear Structures Including Three-Electron Hemibonds or Other interactions in the [ABA] Type Triatomic Cations: Ne3+, (He-Ne-He)+, (Ar-Ne-Ar)+, (Ar-O-Ar)+, (He-O-He)+ and (Ar-He-Ar)+, J.Chem. Phys. 123, 134304 (2005)
    [30]. S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hir-ano, I. Tanaka, H. Hosono, Science. 301, 626 (2003).
    [31]. W. Chen, Z. R. Li, D. Wu, Y. Li, C. C. Sun, and F. L. Gu, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole, J. Am. Chem. Soc. 127, 10977-10981 (2005).
    [32]. J. Kim, A. S. Ichimura, R. H. Huang, M. Redko, R. C. Phillips, J. E. Jackson, J. L. Dye, Crystalline Salts of Na-and K-(Alkalides) that Are Stable at Room Temperature, J. Am. Chem. Soc. 121, 10666-10667 (1999).
    [33]. M. Y. Redko, M. Vlassa, J. E. Jackson, A. W. Misiolek, R. H. Huang, J. L. Dye, "Inverse Sodium Hydride": A Crystalline Salt that Contains H+ and Na-, J. Am. Chem. Soc. 124, 5928-5929 (2002).
    [34].A. Sawicka, P. Skurski, J. Simons, Inverse Sodium Hydride: A Theoretical Study, J. Am. Chem. Soc. 125, 3954-3958 (2003).
    [35]. W. Chen, Z. R. Li, D. Wu, Y. Li, C. C. Sun, Inverse Sodium Hydride: Density Functional Theory Study of the Large Nonlinear Optical Properties, J. Phys. Chem. A 109, 2920-2924 (2005).
    [36]. W. Chen, Z. R. Li, D. Wu, Y. Li, C. C. Sun, F. L. Gu, Y. Aoki, Nonlinear Optical Properties of Alkalides Li+(calix[4]pyrrole)M-(M = Li, Na, and K): Alkali Anion Atomic Number Dependence, J. Am. Chem. Soc. 128, 1072-1073 (2006).
    [37]. J. L. Dye, Inorg. Chem. 36, 3816 (1997).
    [38]. Z. Y. Li, J. L. Yang, J. G. Hou, Q. S. Zhu, Inorganic Electride: Theoretical Study on Structural and Electronic Properties, J. Am. Chem. Soc. 125, 6050-6051 (2003).
    [39]. D. M. Moloney, Nature Genet. 13, 48 (1996).
    [40]. Magnetic, Electrical and Spectroscopic Studies of Alkalides and Electrides, J. L. Dye, Physical Supramolecular Chemistry, L. Echegoyen and A. Kiefer, Eds., Kluwer Academic Publishers, Dordrecht, Netherlands, 313 (1996)
    [41]. J. H. Hendricks, M. L. Clersq, S. A. Lyspustina, K. H. Bowen, Negative ion photoelectron spectroscopy of the ground state, dipole-bound dimeric anion, (HF)2ˉ, J. Chem. Phys. 107, 2962-2967 (1997).
    [42]. R. Ramaekers, D. M. A. Smith, J. Smets, L. Adamowicz, Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF) 3ˉ and (HF)4ˉ anions, J. Chem. Phys. 107, 9475-9481 (1997).
    [43]. M. Gutowski, P. Skurski, Chem. Phys. Lett. 300, 331 (1999).
    [44]. Th. Klahn, P. Krebs, Electron and anion mobility in low density hydrogen cyanide gas. II. Evidence for the formation of anionic clusters, J. Chem. Phys. 109, 543-550 (1998).
    [45]. T. Tsurusawa, S. Iwata, Dipole-bound and interior electrons in water dimer and trimer anions: ab initio MO studies, Chem. Phys. Lett. 287, 553-562 (1998).
    [46]. T. Tsurusawa, S. Iwata, Theoretical studies of the water-cluster anions containing the OH{e}HO structure: energies and harmonic frequencies, Chem. Phys. Lett. 315, 433-440 (2000).
    [47]. K. S. Kim, I. Park, S. Lee, K. Cho, J. Y. Lee, J. Kim, J. D. Joannopoulos, The Nature of a Wet Electron, Phys. Rev. Lett. 76, 956-959 (1996).
    [48]. S. Lee, S. J. Lee, J. Y. Lee, J. Kim, K. S. Kim, I. Park, K. Cho, J. D. Joannopoulos, Ab initio study of water hexamer anions, Chem. Phys. Lett. 254, 128-134 (1996).
    [49]. K. S. Kim, S. Lee, J. Kim, and J. Y. Lee, Molecular Cluster Bowl To Enclose a Single Electron, J. Am. Chem. Soc. 119, 9329-9330 (1997).
    [50]. J. Kim, J. M. Park, K. S. Oh, J. Y. Lee, S. Lee, K. S. Kim, Structure, vertical electron-detachment energy, and O–H stretching frequencies of e+(H2O)12, J. Chem. Phys. 106, 10207-10214 (1997).
    [51]. S. Lee, J. Kim, S. J. Lee, K. S. Kim, Novel Structures for the Excess Electron State of the Water Hexamer and the Interaction Forces Governing the Structures, Phys. Rev. Lett. 79, 2038-2041 (1997).
    [52]. P. Ayotte, M. A. Johnson, Electronic absorption spectra of size-selected hydrated electron clusters: (H2O)nˉ, n = 6–50, J. Chem. Phys. 106, 811-814 (1997).
    [53]. P. J. Campagnola, L. A. Posey, M. A. Johnson, The angular distribution of photoelectrons ejected from the hydrated electron cluster (H2O), J. Chem. Phys. 92, 3243-3245 (1990).
    [54]. L. A. Posey, M. A. Johnson, Photochemistry of hydrated electron clusters (H2O) nˉ (15 n 40) at 1064 nm: Size dependent competition between photofragmentation and photodetachment, J. Chem. Phys. 89, 4807-4814 (1988).
    [55]. J. Kim, I. Becker, O. Cheshnovsky, M. A. Johnson, Photoelectron spectroscopy of the ‘missing' hydrated electron clusters (H_2O)_n~-, n=3, 5, 8 and 9: Isomers and continuity with the dominant clusters n=6, 7 and 11, Chem. Phys. Lett. 297, 90-97 (1998).
    [56]. L. A. Posey, P. J. Campagnola, M. A. Johnson, G. H. Lee, J. G. Eaton, K. H. Bowen, On the origin of the competition between photofragmentation and photodetachment in hydrated electron clusters, (H2O), J. Chem. Phys. 91, 6536-6538 (1989).
    [57]. J. Kim, S.B. Suh, K.S. Kim, Water dimer to pentamer with an excess electron: Ab initio study, J. Chem. Phys. 111, 10077-10087 (1999).
    [58]. X. Y. Hao, Z. R. Li, D Wu, Y. Wang, Z. S. Li, C. C. Sun, A theoretical prediction on intermolecular monoelectron dihydrogen bond H eH in the cluster anion (FH)_2{e}(HF)_2, J. Chem. Phys. 118, 83-86 (2003).
    [59]. A. F. Jalbout, C. A. Morgado, L. Adamowicz, An excess electron trapped in molecular tweezers: ab initio study, Chem. Phys. Lett. 383, 317-320 (2004).
    [60]. A. E. Bragg, J. R. R. Verlet, A. Kammrath, O. Cheshnovsky, D. M. Neumark, Scinece. 306, 669 (2004).
    [61]. D. H. Paik, I. R. Lee, D. S. Yang, J. S. Baskin, A. H. Zewail, Science. 306, 672 (2004).
    [62]. N. I. Hammer, J. W. Shin, J. M. Headrick, E. G. Diken, J. R. Roscioli, G. H. Weddle, M. A. Johnson. Scinece. 306, 675 (2004).
    [63]. X. Y. Hao, Z. R. Li, D. Wu, Z. S. Li, C. C. Sun, The evolution of the monoelectron dihydrogen bond H e H in the symmetric and asymmetric cluster anions (FH)_n{e}(HF)_m, J. Chem. Phys. 118, 10939-10943 (2003).
    [64]. W. Chen, Z. R. Li, D. Wu, F. L. Gu, X. Y. Hao, B. Q. Wang, R. J. Li, C. C. Sun, The static polarizability and first hyperpolarizability of the water trimer anion: Ab initio study, J. Chem. Phys. 121, 10489-10494 (2004).
    [65]. Y. Li, Z. R. Li, D. Wu, R. Y. Li, X. Y. Hao, C. C. Sun, An ab Initio Prediction of the Extraordinary Static First Hyperpolarizability for the Electron-Solvated Cluster (FH)2{e}(HF), J. Phys. Chem. B 108, 3145-3148 (2004).
    [66]. R. Takasu, F. Misaizu, K. Hashimoto, K. Fuke, Microscopic Solvation Process of Alkali Atoms in Finite Clusters: Photoelectron and Photoionization Studies of M(NH_3)n and M(H_2O)_n (M = Li, Li-, Na-), J. Phys. Chem. A 101, 3078-3087 (1997).
    [67]. I. V. Hertel, C. Huglin, C. Nitsch, C. P. Schulz, Photoionization of Na(NH_3)n and Na(H_2O)n clusters: A step towards the liquid phase? Phys. ReV. Lett. 67, 1767-1770 (1991).
    [68]. F. Misaizu, K. Tsukamoto, M. Sanekata, K. Fuke, Photoionization of clusters of Cs atoms solvated with H2O, NH3 and CH3CN, Chem. Phys. Lett. 188, 241-246 (1992).
    [69]. T. Tsurusawa, S. Iwata, Theoretical Studies of Structures and Ionization Threshold Energies of Water Cluster Complexes with a Group 1 Metal, M(H2O)n (M = Li and Na), J. Phys. Chem. A 103, 6134-6141 (1999).
    [70]. T. Tsurusawa, S. Iwata. Electron-hydrogen bonds and OH harmonic frequency shifts in water cluster complexes with a group 1 metal atom, M(H_2O)n (M=Li and Na), J. Chem. Phys. 112, 5705-5710 (2000).
    [71]. W. Chen, Z. R. Li, D. Wu, R. Y. Li, C. C. Sun, Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)_n Clusters with Li Atom, J. Phys. Chem. B 109, 601-608 (2005).
    [72] X. Y. Sun, Z. R. Li, D. Wu, F. F. W, and C. C. Sun, Chem. Phys.Chem. Structures and NLO Properties of the Li2(HF)n (n = 1 ~ 4) Clusters, Submitted
    [73] W. D.Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y.Chou, and M. L.Cohen, Electronic Shell Structure and Abundances of Sodium Clusters, Phys. Rev. Lett. 52, 2141-2143 (1984).
    [74] W. Ekardt, Work function of small metal particles: Self-consistent spherical jellium-background model, Phys. Rev. B 29, 1558-1564 (1984).
    [75] R. E. Leuchtner, A. C. Harms, and A. W. Jr. Castleman, Thermal metal cluster anion reactions: Behavior of aluminum clusters with oxygen, J. Chem. Phys. 91, 2753-2754 (1989).
    [76] A. C. Harms, R. E.Leuchtner, S. W. Sigsworth, and A. W. Jr. Castleman, Gas-phase reactivity of metal alloy clusters, J. Am. Chem. Soc. 112, 5673-5674 (1990).
    [77] B. K. Rao, and P. J. Jena, Chem. Phys. 111, 1890 (1999).
    [78] X. Li, A. E. Kuznetsov, H. F. Zhang, A. I. Boldyrev, and L. S. Wang, Science 291, 859 (2001).
    [79] C. G. Zhan, F. Zheng, and D. A. Dixon, Electron Affinities of Aln Clusters and Multiple-Fold Aromaticity of the Square Al_4~(2-) Structure, J. Am. Chem. Soc. 124, 14795-14803 (2002).
    [80] A. E. Kuznetsov, and A. I. Boldyrev, Struct. Chem. 13, 141 (2002).
    [81] A. E. Kuznetsov, A. I. Boldyrev, X. Li,;L. S. Wang, On the Aromaticity of Square Planar Ga_4~(2-) and In_4~(2-) in Gaseous NaGa_4~-and NaIn_4~-Clusters, J. Am. Chem. Soc. 123, 8825-8831 (2001).
    [82] A. I. Boldyrev, and A. E. Kuznetsov, On the Resonance Energy in New All-Metal Aromatic Molecules, Inorg. Chem. 41, 532-537 (2001).
    [83] A. N. Alexandrova, and A. I. Boldyrev, -Aromaticity and -Antiaromaticity in Alkali Metal and Alkaline Earth Metal Small Clusters, J. Phys. Chem. A 107, 560 (2003).
    [84] A. E. Kuznetsov, A. I. Boldyrev, H. J. Zhai, X. Li, and L. S.Wang, Al62--Fusion of Two Aromatic Al3-Units. A Combined Photoelectron Spectroscopy and ab Initio Study of M~+[Al_6~(2-)] (M = Li, Na, K, Cu, and Au), J. Am. Chem. Soc. 124, 11791-11801 (2002).
    [85] Y. C. Byun, S. Saebo, and C. U. Jr. Pittman, An ab initio study of potentially aromatic and antiaromatic three-membered rings, J. Am. Chem. Soc. 113, 3689-3696 (1991).
    [86] G. v. Zandwijk, R. A. J. Janssen, and H. M. Buck, 6.pi. Aromaticity in four-membered rings, J. Am. Chem. Soc. 112, 4155-4164 (1990).
    [87] Q. S. Li, and L. P. Cheng, Aromaticity of Square Planar N_4~(2-) in the M2N4 (M = Li, Na, K, Rb, or Cs) Species, J. Phys. Chem. A 107, 2882-2889 (2003).
    [88] D. E. Jr. Bergeron, A. W. Castleman, T. Morisato, and S. N. Khanna, Science 304, 84 (2004).
    [89] J. M. Mercero, and J. M.Ugalde, Sandwich-Like Complexes Based on "All-Metal" (Al42-) Aromatic Compounds, J. Am. Chem. Soc. 126, 3380-3381 (2004).
    [90] W. Chen, Z. R. Li, D. Wu, Y. Li, and C. C. Sun, Li_3–O–Li_3 molecule: A metal-nonmetal-metal sandwichlike compound with a distending electron cloud, J. Chem. Phys. 123, 164306 (2005).
    [91] Y. Li, Z. R. Li, D. Wu, W. Chen, and C. C. Sun. Chem.Phys.Chem. 6, 2562 (2005).
    [92] X. Y. Sun, Z. R. Li, D. Wu, and C. C. Sun, J.Chem. Phys. An Unordinary Superatom Containing the Double Shell Nucleus: Li(HF)_3Li Mainly Connected by the Intermolecular Interactions, J. Chem. Phys. Submitted
    [1]. M. Bor and R. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 84, 457,(1927) .
    [2]. (a) W. J. Hehre, L. Radom and P. v. R. Schleyer, et al., Ab Initio Molecular Orbital Theory, John Wiley &Sons, Inc., 1986. (b) D.A. McQuarrie, Quantum Chemistry University Science Books: Mill Vally. CA. (1983).
    [3]. (a) 唐敖庆, 杨忠志, 李前树, 量子化学, 北京, 科学出版社, (1982). (b) 徐光宪, 黎乐民, 王德民, 量子化学基本原理和从头计算法, 北京, 科学出版社, (1985).
    [4]. P. O. Lowdin, Correlation Problem in Many-Electron Quantum Mechanics Adv. Chem. Phys. 2, 207, (1959).
    [5]. J. A. Pople, R. Seeger and R. Krishnan, Variational Configuration Interaction Methods and Comparison with Perturbation Theory, Int. J. Quant. Chem. 11, 149, (1977).
    [6]. J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, Toward a Systematic Molecular Orbital Theory for Excited States, J. Phys. Chem. 96, 135,(1992).
    [7]. R. Krishnan, H. B. Schlegel and J. A. Pople, Derivate Studies in Configuration Interaction Theory J. Chem. Phys. 72, 4654, (1980).
    [8]. B.R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi and H.F. Schaefer, Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach J. Chem. Phys. 72, 4652, (1980) .
    [9]. E. A. Salter, G. W. Trucks and R. J. Bartlett, Analytic Energy Derivatives in Many-Body Methods I. First Derivatives, J. Chem. Phys. 90, 1752, (1989).
    [10]. K. Raghavachari and J. A. Pople, Int. J. Quant. Chem. 20, 167, (1981).
    [11]. J. A. Pople, M. Head-Gordon, K. Raghavachari, Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies, J. Chem. Phys. 87, 5968, (1987).
    [12]. J. Cioslowski, A New Robust Algorithm for Fully Automated Determination of Attactor Interaction Lines in Moleclues, Chem. Phys. Lett. 219, 151, (1994).
    [13]. H. B. Schlegel, M. A. Robb, MCSCF Gradient Optimization of the H2CO→H2+CO Transition Structure, Chem. Phys. Lett. 93, 43, (1982).
    [14]. R. H. E. Eade and M. A. Robb, Direct Minimization in MCSCF Theory. The Quasi-Newton Method, Chem. Phys. Lett. 83, 362, (1981).
    [15]. D. Hegarty and M. A. Robb, Application of Unitary Group Methods to Configuration Interaction Calculations, Mol. Phys. 38, 1795, (1979).
    [16]. P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B, 136, 864, (1964).
    [17]. W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A, 140, 1133, (1965).
    [18]. J. C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, (1974).
    [19]. D. R. Salahub and M.C. Zerner, eds., The Challenge of d and f Electrons ACS: Washington, D.C., (1989).
    [20]. R.G. Parr and W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    [21]. J. A. Pople, P. M. W. Gill and B. G. Johnson, Kohn-Sham density-functional theory within a finite basis set, Chem. Phys. Lett,. 199, 557, (1992).
    [22]. B. G. Johnson and M. J. Frisch, An implementation of analytic second derivatives of the gradient-corrected density functional energy, J. Chem. Phys. 100, 7429, (1994).
    [23]. J. K. Labanowski and J. W. Andzelm, eds. Density Functional Methods in Chemistry, Springer-Verlag: New York, (1991).
    [24]. K. Fukui, Variational Principles in a Chemical Reaction, Int. J. Quantum. Chem. 15, 633, (1981).
    [25]. K. Fukui, A. Tachibana and K. Yamashita, Toward Chemodynamics, Int. J. Quantum. Chem. 15, 621, (1981).
    [26]. B. Wang, H. Hou and Y. Gu, J. Phys. Chem. A, 103, 8021, (1999).
    [27]. 王一波 中国科学 B 辑 25(10), 1016,(1995).
    [28]. S. F. Boyns, Bermardi F. Mol. Phy. 19, 553, (1970).
    [29]. D. E.Woon J. Chem. Phys. 100(4), 2838, (1994).
    [30]. F. M. Tao, Y. K. Pan J. Chem. Phys. 82(1), 270, (1985).
    [31]. F. M. Tao, Y. K. Pan J. Chem. Phys. 97(1), 4989, (1992).
    [32]. M. Panich, J. Chem. Phys. 196, 511, (1995).
    [33]. F.M.Tao, “Bond functions, basis set superposition errors and other practical issues with ab initio calculations of intermolecular potentials”, Int. Rev. in Phys.Chem., 20(4), 617-643, (2001).
    [34]. 孙延波,吴迪,李志儒,孙家钟,“键函数对 ArCl-相互作用势理论计算结果的影响”,Chem. J. Chin. Univ.(高等学校化学学报) 23(1), 121 ~ 122, (2002).
    [35]. Zhi-Ru Li, Fu-Ming Tao, Yuh-Kang Pan, Int. J. Quantum Chem. 57, 202, (1996).
    [36]. Fu-Ming Tao, Zhi-Ru Li, Yuh-Kang Pan, Chem. Phys. Lett. 255, 179, (1996).
    [37]. P. A. Franken, A.E.Hill, A.E. et al., Phys. Rev. Lett., 7, 118, (1961).
    [38]. C.-T.Chen, G. -Z. Liu, Ann.Rev. Mater., 16, 203, (1986).
    [39]. D.J.Williams, ,ed., “ Nonlinear Optical Prooerties of Organic and Polymeric Materials”, ACS Symp. Ser. , No. 233 , Washington D. C., (1983).
    [40]. D.S.Chemla, J.Zyss, ed. , “ Nonlinear Optical Properties of Organic Molecules and Crystals”, Vol. 1 and 2 , Academic Press , Orlando , (1987).
    [41]. C. C.Frazier, M.A.Harrey, et al. , J. Phys. Chem. , 90, 5703, (1986).
    [42]. C.C.Teng, A.F.Garito, Phys.Rev.Lett. , 50, 350, (1983).
    [43]. A. D. Buckingham. Adv. Chem. Phys. 12, 107, (1967).
    [44]. D. Feller. J. Chem. Phys. 96, 6104, (1992).
    [1]. Clusters of Atoms and Molecules, edited by H. Haberland, Springer Series in Chemical Physics, Vol. 52 (Springer-Verlag, New York, 1994).
    [2]. M. Fieber, G. Broker, and A. Ding, Z. Phys. D: At., Mol. Clusters, 20, 21 (1991).
    [3]. N. E. Levinger, D. Ray, M. L. Alexander, and W. C. Lineberger, Photoabsorption and photofragmentation studies of Arn+ cluster ions, J. Chem.Phys. 89, 5654-5662 (1988).
    [4]. Z. Y. Chen, C. R. Albertoni, M. Hasegawa, R. Kuhn, and A.W. Castleman, Ar_3~+ photodissociation and its mechanisms, J. Chem. Phys. 91, 4019-4025 (1989).
    [5]. A. Bastida, N. Halberstadt, J. A. Beswick, F. X. Gadea, U. Buck, R. Galonska, and C. Lauenstein, Electron impact ionization of small argon clusters, Chem. Phys. Lett. 249, 1-6 (1996).
    [6]. A. Bastida, N. Halberstadt, J. A. Beswick, and F. X. Gadea, Modeling the production and fragmentation of Ar_3~+ after threshold photon impact ionization of Ar3, J. Chem. Phys. 104, 6907-6908 (1996).
    [7]. D. A. Kirkwood, C. A. Woodward, A. Mouhandes, A. J. Stace, A. Bastida, J. Zuniga, A. Requena, and F. X. Gadea, Experimental and theoretical study of the photofragmentation process: Ar_3~+ + h Ar_2~+ + Ar, J. Chem. Phys. 113, 2175-2181 (2000).
    [8]. T. Laarmann, A. Kanaev, K. von Haeften, J. Wabnitz, R. von Pietrowski, and T. M?ller, Evolution of the charge localization process in xenon cluster ions: From tetramer to dimer cores as a function of cluster size, J. Chem. Phys. 116, 7558-7563 (2002).
    [9]. N. L. Doltsinis and P. J. Knowles, Theoretical photoabsorption spectra of Arn+ clusters, Chem. Phys. Lett. 325, 648-654 (2000).
    [10]. R. Parajuli, S. Matt, O. Echt, A. Stamatovic, P. Scheier, and T. D. Mark, Chem. Phys. Lett. 353, 288 (2002).
    [11]. I. Baccarelli, F. A.Gianturco, and F. J. Schneider, Phys. Chem. 101, 6054 (1997).
    [12]. M. F. Satterwhite and Gregory I. Gellene Ab initio QCISD(T) calculations of the ground potential energy surface of He_3~+, J. Phys. Chem. 99, 13397-13401 (1995).
    [13]. N.L.Doltsinis and P. Knowles, J. Mol. Phys., 96, 749 (1999).
    [14]. J. N. Murrell, F. Y. Naumkin, and C. R. Griffiths, Mol. Phys. 99, 225 (2001).
    [15]. K. Hiraoka, A. Shimizu, A. Minamitsu, M. Nasu, H. Wasada, and S. Yamabe, Formation of the trimer ion core in the heterogeneous rare gas cluster ions, J. Chem. Phys. 108, 6689-6697 (1998).
    [16]. Z. Huang and Z. H. Zhu. J. Mol. Struct. 440, 53 (1998).
    [17]. J. Seong, A. Rohrbacher, Z.-R. Li, K. C. Janda, F.-M. Tao, F. Spiegelmann and N. Halberstadt, Potential energy surfaces for HenNe+ ions: ab initio and diatomics-in-molecule results, J. Chem. Phys., 120, 7456-7463 (2004).
    [18]. B. Bra?da, D. Lauvergnat, and P. C. Hiberty, Symmetry-breaking and near-symmetry-breaking in three-electron-bonded radical cations, J. Chem. Phys., 115, 90-102 (2001).
    [19]. J. E. King and A. J. Illies. Two-Center Three-Electron Bonding Involving Tellurium, J. Phys. Chem. A. 108, 3581-3585 (2004)
    [20]. K.-D. Asmus, In sulfur-Centered Reactive Intermidiates in Chemistry and Biology;C.Chatgilialoglu and K.-D. Asmus, Eds.;Plenum Press: New York, 1990;p 155 and references therein.
    [21]. T. Clark, Odd-electron .sigma. bonds, J. Am. Chem. Soc. 110, 1672-1678 (1988) and references therein.
    [22]. C. Y. Ng, Adv. Chem. Phys. 52, 263 (1983).
    [23]. T. D. Mark and A. W. Castleman, Jr., Adv. At. Mol. Phys. 20, 66 (1985).
    [24]. A. W. Castleman, Jr. and R. G. Keesee, Chem. Rev. 86, 589 (1986).
    [25]. M. C. R. Symons and W. R. Bowman, J. Chem. Soc., Perkin Trans. 2, 975 (1990).
    [26]. M. Goez, J. Rozwadowski, and B. Marciniak, Angew. Chem., Int Ed. 37, 628 (1998).
    [27]. B. L. Miller, K. Kuczera, and C. Sch?neich, One-Electron Photooxidation of N-Methionyl Peptides. Mechanism of Sulfoxide and Azasulfonium Diastereomer Formation through Reaction of Sulfide Radical Cation Complexes with Oxygen or Superoxide, J. Am. Chem. Soc., 120, 3345-3356 (1998).
    [28]. S. Humbel, I. C?te, N. Hoffmann, and J. Bouquant, Three-Electron Binding between Carbonyl-like Compounds and Ammonia Radical Cation. Comparison with the Hydrogen Bonded Complex, J. Am. Chem. Soc., 121, 5507-5512 (1999).
    [29]. S. F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1970).
    [30]. P. Hobza and Z. Havlas, Theor. Chem. Acc., 99, 372 (1998).
    [31]. F.-M. Tao, W. Klempeer, Accurate ab initio potential energy surfaces of Ar–HF, Ar–H2O, and Ar–NH3, J. Chem. Phys. 101, 1129-1145 (1994).
    [32]. Frisch, M. J.;Trucks, G. W.;Schlegel, H. B.;Scuseria, G. E.;Robb, M. A.;Cheeseman, J. R.;Montgomery, Jr., J. A.;Vreven, T.;Kudin, K. N.;Burant, J. C.;Millam, J. M.;Iyengar, S. S.;Tomasi, J.;Barone, V.;Mennucci, B.;Cossi, M.;Scalmani, G.;Rega, N.;Petersson, G. A.;Nakatsuji, H.;Hada, M.;Ehara, M.;Toyota, K.;Fukuda, R.;Hasegawa, J.;Ishida, M.;Nakajima, T.;Honda, Y.;Kitao, O.;Nakai, H.;Klene, M.;Li, X.;Knox, J. E.;Hratchian, H. P.;Cross, J. B.;Bakken, V.;Adamo, C.;Jaramillo, J.;Gomperts, R.;Stratmann, R. E.;Yazyev, O.;Austin, A. J.;Cammi, R.;Pomelli, C.;Ochterski, J. W.;Ayala, P. Y.;Morokuma, K.;Voth, G. A.;Salvador, P.;Dannenberg, J. J.;Zakrzewski, V. G.;Dapprich, S.;Daniels, A. D.;Strain, M. C.;Farkas, O.;Malick, D. K.;Rabuck, A. D.;Raghavachari, K.;Foresman, J. B.;Ortiz, J. V.;Cui, Q.;Baboul, A. G.;Clifford, S.;Cioslowski, J.;Stefanov, B. B.;Liu, G.;Liashenko, A.;Piskorz, P.;Komaromi, I.;Martin, R. L.;Fox, D. J.;Keith, T.;Al-Laham, M. A.;Peng, C. Y.;Nanayakkara, A.;Challacombe, M.;Gill, P. M. W.;Johnson, B.;Chen, W.;Wong, M. W.;Gonzalez, C.;and Pople, J. A.;Gaussian 03, Revision B03,Gaussian, Inc., Wallingford CT, 2004.
    [33]. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constant of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
    [34]. P. H. Dehmer and S. T. Pratt, In Photophysics and Photochemistry in the Vacuum UltraViolet;edited by S. P. McGlynn, G. L. Findley and R. H. Hueber, D. Reidel Publishing Co.: Dordrecht, Holland, 1985;p 260.
    [35]. Peter M. W. Gill;Leo Radom. Structures and stabilities of singly charged three-electron hemibonded systems and their hydrogen-bonded isomers, J. Am. Chem. Soc., 110, 4931-4941 (1988).
    [36]. T. L. Gilbert and A. C. Wahl, Single-Configuration Wavefunctions and Potential Curves for Low-Lying States of He_2~+, Ne_2~+, Ar_2~+, F_2~–, Cl_2~– and the Ground State of Cl2, J. Chem. Phys., 55, 5247-5261 (1971).
    [37]. H. H. Michels, R. H. Hobbs, and L. A. Wright, Electronic structure of the noble gas dimer ions. I. Potential energy curves and spectroscopic constants, J. Chem. Phys. 69, 5151-5162 (1978).
    [38]. (a) W. R.Wadt, The electronic states of Ar_2~+, Kr_2~+, Xe_2~+. I. Potential curves with and without spin–orbit coupling, J. Chem. Phys. 68, 402-414 (1978). (b) W. R.Wadt, The electronic states of Ne_2~+, Ar_2~+, Kr_2~+, and Xe_2~+. II. Absorption cross sections for the 1(1/2)_u 1(3/2)_g, 1(1/2)_g, 2(1/2)_g transitions, J. Chem. Phys. 73, 3915-3926 (1980).
    [39]. C. I. Dabrowski and Y. Yoshino, J. Mol. Spectrosc. 89, 491 (1981).
    [40]. B. Gemein, R. de Vivie, and S. D. Peyerimhoff, Ab initio study of the three lowest states X~(2Σ+) , 2?1/2, 2 ?3/2, and B~(2Σ+) of the HeNe + ion: Potential energy curves, doubling, and predissociation rates of the rotational levels in the 2 1/2 (v=0) state, J. Chem. Phys. 93, 1165-1175 (1990).
    [41]. I. Dabrowski and B. Herzberg, J. Mol. Spectrosc. 73, 183 (1978).
    [42]. J. Seong, K. C. Janda, M. P. McGrath, and N. Halberstadt, HeNe+: resolution of an apparent disagreement between experiment and theory, Chem. Phys. Lett. 314, 501-507 (1999).
    [43]. M. F. Falcetta, M. J. Dorko, and P. E. Siska, Ab initio/spectroscopic interaction potential for He~+Ne ~+, J. Chem. Phys. 113, 11044-11054 (2000).
    [44]. G. A. Landrum, N. Goldberg, and R. HoVmann J. Chem. Soc., Dalton Trans., 1997, Pages 3605–3613.
    [1]. S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hir-ano, I. Tanaka, H. Hosono, Science. 301, 626 (2003).
    [2]. W. Chen, Z. R. Li, D. Wu, Y. Li, C. C. Sun, and F. L. Gu, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole, J. Am. Chem. Soc. 127, 10977-10981 (2005).
    [3]. J. Kim, A. S. Ichimura, R. H. Huang, M. Redko, R. C. Phillips, J. E. Jackson, J. L. Dye, Crystalline Salts of Na-and K-(Alkalides) that Are Stable at Room Temperature, J. Am. Chem. Soc. 121, 10666-10667 (1999).
    [4]. M. Y. Redko, M. Vlassa, J. E. Jackson, A. W. Misiolek, R. H. Huang, J. L. Dye, "Inverse Sodium Hydride": A Crystalline Salt that Contains H~+ and Na-, J. Am. Chem. Soc. 124, 5928-5929 (2002).
    [5]. A. Sawicka, P. Skurski, J. Simons, Inverse Sodium Hydride: A Theoretical Study, J. Am. Chem. Soc. 125, 3954-3958 (2003).
    [6]. W. Chen, Z. R. Li, D. Wu, Y. Li, C. C. Sun, Inverse Sodium Hydride: Density Functional Theory Study of the Large Nonlinear Optical Properties, J. Phys. Chem. A 109, 2920-2924 (2005).
    [7]. W. Chen, Z. R. Li, D. Wu, Y. Li, C. C. Sun, F. L. Gu, Y. Aoki, Nonlinear Optical Properties of Alkalides Li~+(calix[4]pyrrole)M-(M = Li, Na, and K): Alkali Anion Atomic Number Dependence, J. Am. Chem. Soc. 128, 1072-1073 (2006).
    [8]. J. L. Dye, Inorg. Chem. 36, 3816 (1997).
    [9]. Z. Y. Li, J. L. Yang, J. G. Hou, Q. S. Zhu, Inorganic Electride: Theoretical Study on Structural and Electronic Properties, J. Am. Chem. Soc. 125, 6050-6051 (2003).
    [10]. D. M. Moloney, Nature Genet. 13, 48 (1996).
    [11].Magnetic, Electrical and Spectroscopic Studies of Alkalides and Electrides, J. L. Dye, Physical Supramolecular Chemistry, L. Echegoyen and A. Kiefer, Eds., Kluwer Academic Publishers, Dordrecht, Netherlands, 313 (1996)
    [12]. J. H. Hendricks, M. L. Clersq, S. A. Lyspustina, K. H. Bowen, Negative ion photoelectron spectroscopy of the ground state, dipole-bound dimeric anion, (HF)2ˉ, J. Chem. Phys. 107, 2962-2967 (1997).
    [13]. R. Ramaekers, D. M. A. Smith, J. Smets, L. Adamowicz, Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF) 3ˉ and (HF)4ˉ anions, J. Chem. Phys. 107, 9475-9481 (1997).
    [14]. M. Gutowski, P. Skurski, Chem. Phys. Lett. 300, 331 (1999).
    [15]. Th. Klahn, P. Krebs, Electron and anion mobility in low density hydrogen cyanide gas. II. Evidence for the formation of anionic clusters, J. Chem. Phys. 109, 543-550 (1998).
    [16]. T. Tsurusawa, S. Iwata, Dipole-bound and interior electrons in water dimer and trimer anions: ab initio MO studies, Chem. Phys. Lett. 287, 553-562 (1998).
    [17]. T. Tsurusawa, S. Iwata, Theoretical studies of the water-cluster anions containing the OH{e}HO structure: energies and harmonic frequencies, Chem. Phys. Lett. 315, 433-440 (2000).
    [18]. K. S. Kim, I. Park, S. Lee, K. Cho, J. Y. Lee, J. Kim, J. D. Joannopoulos, The Nature of a Wet Electron, Phys. Rev. Lett. 76, 956-959 (1996).
    [19]. S. Lee, S. J. Lee, J. Y. Lee, J. Kim, K. S. Kim, I. Park, K. Cho, J. D. Joannopoulos, Ab initio study of water hexamer anions, Chem. Phys. Lett. 254, 128-134 (1996).
    [20]. K. S. Kim, S. Lee, J. Kim, and J. Y. Lee, Molecular Cluster Bowl To Enclose a Single Electron, J. Am. Chem. Soc. 119, 9329-9330 (1997).
    [21]. J. Kim, J. M. Park, K. S. Oh, J. Y. Lee, S. Lee, K. S. Kim, Structure, vertical electron-detachment energy, and O–H stretching frequencies of e+(H2O)12, J. Chem. Phys. 106, 10207-10214 (1997).
    [22]. S. Lee, J. Kim, S. J. Lee, K. S. Kim, Novel Structures for the Excess Electron State of the Water Hexamer and the Interaction Forces Governing the Structures, Phys. Rev. Lett. 79, 2038-2041 (1997).
    [23]. P. Ayotte, M. A. Johnson, Electronic absorption spectra of size-selected hydrated electron clusters: (H2O)nˉ, n = 6–50, J. Chem. Phys. 106, 811-814 (1997).
    [24]. P. J. Campagnola, L. A. Posey, M. A. Johnson, The angular distribution of photoelectrons ejected from the hydrated electron cluster (H2O), J. Chem. Phys. 92, 3243-3245 (1990).
    [25]. L. A. Posey, M. A. Johnson, Photochemistry of hydrated electron clusters (H_2O)_n~-(15 n 40) at 1064 nm: Size dependent competition between photofragmentation and photodetachment, J. Chem. Phys. 89, 4807-4814 (1988).
    [26]. J. Kim, I. Becker, O. Cheshnovsky, M. A. Johnson, Photoelectron spectroscopy of the ‘missing' hydrated electron clusters (H_2O)_n~-, n=3, 5, 8 and 9: Isomers and continuity with the dominant clusters n=6, 7 and 11, Chem. Phys. Lett. 297, 90-97 (1998).
    [27]. L. A. Posey, P. J. Campagnola, M. A. Johnson, G. H. Lee, J. G. Eaton, K. H. Bowen, On the origin of the competition between photofragmentation and photodetachment in hydrated electron clusters, (H2O), J. Chem. Phys. 91, 6536-6538 (1989).
    [28]. J. Kim, S.B. Suh, K.S. Kim, Water dimer to pentamer with an excess electron: Ab initio study, J. Chem. Phys. 111, 10077-10087 (1999).
    [29]. X. Y. Hao, Z. R. Li, D Wu, Y. Wang, Z. S. Li, C. C. Sun, A theoretical prediction on intermolecular monoelectron dihydrogen bond H eH in the cluster anion (FH)_2{e}(HF)_2, J. Chem. Phys. 118, 83-86 (2003).
    [30]. A. F. Jalbout, C. A. Morgado, L. Adamowicz, An excess electron trapped in molecular tweezers: ab initio study, Chem. Phys. Lett. 383, 317-320 (2004).
    [31]. A. E. Bragg, J. R. R. Verlet, A. Kammrath, O. Cheshnovsky, D. M. Neumark, Scinece. 306, 669 (2004).
    [32]. D. H. Paik, I. R. Lee, D. S. Yang, J. S. Baskin, A. H. Zewail, Science. 306, 672 (2004).
    [33]. N. I. Hammer, J. W. Shin, J. M. Headrick, E. G. Diken, J. R. Roscioli, G. H. Weddle, M. A. Johnson. Scinece. 306, 675 (2004).
    [34]. X. Y. Hao, Z. R. Li, D. Wu, Z. S. Li, C. C. Sun, The evolution of the monoelectron dihydrogen bond H e H in the symmetric and asymmetric cluster anions (FH)_n{e}(HF)_m, J. Chem. Phys. 118, 10939-10943 (2003).
    [35]. W. Chen, Z. R. Li, D. Wu, F. L. Gu, X. Y. Hao, B. Q. Wang, R. J. Li, C. C. Sun, The static polarizability and first hyperpolarizability of the water trimer anion: Ab initio study, J. Chem. Phys. 121, 10489-10494 (2004).
    [36]. Y. Li, Z. R. Li, D. Wu, R. Y. Li, X. Y. Hao, C. C. Sun, An ab Initio Prediction of the Extraordinary Static First Hyperpolarizability for the Electron-Solvated Cluster (FH)_2{e}(HF), J. Phys. Chem. B 108, 3145-3148 (2004).
    [37]. R. Takasu, F. Misaizu, K. Hashimoto, K. Fuke, Microscopic Solvation Process of Alkali Atoms in Finite Clusters: Photoelectron and Photoionization Studies of M(NH_3)n and M(H_2O)n (M = Li, Li~-, Na~-), J. Phys. Chem. A 101, 3078-3087 (1997).
    [38]. I. V. Hertel, C. Huglin, C. Nitsch, C. P. Schulz, Photoionization of Na(NH_3)_n and Na(H_2O)_n clusters: A step towards the liquid phase? Phys. ReV. Lett. 67, 1767-1770 (1991).
    [39]. F. Misaizu, K. Tsukamoto, M. Sanekata, K. Fuke, Photoionization of clusters of Cs atoms solvated with H_2O, NH_3 and CH_3CN, Chem. Phys. Lett. 188, 241-246 (1992).
    [40]. T. Tsurusawa, S. Iwata, Theoretical Studies of Structures and Ionization Threshold Energies of Water Cluster Complexes with a Group 1 Metal, M(H_2O)n (M = Li and Na), J. Phys. Chem. A 103, 6134-6141 (1999).
    [41]. T. Tsurusawa, S. Iwata. Electron-hydrogen bonds and OH harmonic frequency shifts in water cluster complexes with a group 1 metal atom, M(H_2O)n (M=Li and Na), J. Chem. Phys. 112, 5705-5710 (2000).
    [42]. W. Chen, Z. R. Li, D. Wu, R. Y. Li, C. C. Sun, Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom, J. Phys. Chem. B 109, 601-608 (2005).
    [43]. S. F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970).
    [44]. P. Hobza and Z. Havlas, Theor. Chem. Acc. 99, 372 (1998).
    [45]. A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967);A. D. Mclean and M.Yoshimine, Theory of Molecular Polarizabilities, J. Chem. Phys. 47, 1927-1935 (1967)
    [46]. Frisch, M. J.;Trucks, G. W.;Schlegel, H. B. et al;Gaussian 03, Revision B03,Gaussian, Inc., Wallingford CT, 2004.
    [47] A. Bondi, J. Phys. Chem. 1964, 68, 441.
    [48] F. A. Cotton, G. Willkinson, Advanced Inorganic Chemistry, 5th ed., Wiley, New York, 1998.
    [1] W. D.Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y.Chou, and M. L.Cohen, Electronic Shell Structure and Abundances of Sodium Clusters, Phys. Rev. Lett. 52, 2141-2143 (1984).
    [2] W. Ekardt, Work function of small metal particles: Self-consistent spherical jellium-background model, Phys. Rev. B 29, 1558-1564 (1984).
    [3] R. E. Leuchtner, A. C. Harms, and A. W. Jr. Castleman, Thermal metal cluster anion reactions: Behavior of aluminum clusters with oxygen, J. Chem. Phys. 91, 2753-2754 (1989).
    [4] A. C. Harms, R. E.Leuchtner, S. W. Sigsworth, and A. W. Jr. Castleman, Gas-phase reactivity of metal alloy clusters, J. Am. Chem. Soc. 112, 5673-5674 (1990).
    [5] B. K. Rao, and P. J. Jena, Chem. Phys. 111, 1890 (1999).
    [6] X. Li, A. E. Kuznetsov, H. F. Zhang, A. I. Boldyrev, and L. S. Wang, Science 291, 859 (2001).
    [7] C. G. Zhan, F. Zheng, and D. A. Dixon, Electron Affinities of Aln Clusters and Multiple-Fold Aromaticity of the Square Al42-Structure, J. Am. Chem. Soc. 124, 14795-14803 (2002).
    [8] A. E. Kuznetsov, and A. I. Boldyrev, Struct. Chem. 13, 141 (2002).
    [9] A. E. Kuznetsov, A. I. Boldyrev, X. Li,;L. S. Wang, On the Aromaticity of Square Planar Ga_4~(2-) and In)4~(2-) in Gaseous NaGa4-and NaIn_4~-Clusters, J. Am. Chem. Soc. 123, 8825-8831 (2001).
    [10] A. I. Boldyrev, and A. E. Kuznetsov, On the Resonance Energy in New All-Metal Aromatic Molecules, Inorg. Chem. 41, 532-537 (2001).
    [11] A. N. Alexandrova, and A. I. Boldyrev, -Aromaticity and -Antiaromaticity in Alkali Metal and Alkaline Earth Metal Small Clusters, J. Phys. Chem. A 107, 560 (2003).
    [12] A. E. Kuznetsov, A. I. Boldyrev, H. J. Zhai, X. Li, and L. S.Wang, Al_6~(2-)-Fusion of Two Aromatic Al_3~-Units. A Combined Photoelectron Spectroscopy and ab Initio Study of M~+[Al_6~(2-)] (M = Li, Na, K, Cu, and Au), J. Am. Chem. Soc. 124, 11791-11801 (2002).
    [13] Y. C. Byun, S. Saebo, and C. U. Jr. Pittman, An ab initio study of potentially aromatic and antiaromatic three-membered rings, J. Am. Chem. Soc. 113, 3689-3696 (1991).
    [14] G. v. Zandwijk, R. A. J. Janssen, and H. M. Buck, 6.pi. Aromaticity in four-membered rings, J. Am. Chem. Soc. 112, 4155-4164 (1990).
    [15] Q. S. Li, and L. P. Cheng, Aromaticity of Square Planar N_4~(2-) in the M-2N_4 (M = Li, Na, K, Rb, or Cs) Species, J. Phys. Chem. A 107, 2882-2889 (2003).
    [16] D. E. Jr. Bergeron, A. W. Castleman, T. Morisato, and S. N. Khanna, Science 304, 84 (2004).
    [17] J. M. Mercero, and J. M.Ugalde, Sandwich-Like Complexes Based on "All-Metal" (Al_4~(2-)) Aromatic Compounds, J. Am. Chem. Soc. 126, 3380-3381 (2004).
    [18] W. Chen, Z. R. Li, D. Wu, Y. Li, and C. C. Sun, Li3–O–Li3 molecule: A metal-nonmetal-metal sandwichlike compound with a distending electron cloud, J. Chem. Phys. 123, 164306 (2005).
    [19] Y. Li, Z. R. Li, D. Wu, W. Chen, and C. C. Sun. Chem.Phys.Chem. 6, 2562 (2005).
    [20] A. E. Reed, R. B.Weinstock, and F. Weinhold, Natural population analysis, J. Chem.Phys. 83, 735-746 (1985).
    [21] J. E. Carpenter, and F. Weinhold, J. Mol. Struct. (THEOCHEM) 169, 41 (1988).
    [22] Atoms in Molecules-A Quantum Theory;Bader, R. F. W., Ed.;Oxford University Press;Oxford;1990.
    [23] P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. v. E. Hommes, Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe, J. Am. Chem. Soc. 118, 6317-6318 (1996).
    [24] P. v. R. Schleyer, and H. Jiao, Pure Appl. Chem. 68, 209 (1996).
    [25] P. v. R. Schleyer, H. Jiao, H N. J. v. E.ommes, V. G. Malkin, and O. L. Malkina, An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties, J. Am. Chem. Soc. 119, 12669-12670 (1997).
    [26] B. Goldfuss, P. v. R. Schleyer, and F. Hampel, Aromaticity in Silole Dianions: Structural, Energetic, and Magnetic Aspects, Organometallics 15, 1755-1757 (1996).
    [27] P. Hobza, and Z. Havlas, Theor. Chem. Acc. 99, 372 (1998).
    [28] I. Alkorta, and J. Elguero, Theoretical Study of Strong Hydrogen Bonds between Neutral Molecules: The Case of Amine Oxides and Phosphine Oxides as Hydrogen Bond Acceptors, J. Phys. Chem. A 103, 272-279 (1999).
    [29] S. F. Boys, and F. Bernardi, Mol. Phys. 19, 553 (1970).
    [30] A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967);A. D. Mclean, and M. Yoshimine, J. Chem. Phys. 47, 1927(1967).
    [31] Frisch, M. J.;Trucks, G. W.;Schlegel, H. B.;Scuseria, G. E.;Robb, M. A.;Cheeseman, J. R.;Montgomery, Jr., J. A.;Vreven, T.;Kudin, K. N.;Burant, J. C.;Millam, J. M.;Iyengar, S. S.;Tomasi, J.;Barone, V.;Mennucci, B.;Cossi, M.;Scalmani, G.;Rega, N.;Petersson, G. A.;Nakatsuji, H.;Hada, M.;Ehara, M.;Toyota, K.;Fukuda, R.;Hasegawa, J.;Ishida, M.;Nakajima, T.;Honda, Y.;Kitao, O.;Nakai, H.;Klene, M.;Li, X.;Knox, J. E.;Hratchian, H. P.;Cross, J. B.;Bakken, V.;Adamo, C.;Jaramillo, J.;Gomperts, R.;Stratmann, R. E.;Yazyev, O.;Austin, A. J.;Cammi, R.;Pomelli, C.;Ochterski, J. W.;Ayala, P. Y.;Morokuma, K.;Voth, G. A.;Salvador, P.;Dannenberg, J. J.;Zakrzewski, V. G.;Dapprich, S.;Daniels, A. D.;Strain, M. C.;Farkas, O.;Malick, D. K.;Rabuck, A. D.;Raghavachari, K.;Foresman, J. B.;Ortiz, J. V.;Cui, Q.;Baboul, A. G.;Clifford, S.;Cioslowski, J.;Stefanov, B. B.;Liu, G.;Liashenko, A.;Piskorz, P.;Komaromi, I.;Martin, R. L.;Fox, D. J.;Keith, T.;Al-Laham, M. A.;Peng, C. Y.;Nanayakkara, A.;Challacombe, M.;Gill, P. M. W.;Johnson, B.;Chen, W.;Wong, M. W.;Gonzalez, C.;and Pople, J. A.;Gaussian 03, Revision B03,Gaussian, Inc., Wallingford CT, 2004.
    [32] X. Y. Sun, Z. R. Li, D. Wu, F. F. W, and C. C. Sun, Chem. Phys.Chem. Submitted
    [33] G. C. Hancock, D. G. Truhlar, and C. E. Dykstra, An analytic representation of the six-dimensional potential energy surface of hydrogen fluoride dimer, J. Chem. Phys. 88, 1786-1796 (1988)
    [34] D. W. Michael and J. M. Lisy, Vibrational predissociation spectroscopy of (HF)3, J. Chem. Phys. 85, 2528-2537 (1986)
    [35] M. Karplus, and R. N. Porter, Atoms and Molecules: An Introduction For Students of Physical Chemistry, 1970, p204. The Benjamin/Cummings Publishing Company, Menlo Park, California, Reading, Massachusetts, London, Amsterdam, Don Mills, Ontario, Sydney.
    [36] U. Kock, and P.L.A. Popelier, Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density, J. Phys Chem. 99, 9747-9754 (1995).
    [37] P. L. A. Popelier, Characterization of a Dihydrogen Bond on the Basis of the Electron Density J. Phys. Chem. A 102, 1873-1878 (1998).
    [38] P. A. Kollman, J. E. Liebman, and L. C. Allen, Lithium bond, J. Am. Chem. Soc. 92, 1142-1150 (1970).
    [39] J. D. Dili, P. v. R. Schleyer, J. S. Binkley, and J. A. Pople, Molecular orbital theory of the electronic structure of molecules. 34. Structures and energies of small compounds containing lithium or beryllium. Ionic, multicenter, and coordinate bonding, J. Am.Chem. Soc. 99, 6159-6173 (1977).
    [40] G. V. Kulkarni, and C. N. R. Rao, J. Mol. Struct. 100, 531 (1983).
    [41] E. Kaufmann, T. Clark, and P. v. R. Schleyer, Dimerization energies of lithium compounds with first-row substituents, J. Am. Chem. Soc. 106, 1856-1858 (1984).
    [42] M. M. Szczesniak, Z. Latajka, P. Piecuch, H. Ratajczak, W. J. Orville-Thomas, and C. N. R. Rao. Chem. Phvs. 94, 55 (1985).
    [43] E.Kaufmann, S. Sieber, and P. v. R. Schleyer, Carboxylation of lithium compounds: ab initio mechanisms, J. Am. Chem. Soc. 111, 4005-4008 (1989).
    [44] Z. Latajka and S. Scheiner, Ab initio comparison of H bonds and Li bonds. Complexes of LiF, LiCl, HF, and HCl with NH_3, J. Chem. Phys. 81, 4014-4017 (1984).
    [45] S. Salai Cheettu Ammal, P. Venuvanalingam, and Sourav Pal, Lithium bonding interaction in H2CY LiF (Y = O,S) complexes: A theoretical probe, J. Chem. Phys. 107, 4329-4336 (1997).
    [46] S. Salai Cheettu Ammal and P. Venuvanalingam, -systems as lithium/hydrogen bond acceptors: Some theoretical observations, J. Chem. Phys. 109, 9820-9830 (1998).
    [47] A. B. Sannigrahi, T. Kar, B. Guha Niyogi, P. Hobza, and P. v. R. Schleyer, The lithium bond reexamined, Chem. Rev. 90, 1061-1076 (1990).
    [48] B.Q.Wang, Z.R.Li, D.Wu, X.Y.Hao, R.J.Li, and C.C.Sun, Single-electron hydrogen bonds in the methyl radical complexes H_3C HF and H3CHCCH: an ab initio study, Chem. Phys. Lett. 375, 91-95 (2003).
    [49] S. Lee, J. Kim, S. J. Lee, and K. S. Kim, Novel Structures for the Excess Electron State of the Water Hexamer and the Interaction Forces Governing the Structures, Phys. Rev. Lett. 79, 2038-2041 (1997).
    [50] T. Tsurusawa, and S. Iwata. Theoretical studies of the water-cluster anions containing the OH{e}HO structure: energies and harmonic frequencies, Chem. Phys. Lett. 315, 433-440 (2000).
    [51] T. Tsurusawa, and S. Iwata. Electron-hydrogen bonds and OH harmonic frequency shifts in water cluster complexes with a group 1 metal atom, M(H2O)n (M=Li and Na), J. Chem. Phys. 112, 5705-5710 (2000).
    [52] X. Y. Hao, Z. R. Li, D Wu, Y. Wang, Z. S. Li, and C. C. Sun, A theoretical prediction on intermolecular monoelectron dihydrogen bond H eH in the cluster anion (FH)2{e}(HF)2, J. Chem. Phys. 118, 83-86 (2003).
    [53] X. Y. Hao, Z. R. Li, D. Wu, Z. S. Li, and C. C. Sun, The evolution of the monoelectron dihydrogen bond H e H in the symmetric and asymmetric cluster anions (FH)_n{e}(HF)_m, J. Chem. Phys. 118, 10939-10943 (2003).
    [54] K. D. Jordan, Science. 306, 618 (2004).
    [55] D. H. Paik, I R. Lee, D. S. Yang, J. S. Baskin, and A. H. Zewai, Science. 306, 672 (2004).
    [56] A. E. Bragg, J. R. R. Verlet, A. Kammrath, O. Cheshnovsky, and D. M. Neumark, Scinece. 306, 669 (2004).
    [1] Eaton D. F.. Science 1991, 253, 281-287.
    [2] Cheng W. D., Xiang K. H., Pandey R., Pernisz U. C.. J. Phys. Chem. B 2000, 104, 6737-6742.
    [3] Ichida M., Sohda T., Nakamura A.. J. Phys. Chem. B 2000,104, 7082-7084.
    [4] Geskin V. M., Lambert C., Bre′das J.-L.. J. Am.Chem. Soc. 2003, 125, 15651-15658.
    [5] Nakano M., Fujita H.,Takahata M., Yamaguchi K.. J. Am. Chem. Soc. 2002, 124, 9648-9655.
    [6] Long N. J., Williams C. K., Angew.. Chem. Int. Ed. 2003, 42, 2586-2617.
    [7] Kirtman B., Champagne B., Bishop D. M.. J. Am. Chem. Soc. 2000, 122, 8007-8012.
    [8] Marder S. R., Torruellas W. E., Blanchard-Desce M., Ricci V., Stegeman G. I., Gilmour S., Bre′das J.-L., Li J., Bublitz G. U., Boxer S. G.. Science 1997, 276, 1233-1236.
    [9]Avramopoulos A., Reis H., Li J., Papadopoulos M. G.. J. Am. Chem.Soc. 2004, 126, 6179-6184.
    [10] Li Y., Li Z. R., Wu D., Li R. Y., Hao X. Y., Sun C. C.. J. Phys. Chem. B 2004, 108, 3145-3148.
    [11] Chen W., Li Z. R., Wu D., Gu F.L., Hao X. Y., Wang B. Q., Li R. J., Sun C. C.. J. Chem. Phys. 2004, 121, 10489-10494.
    [12] Chen W., Li Z. R., Wu D., Li R. Y., Sun C.C.. J. Phys. Chem. B 2005, 109, 601-608.
    [13] Chen W., Li Z. R., Wu D., Li Y., Sun C. C., Gu F. L.. J. Am. Chem. Soc. 2005, 127, 10977-10981.
    [14] Chen W., Li Z. R., Wu D., Li Y., Sun C. C., Gu F. L., Aoki Y.. J. Am. Chem. Soc. 2006, 128, 1072-1073.
    [15] Chen W., Li Z. R., Wu D., Li Y., Sun C. C.. J. Phys. Chem. A 2005, 109, 2920-2924.
    [16] Buckingham A. D., Adv. Chem. Phys. 1967, 12, 107;Mclean A. D. and Yoshimine M., J. Chem. Phys. 1967, 47, 1927-1935
    [17]. Frisch, M. J.;Trucks, G. W.;Schlegel, H. B.;Scuseria, G. E.;Robb, M. A.;Cheeseman, J. R.;Montgomery, Jr., J. A.;Vreven, T.;Kudin, K. N.;Burant, J. C.;Millam, J. M.;Iyengar, S. S.;Tomasi, J.;Barone, V.;
    Mennucci, B.;Cossi, M.;Scalmani, G.;Rega, N.;Petersson, G. A.;Nakatsuji, H.;Hada, M.;Ehara, M.;Toyota, K.;Fukuda, R.;Hasegawa,J.;Ishida, M.;Nakajima, T.;Honda, Y.;Kitao, O.;Nakai, H.;Klene, M.;Li, X.;Knox, J. E.;Hratchian, H. P.;Cross, J. B.;Bakken, V.;Adamo, C.;Jaramillo, J.;Gomperts, R.;Stratmann, R. E.;Yazyev, O.;Austin, A. J.;Cammi, R.;Pomelli, C.;Ochterski, J. W.;Ayala, P. Y.;Morokuma, K.;Voth, G. A.;Salvador, P.;Dannenberg, J. J.;Zakrzewski, V. G.;Dapprich,S.;Daniels, A. D.;Strain, M. C.;Farkas, O.;Malick, D. K.;Rabuck, A.D.;Raghavachari, K.;Foresman, J. B.;Ortiz, J. V.;Cui, Q.;Baboul, A.G.;Clifford, S.;Cioslowski, J.;Stefanov, B. B.;Liu, G.;Liashenko, A.;Piskorz, P.;Komaromi, I.;Martin, R. L.;Fox, D. J.;Keith, T.;Al-Laham,M. A.;Peng, C. Y.;Nanayakkara, A.;Challacombe, M.;Gill, P. M. W.;Johnson, B.;Chen, W.;Wong, M. W.;Gonzalez, C.;and Pople, J. A.;Gaussian 03, Revision B03,Gaussian, Inc., Wallingford CT, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700