含惰性气体贵金属离子团簇中成键机制的理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惰性气体原子电子结构稳定,化学活性小,化学成键问题一直倍受人们的关注。贵金属原子,物理化学性质也比较稳定。因此,惰性气体和贵金属原子的成键问题是化学键理论的一道难题,由惰性气体和贵金属原子形成的小分子、团簇是国内外研究的焦点。并且,含惰性气体贵金属的混合/掺杂团簇的微观结构特点和奇异的物理化学性质为制造和发展特殊功能的新材料开辟了新的途径,在催化科学、表面科学、纳米科学与技术、基于团簇制造特殊功能材料等领域中具有广泛的应用前景。迄今为止,国内外已经在理论和实验上报导了一些包含惰性气体-贵金属键的新颖化合物、团簇和块状晶体。人们惊讶地发现一些惰性气体-贵金属化学键相对比较强,并不是以微弱的范德瓦耳斯力结合。因此,探索惰性气体-贵金属键的成键机制,发展研究含惰性气体-贵金属键的体系的理论和方法,发现其重要的物理、化学性质,以及不断完善该类物质的研究体系等,成为人们的重要研究内容。本文基于量子化学、结构化学、原子与分子物理学、群论、团簇物理学等基础理论,在分子轨道理论的框架下,使用了考虑“电子相关效应”和“相对论效应”的计算方法,重点研究了若干含惰性气体-贵金属键的分子和离子小团簇的惰性气体-贵金属键的成键机制,其次对几何结构、电子结构、稳定性、分子内的相互作用、以及团簇的尺寸效应等方面也进行了系统地考察。
     本文使用二阶微扰论方法(MP2),通过对惰性气体-贵金属键的分析,预言了惰性气体-贵金属氢氧化物NgMOH (Ng =Ar,Kr,Xe;M = Au,Ag,Cu)是化学上稳定的化合物,有可能被人工合成。研究发现:所研究体系的惰性气体-贵金属键与以范德瓦耳斯力结合的化学键相比,键长比较短,解离能比较大,成键比较稳定。其成键机制比较复杂,电荷诱导能、色散能、贵金属氢氧化物上多极矩的贡献、共价相互作用等都对该化学键的形成起了重要作用。惰性气体和贵金属之间存在电荷转移,贵金属是电荷的受体。惰性气体-贵金属氢氧化物是一种可能稳定存在的化合物,本文为实验合成该化合物提供了重要的理论依据。
     通过对Au-Ar化学键的分析,确定了掺杂金离子的氩的系列团簇Au~+Ar_n (n = 1-6)的“幻数”结构Au~+Ar_4和Au~+Ar_6。本文采用密度泛函方法(B3LYP)优化了团簇的各种可能初始几何构型,确定了能量最低的基态结构,并在此基础上,研究了团簇的稳定性随着氩原子数目增加的变化规律,确定了团簇第一个闭合壳层的“幻数”结构。结果发现:由于团簇的Au-Ar键比Ar-Ar键稳定,该团簇的基态稳定构型倾向于Au~+离子在中心,其它的Ar原子逐渐包围在Au~+周围,形成最多的Au-Ar键。在这些团簇序列中,当Ar原子数目为4和6时,团簇比较稳定。6个Ar原子形成团簇的第一个闭合壳层。Au~+Ar4是畸变的四面体结构,Au~+Ar6是八面体结构。
     通过对四方平面结构的含惰性气体贵金属离子团簇的成键分析,发现静电相互作用和相对论效应是影响惰性气体和贵金属离子化学成键的重要因素。本文使用了二阶微扰论(MP2)方法考虑了电子相关效应,使用相对论的赝势(RPP)和非相对论的赝势(NRPP)考虑了相对论效应,研究了四方平面结构的包含氙和高氧化态的金离子的AuXe_4~(2+)团簇,并首次推广到铜、银体系,进一步确定这类四方平面结构的化合物是否适合于CuXe_4~(2+)和AgXe_4~(2+)。结果发现:MXe_4~(2+) (M = Cu,Ag,Au)团簇的惰性气体-贵金属键的解离能按照Cu–Ag–Au的顺序不断增大。虽然,Cu-Xe和Ag-Xe键没有Au-Xe键强,但是,它们也很稳定。静电相互作用对二价的惰性气体-贵金属键的形成起了重要作用。相对论效应使M-Xe键的键长变短、解离能增加,从而使团簇更加紧凑和稳定。频率分析表明这种四方平面结构适合于AuXe_4~(2+)和AgXe_4~(2+),而对于CuXe_4~(2+),稍微发生畸变的三维立体结构更稳定。
Noble gas atoms have stable electronic configuration, and are less reactive. So chemical bonding has attracted the considerable attention of chemists and physicists. For noble metal atoms, their physicochemical properties are also unexpectedly stable. Thus, the bonding between noble gas and noble metal brings forward a considerable challenge toward the classical chemical bond theory, and the molecules and clusters containing noble gas and noble metal become the focus of investigations. Furthermore, the characteristics of microstructures and novel physicochemical properties of mixed/doped clusters containing noble gas and noble metal atoms break another way to make and develop the new special functional materials. They have wide and valuable applications in catalysis, superficies, nanoscience and technique, special functional materials based on clusters and so on. So far, many novel compounds, clusters and bulk crystals containing noble gas–noble metal bonding have been reported theoretically and experimentally. It is surprisingly found that partial intra-molecular noble gas–noble metal bonds are relatively strong, which are not bonded by the weak van der Waals force. Therefore, it is important to explore the bonding mechanism of noble gas–noble metal bonds, develop new theories and methods to investigate the compounds containing noble gas and noble metal atoms, find their important physicochemical properties, and make studies of preceding species further systematize and so on. On the basis of Quantum Chemistry, Structural Chemistry, Aotm and Molecule Physics, Group Theory, Cluster Physics etc., the noble gas–noble metal bonding mechanism is mainly investigated, and the geometric and electronic structures, stabilities, intra-molecular interactions, the size effect of clusters and so on are also studied by using the computational methods in the framework of molecular orbital theory, which account for the electronic correlation and relativistic effects.
     Noble gas–noble metal hydroxides NgMOH (Ng = Ar, Kr, Xe; M = Au, Ag, Cu) have been predicted to be chemically stable compounds, which are possible to synthesize in the experiments, at the MP2 theoretical level. It is found that the noble gas–noble metal bond lengths are shorter and the corresponding dissociation energies are larger, as compared to those of the van der Waals complexes. The noble gas–noble metal bonding mechanisms are complicated. Charge-induction energies, dispersion interaction, the effects of MOH monomers, covalence, etc., play an important role in the chemical bonding of above species. A certain amount of charge transfer takes place between noble gas and noble metal atoms, and noble metal atoms behave as acceptor of electrons. The NgMOH species are sufficiently stable and would be possible to be prepared and well-characterized in the experiments
     Au~+Ar4 and Au~+Ar6 magic structures of gold ion-doped argon clusters Au~+Arn (n = 1-6) have been confirmed by the analysis of Au-Ar chemical bonds. In order to confirm the global minimum energy stable structures, various possible starting geometries are considered during the geometry optimization by using B3LYP method. Furthermore, based on them, the evolution of relative stabilities with the size of clusters is investigated to confirm the“magic numbers”of first closed shell. The results show that, for Au~+Arn, Au–Ar bonds are stronger than Ar–Ar bonds, so the argon atoms tend to gradually arrange around the central gold ions, allowing the maximum Au–Ar bonds to be formed. In the cluster series, comparatively stable complexes are considered to consist of four and six argon atoms. The Au~+Ar6 is the first shell closure of clusters. The most stable structure of Au~+Ar4 is distortedly tetrahedral, and that of Au~+Ar6 is octahedral.
     By the bonding analysis of square-planar clusters containing noble gas and noble metal, it is found that the electrostatic interactions and the relativistic effects play an important role in the chemical bonding of noble gas and noble metal. In this paper, the MP2 method accounting for the electronic effects, and the relativistic and nonrelativistic pseudopotentials (RPP and NRPP) accounting for the relativistic effects, are emplyed to investigate the square-planar AuXe_4~(2+) cluster containing noble gas and high oxidation state gold ion. Then, these species are expanded to Cu and Ag systems to find out whether this class of compounds is suitable for CuXe_4~(2+)和AgXe_4~(2+). The results indicate that the dissociation energies of M–Xe bonds in the square planar MXe_4~(2+) (M = Cu, Ag, Au) systems, become larger and larger along the sequence Cu–Ag–Au. The copper and silver evidently tend to be weakly bonded to the noble gas atoms in comparison with gold. But, they are still stronger bonds. The electrostatic interactions have a large effect on the divalent M–Xe chemical bonds. The relativistic effect evidently decreases the bond distances, increase the dissociation energies and makes the cluster compact and stable. The vibrational frequencies analysis indicates that the square planar stable structure is only suitable for the AuXe_4~(2+) and AgXe_4~(2+). For CuXe_4~(2+), the slightly distorted three-dimensional D2d structure is more stable than the square-planar structure.
引文
1周公度,段连运.结构化学基础.北京大学出版社. 2002, 69~69
    2梁爱琴,杨曼丽,姚文红.稀有气体及其化合物的发现和应用.化学史. 2007, 2: 47~49
    3段连运,周公度.决定物质性质的一种重要因素—分子间作用力.大学化学. 1989, 4(2): 1~7
    4王广厚.团簇物理学.上海科学技术出版社. 2003, 1~1
    5翟华金,倪国权,周汝枋,王育竹.混合/掺杂团簇研究进展.物理学进展, 1997, 17(3): 265~288
    6 Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, K, Toyoda. Soft-x-ray Amplification of the Lyman-Alpha Transition by Optical-Field-Induced Ionization. Phys. Rev. Lett. 1993, 71(23): 3774~3777
    7王广厚.团簇物理的新进展(Ⅰ),物理学进展, 1994, 14(2): 121~172
    8王广厚.原子团簇的稳定结构和幻数,物理学进展, 2000, 20(1): 52~92
    9李华隆.惰性元素与稀有气体化学.四川师范学院学报(自然科学版). 2002, 23 (4): 388~392
    10 L. Pauling. The Formulas of Antimonic Acid and the Antimonates. J. Am. Chem. Soc. 1933, 55: 1895~1900
    11 D. M. L. Yost, A. C. Kaye. An Attempt to Prepare a Chloride or Fluorine of Xenon. J. Am. Chem. Soc. 1933, 55: 3890~3892
    12 N. Bartlett. Xenon Hexafluoroplatinate Xe+[PtF6]–. Proc. Chem. Soc. 1962, 218: 85~92
    13 H. H. Claassen, H. Selig, J. G. Malm. Xenon Tetrafluorine. J. Am. Chem. Soc. 1962, 84: 3593~3594
    14 R. Hoppe, W. Dhne, H. Mattauch. Synthesis of Xenon Difluoride in a Glow Discharge. Angew. Chem. 1962, 74: 903~910
    15 V. Slivnik. Synthesis of Xenon Difluoride. Croat. Chem. Acta. 1962, 34: 253~258
    16 J. J. Turner, G. C. Pimentel. Krypton Fluoride: Preparation of Matrix Isolation Technique. Science 1963, 140: 974~975
    17 T. Weiske, H. Schwarz, J. K. Terlouw, T. Wong, W. Kr?tschmer. Beweis der Existenz einer Endohedralen He@C60-Struktur Durch Gasphasenneutralisation von HeC+60. Angew. Chem. 1992, 104: 242~244
    18 T. Weiske, H. Schwarz. Sequentieller Einbau von 3He and 4He in C60+. Angew. Chem. 1992, 104: 639~640
    19 Th. Weiske, J. Hrusak1, D. K. B?hme, H. Schwarz. Formation of Endohedral Carbon-Cluster Noble-Gas Compounds with High-Energy Bimolecular Reactions: C60Hen+ (n = 1, 2). Chem. Phys. Lett 1991, 186: 459~462
    20 V. V. Albert, J. R. Sabin, F. E. Harris. Simulations of Xe@C60 Collisions with Graphitic Films. Int. J. Quant. Chem.2008, 108: 3010~3015
    21 L. Khriachtchev, M. Pettersson, N. Runeberg, J. Lundell, M. R?s?nen. A Stable Argon Compound. Nature 2000, 406: 874~876
    22 L. Khriachtchev, M. Pettersson, A. Lignell, M. R?s?nen. A more Stable Configuration of HArF in Solid Argon. J. Am. Chem. Soc. 2001, 123: 8610~8611
    23 M. Pettersson, L. Khriachtchev, A. Lignell, M. R?s?nen, Z. Bihary, R. B.Gerber. HKrF in Solid Krypton. J. Chem. Phys. 2002, 116: 2508~2515
    24 J. Lundell, G. M. Chaban, R. B. Gerber. Combined ab initio and Anharmonic Vibrational Spectroscopy Calculations for Rare-Gas Containing Fluorohydrides, HRgF. Chem. Phys. Lett. 2000, 331: 308~316
    25 M. Pettersson, J. Lundell, M. R?s?nen. Neutral Rare-gas Containing Charge-transfer Molecules in Solid Matrices. I. HXeCl, HXeBr, HXeI, and HKrCl in Kr and Xe. J. Chem. Phys. 1995, 102: 6423~6431
    26 M. Pettersson, J. Lundell, L. Khriachtchev, M. R?s?nen. Neutral Rare-Gas Containing Charge-Transfer Molecules in Solid Matrices III. HXeCN, HXeNC, and HKrCN in Kr and Xe. J. Chem. Phys. 1998, 109: 618~625
    27 L. Khriachtchev, H. Tanskanen, A. Cohen, R. B. Gerber, J. Lundell, M. Pettersson, H. Kiljunen, M. R?s?nen. A Gate to Organokrypton Chemistry: HKrCCH. J. Am. Chem. Soc. 2003, 125: 6876~6877
    28 H. Tanskanen, L. Khriachtchev, J. Lundell, H. Kiljunen, M. R?s?nen. Chemical Compounds Formed from Diacetylene and Rare-Gas Atoms: HKrC4H and HXeC4H. J. Am. Chem. Soc. 2003, 125: 16361~16366
    29 L. Khriachtchev, A. Lignell, H. Tanskanen, J. Lundell, H. Kiljunen, M. R?s?nen. Insertion of Noble-Gas Atoms into Cyanoacetylene: An ab initio and Matrix Isolation Study. J. Phys. Chem. A 2006, 110: 11876~11885
    30 J. Lundell, L. Khriachtchev, M. Pettersson, M. R?s?nen. Formation and Characterization of Neutral Krypton and Xenon Hydrides in Low-Temperature Matrices. Low Temp. Phys. 2000, 26: 680~690
    31 M. Pettersson, J. Lundell, M. R?s?nen. Neutral Rare-Gas Containing Charge-Transfer Molecules in Solid Matrices. 2. HXeH, HXeD, and DXeD in Xe. J. Chem. Phys. 1995, 103: 205~210
    32 M. Pettersson, J. Lundell, L. Khriachtchev, E. Isoniemi, M. R?s?nen. HXeSH, the First Example of a Xenon-Sulfur Bond. J. Am. Chem. Soc. 1998, 120: 7979~7980
    33 M. Pettersson, L. Khriachtchev, J. Lundell, S. Jolkkonen, M. R?s?nen. Photochemistry of HNCO in Solid Xenon: Photoinduced and Thermally Activated Formation of HXeNCO. J. Phys. Chem. A 2000, 104: 3579~3583
    34 M. Pettersson, L. Khriachtchev, J. Lundell, M. R?s?nen. A Chemical Compound Formed from Water and Xenon: HXeOH. J. Am. Chem. Soc. 1999, 121: 11904~11905
    35 L. Khriachtchev, M. Pettersson, J. Lundell, H. Tanskanen, T. Kiviniemi, N. Runeberg, M. R?s?nen. A Neutral Xenon-Containing Radical, HXeO. J. Am. Chem. Soc. 2003, 125: 1454~1455
    36 L. Khriachtchev, H. Tanskanen, J. Lundell, M. Pettersson, H. Kiljunen, M. R?s?nen. Fluorine-Free Organoxenon Chemistry: HXeCCH, HXeCC, and HXeCCXeH. J. Am. Chem. Soc. 2003, 125: 4696~4697
    37 V. I. Feldman, F. F. Sukhov, A. Y. Orlov, I. V. Tyulpina. Experimental Evidence for the Formation of HXeCCH: The First Hydrocarbon with an Inserted Rare-Gas atom. J. Am. Chem. Soc. 2003, 125: 4698~4699
    38 J. Lundell, A. Cohen, R. B.Gerber, Quantum Chemical Calculations on Novel Molecules from Xenon Insertion into Hydrocarbons. J. Chem. Phys. A 2002, 106: 1950~11955
    39 L. Khriachtchev, K. Isokoski, A. Cohen, M. R?s?nen. R. B. Gerber. A Small Neutral Molecule with two Noble-Gas Atoms: HXeOXeH. J. Am. Chem. Soc. 2008, 130: 6114~6118
    40 F. Negri, F. Ancilotto, G. Mistura, F. Toigo. Ab initio Potential Energy Surfaces of He-CO2 and Ne-CO2 van der Waals Complexes. J. Chem. Phys. 1999, 111: 6439~6445
    41 T. Konno, S. Fukuda, Y. Ozaki. Infrared Spectroscopy of Kr–12C18O2: Change in the CO2 Intramolecular Potential by Complex Formation and Isotope Effect on the Vibrationally Averaged Intermolecular Geometry. Chem. Phys. Lett. 2005, 414: 331~335
    42 D. E. Bergeron, A. Musgrave, R. T. Gammon, V. L. Ayles, J. A. E. Silber, T. G. Wright, B. Wen, H. Meyer. Electronic Spectroscopy of the 3d Rydberg states of NO–Rg (Rg = Ne, Ar, Kr, Xe) van der Waals complexes. J. Chem. Phys. 2006, 124: 214302-1~10
    43 S. Hirabayashi, K. M.T. Yamada. Infrared Spectra of the H2O–Kr and H2O–Xe Complexes in Argon Matrices. Chem. Phys. Lett. 2006, 418: 323~327
    44 Q. Wen. W. J?ger. Rotational Spectroscopic and ab initio Studies of the Xe-H2O van der Waals Dimer. J. Phys. Chem. A. 2006, 110(24): 7560~7567
    45 S. A. C. McDowell. Are Insertion Compounds of CH2CHF and the Rare GasesStable? A Computational Study. J. Chem. Phys. 2004, 120: 9077~9079
    46 G. Vayner, Y. Alexeev, J. Wang, T. L. Windus, W. L. Hase. Ab initio and Analytic Intermolecular Potentials for ArCF4. J. Phys. Chem. A 2006, 110: 3174~3178
    47 W. A. Alexander, D. Troya. Theoretical Study of the Ar-, Kr-, and Xe-CH4, -CF4 Intermolecular Potential-Energy Surfaces. J. Phys. Chem. A 2006, 110: 10834~10843
    48 T. -Y. Lin, J. -B. Hsu, W. -P. Hu. Theoretical Prediction of New Noble-Gas Molecules OBNgF (Ng = Ar, Kr, and Xe). Chem. Phys. Lett. 2005, 402: 514~518
    49 A. Cohen, J. Lundell, R. B. Gerber. First Compounds with Argon–Carbon and Argon–Silicon Chemical Bonds. J. Chem. Phys. 2003, 119: 6415~6417
    50 T. -H. Li, C. -H. Mou, H. -R. Chen, W. -P. Hu. Theoretical Prediction of Noble Gas Containing Anions FNgO- (Ng = He, Ar, and Kr). J. Am. Chem. Soc. 2005, 127: 9241~9245
    51 C.ó. C. Jiménez-Halla, I. Fernández, G. Frenking. Is it Possible to Synthesize a Neutral Noble Gas Compound Containing a Ng-Ng Bond? A Theoretical Study of H-Ng-Ng-F (Ng = Ar, Kr, Xe). Angew. Chem. Int. Ed. 2009, 48: 366~369
    52 S. Kapur, E. W. Müller. Meta-Neon Compound Ions in Slow Field Evaporation. Surf. Sci. 1977, 62(2): 610~620
    53 Y. Shen, J. J. BelBruno. Studies of Neutral and Ionic CuAr and CuKr van der Waals Complexes. J. Phys. Chem. A. 2005, 109: 10077~10083
    54 L. R. Brock, M. A. Duncan. Photoionization Spectroscopy of Cu-Kr. Chem. Phys. Lett. 1995, 247: 18~23
    55 Z. J. Jakubek, M. Takami. Ab initio Studies of AgHe Exciplex. Chem. Phys. Lett. 1997, 265: 653~659
    56 Z. J. Jakubek, Q. Hui, M. Takami. Condensation of He Gas on Optically Excited Ag Atoms below the Critical Temperature (T < 5.2 K). Phys. Rev. Lett. 1997, 79: 629~632
    57 A. M. Knight, A. Stangassinger, M. A. Duncan. Photoionization Spectroscopy of Au-Ar. Chem. Phys. Lett. 1997, 273: 265~271
    58 L. R. Brock. M. A. Duncan. Photoionization Spectroscopy of Ag–Rare Gas van der Waals complexes. J. Chem. Phys. 1995, 103: 9200~9211
    59 R. Kometer, N. Schwentner. Dynamics of Dissipation Processes in the Ag–Xe Complex. J. Chem. Phys. 1997, 106: 51~59
    60 R. J. Plowright, V. L. Ayles, M. J. Watkins, A. M. Gardner, R. R. Wright, T. G. Wright, W. H. Breckenridge. Reinvestigation of the Electronic Spectroscopy of the Au–Ar Complex. J. Chem. Phys. 2007, 127: 204308-1~8
    61 C. L. Liao, C.Y. Ng. Photoionization Studies of HgKr and HgXe. J. Chem. Phys.1986, 84: 1142~1145
    62 A. Mizoguchi, Y. Endo, Y. Ohshima. Rotational Spectrum of a Salt-Containing van der Waals Complex: Ar–NaCl. J. Chem. Phys. 1998, 109: 10539~10542
    63 A. Veldkamp, G. Frenking. Structures and Bond Energies of the Noble Gas Complexes NgBeO (Ng = Ar, Kr, Xe). Chem. Phys. Lett. 1994, 226: 11~16
    64 C. J. Evans, M. C. L. Gerry. The Microwave Spectra and Structures of Ar–AgX (X = F, Cl, Br). J. Chem. Phys. 2000, 112: 1321~1329
    65 C. J. Evans, M. C. L. Gerry. Noble Gas–Metal Chemical Bonding? The Microwave Spectra, Structures, and Hyperfine Constants of Ar–CuX (X = F, Cl, Br). J. Chem. Phys. 2000, 112: 9363~9374
    66 C. J. Evans, A. Lesarri, M. C. L. Gerry. Noble Gas-Metal Chemical Bonds. Microwave Spectra, Geometries, and Nuclear Quadrupole Coupling Constants of Ar-AuCl and Kr-AuCl. J. Am. Chem. Soc. 2000, 122: 6100~6105
    67 C. J. Evans, D. S. Rubino, M. C. L. Gerry. Noble Gas-Metal Chemical Bonding: the Microwave Spectra, Structures and Hyperfine Constants of Ar–AuF and Ar–AuBr. Phys. Chem. Chem. Phys. 2000, 2: 3943~3948
    68 L. M. Reynard, C. J. Evans, M. C. L. Gerry. Microwave Spectrum, Structure, and Hyperfine Constants of Kr–AgCl: Formation of a Weak Kr–Ag Covalent Bond. J. Mol. Spectrosc. 2001, 206: 33~40
    69 N. R. Walker, L. M. Reynard, M. C. L. Gerry. The Microwave Spectrum and Structure of KrAgF. J. Mol. Struct. 2002, 612: 109~116
    70 S. A. Cooke, M. C. L. Gerry. XeAuF. J. Am. Chem. Soc. 2004, 126: 17000~17008
    71 S. A. Cooke, M. C. L. Gerry. Insights into the Xenon–Silver Halide Interaction from a Rotational Spectroscopic Study of XeAgF and XeAgCl. Phys. Chem. Chem. Phys. 2004, 6: 3248~3256
    72 J. M. Thomas, N. R. Walker, S. A. Cooke, M. C. L. Gerry. Microwave Spectra and Structures of KrAuF, KrAgF, and KrAgBr; 83Kr Nuclear Quadrupole Coupling and the Nature of Noble Gas–Noble Metal Halide Bonding. J. Am. Chem. Soc. 2004, 126: 1235~1246
    73 J. M. Michaud, S. A. Cooke, M. C. L. Gerry. Rotational Spectra, Structures, Hyperfine Constants, and the Nature of the Bonding of KrCuF and KrCuCl. Inorg. Chem. 2004, 43: 3871~3881
    74 J. M. Michaud, M. C. L. Gerry. XeCu Covalent Bonding in XeCuF and XeCuCl, Characterized by Fourier Transform Microwave Spectroscopy Supported by Quantum Chemical Calculations. J. Am. Chem. Soc. 2006, 128: 7613~7621
    75 T. K. Ghanty. Insertion of Noble-Gas Atom (Kr and Xe) into Noble-MetalMolecules (AuF and AuOH): Are they Stable? J. Chem. Phys. 2005, 123: 074323-1~7
    76 T. K. Ghanty. How Strong is the Interation between a Noble Gas Atom and a Noble Metal Atom in the Insertion Compounds MNgF (M = Cu and Ag, and Ng = Ar, Kr, and Xe)? J. Chem. Phys. 2006, 124: 124304-1~7
    77 P. Pyykk?. Predicted Chemical Bonds between Rare Gases and Au+. J. Am. Chem. Soc. 1995, 117: 2067~2070
    78 J. P. Read, A. D. Buckingham. Covalency in ArAu+ and Related Species? J. Am. Chem. Soc. 1997, 119: 9010~9013
    79 D. Schr?der, H. Schwarz, J. Hru?ák, P. Pyykk?. Cationic Gold(I) Complexes of Xenon and of Ligands Containing the Donor Atoms Oxygen, Nitrogen, Phosphorus, and Sulfur. Inorg. Chem. 1998, 37: 624~632
    80 C. W. Bauschlicher, Jr., H. Partridge, S. R. Langhoff. Comparison of the Bonding between ML+ and ML2+ (M = metal, L = noble gas). Chem. Phys. Lett. 1990, 165: 272~276
    81 H. Partridge, C. W. Bauschlicher, Jr., S. R. Langhoff. Theoretical Study of Metal Ions Bound to He, Ne, and Ar. J. Phys. Chem. 1992, 96: 5350~5355
    82 A. Freitag, Ch. van Wüllen, V. Staemmler. An ab initio Study of the Chemical Bond and the 129Xe NMR Chemical Shifts in M+-Xe Compounds, M = Li, Na, K, Cu, Ag. Chem. Phys. 1995, 192: 267~280
    83 Y. Shen, J. J. BelBruno. Studies of Neutral and Ionic CuAr and CuKr van der Waals Complexes. J. Phys. Chem. A. 2005, 109: 10077~10083
    84 A. Yousef, S. Shrestha, L. A. Viehland, E. P. F. Lee, B. R. Gray, V. L. Ayles, T. G. Wright, W. H. Breckenridge. Interaction Potentials and Transport Properties of Coinage Metal Cations in Rare Gases. J. Chem. Phys. 2007, 127: 154309-1~10
    85 L. Belpassi, I. Infante, F. Tarantelli, L. Visscher. The Chemical Bond between Au(I) and the Noble Gases. Comparative Study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by Density Functional and Coupled Cluster Methods. J. Am. Chem. Soc. 2008, 130: 1048~1060
    86 W. H. Breckenridge, V. L. Ayles, T. G. Wright. Evidence for Emergent Chemical Bonding in Au+-Rg Complexes (Rg = Ne, Ar, Kr, and Xe). J. Phys. Chem. A 2008, 112: 4209~4214
    87 D. Bellert, W. H. Breckenridge. Bonding in Ground-State and Excited-State A+·Rg van der Waals Ions (A = Atom, Rg = Rare-Gas Atom): A Model-Potential Analysis. Chem. Rev. 2002, 102: 1595~1662
    88 Ch. Lüder, D. Prekas, M. Velegrakis. Ion-Size Effects in the Growth Sequences of Metal-Ion-Doped Noble Gas Clusters. Laser Chem. 1997, 17: 109~122
    89 D. Prekas, Ch. Lüder, M. Velegrakis. Structural Transitions in Metal Ion-Doped Noble Gas Clusters: Experiments and Molecular Dynamics Simulations. J. Chem. Phys. 1998, 108: 4450~4459
    90 G. E. Froudakis, S. C. Farantos, M. Velegrakis. Mass Spectra and Theoretical Modeling of Li+Nen, Li+Arn and Li+Krn Clusters. Chem. Phys. 2000, 258: 13~20
    91 J. Hernández-Rojas, D. J. Wales. Global Minima for Rare Gas Clusters Containing one Alkali Metal Ion. J. Chem. Phys. 2003, 119: 7800~7804
    92 T. Nagata, M. Aoyagi, S. Iwata. Noble Gas Clusters Doped with a Metal Ion I: ab initio Studies of Na+Arn. J. Phys. Chem. A 2004, 108: 683~690
    93 G. S. Fanourgakis, S. C. Farantos. Potential Functions and Static and Dynamic Properties of Mgm+Arn (m = 1, 2; n = 1-18) clusters. J. Phys. Chem. 1996, 100: 3900~3909
    94 G. S. Fanourgakis, S. C. Farantos, P. Parneix, Ph. Bréchignac. An Effective Transition State for a Complex Clusteisomerization Process: Comparison between Aarmonic and Harmonic Models for Mg+Ar12. J. Chem. Phys. 1997, 106: 4954~4962
    95 G. S. Fanourgakis, S. C. Farantos, Ch. Lüder, M. Velegrakis, S. S. Xantheas. Photofragmentation Spectra and Structures of Sr+Arn, n = 2–8 clusters: Experiment and Theory. J. Chem. Phys. 1998, 109: 108~120
    96 G. E. Froudakis, G. S. Fanourgakis, S. C. Farantos, S. S. Xantheas. Dissociation energies and Structures of C+Arn (n = 1–5), Clusters from First Principles. Chem. Phys. Lett. 1998, 294: 109~116
    97 Ch. Lüder, E. Georgiou, M. Velegrakis. Studies on the Production and Stability of large CN+ and Mx+RN (M = C, Si, Ge and R = Ar, Kr) Clusters. Int. J. Mass Spectrom. Ion Processes. 1996, 153: 129~138
    98 M. Velegrakis, G. E. Froudakis, S. C. Farantos. Stability and Structure of Ni+Arn and Pt+Arn Clusters. J. Chem. Phys. 1998, 109: 4687~4688
    99 M. Velegrakis, G. E. Froudakis, S. C. Farantos. Coordination of Ti Cation Embedded in Argon Clusters. Chem. Phys. Lett. 1999, 302: 595~601
    100 D. Lessen, P. J. Brucat. The Unique Stability of CoAr6+: Coordination Complex or Close-Packed Structure? Chem. Phys. Lett. 1988, 149: 10~13
    101 D. Lessen, P. J. Brucat. Characterization of Transition Metal–Rare-Gas Cations: VAr+ and VKr+. J. Chem. Phys. 1989, 91: 4522~4530
    102 M. Beyer, Ch. Berg, G. Albert, U. Achatz, V. E. Bondybey. Coordinative Saturation of Cationic Niobium- and Rhodium-Argon Complexes. Chem. Phys. Lett. 1997, 280: 459~463
    103 S. Bililign, C. S. Feigerle, J. C. Miller, M. Velegrakis. Nonstatistical BondBreaking in the Multiphoton Ionization/Dissociation of [Fe(CO)5]mArn Clusters. J. Chem. Phys. 1998, 108: 6312~6319
    104 G. E. Froudakis, M. Muhlhauser, S. C. Farantos, A. Sfounis, M. Velegrakis. Mass Spectra and Structures of Cu+Rgn Clusters (Rg = Ne, Ar). Chem. Phys. 2002, 280: 43~51
    105 N. R. Walker, R. R. Wright, P. E. Barran, H. Cox, A. J. Stace. Unexpected Stability of [Cu·Ar]2+, [Ag·Ar]2+, [Au·Ar]2+, and their Larger Clusters. J. Chem. Phys. 2001, 114: 5562~5567
    106 S. Berski, Z. Latajka, J. Andrés. The Nature of the Au–Rg Bond in the [AuRg4]2+ (Rg = Ar, Kr and Xe) Molecules. Chem. Phys. Lett. 2002, 356: 483~489
    107 A. Schweizer, J. M. Weber, S. Gilb, H. Schneider, D. Schooss, M. M. Kappes. Electronic Photodissociation Spectroscopy of Au4+·Arn, n = 0–4: Experiment and Theory. J. Chem. Phys. 2003, 119: 3699~3710
    108 S. Gilb, K. Jacobsen, D. Schooss, F. Furche, R. Ahlrichs, M. M. Kappes. Electronic Photodissociation Spectroscopy of Aun·Xe (n = 7–11) versus Time-Dependent Density Functional Theory Prediction. J. Chem. Phys. 2004, 121: 4619~4627
    109 A. N. Gloess, H. Schneider, J. M. Weber, M. M. Kappes. Electronically Excited States and Visible Region Photodissociation Spectroscopy of Aum+·Arn clusters (m = 7–9): Molecular Dimensionality Transition? J. Chem. Phys 2008, 128: 114312-1~9
    110 S. Seidel, K. Seppelt. Xenon as a Complex Ligand: The Tetra Xenono Gold(II) Cation in AuXe42+(Sb2F11 )2. Science 2000, 290: 117~118
    111 T. Drews, S. Seidel, K. Seppelt. Gold-Xenon Complexes. Angew. Chem. Int. Ed. 2002, 41: 454~456
    112 I. -C. Hwang, S. Seidel, K. Seppelt. Gold(I) and Mercury(II) Xenon Complexes. Angew. Chem. Int. Ed. 2003, 42: 4392~4395
    113 K. Seppelt. Metal-Xenon Complexes. Z. Anorg. Allg. Chem. 2003, 629: 2427~2430
    114 G. Tav?ar, E. Goreshnik, Z. Mazej. Homoleptic [M(XeF2)6]2+ Cations of Copper(II) and Zinc(II)—Syntheses and Crystal Structures of [M(XeF2)6](SbF6)2 (M = Cu, Zn). J. Fluorine Chem. 2006, 127: 1368~1373
    115 Z. Mazej, E. Goreshnik. Synthesis, Raman Spectra and Crystal Structures of [Cu(XeF2)n](SbF6)2 (n = 2, 4). Inorg. Chem. 2008, 47(10): 4209~4214
    116冯光熙,黄祥玉.稀有气体化学的进展.化学通报. 1981, 5: 46~51
    117周全法,黄红缨.贵金属纳米材料及其产业化过程.稀有金属. 2002, 26(6): 502 ~508
    118 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Peterson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rauck, K. Raghavachari, J. B. Foresman, J. Cioslowki, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, GAUSSIAN 98, Revision A.7, Gaussian Inc. Pittsburgh, PA, 1998
    119唐敖庆等.量子化学.科学出版社. 1982: 295~295
    120林梦海.量子化学计算方法与应用.科学出版社, 2003: 74~74
    121 J. B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch. Toward a Systematic Molecular Orbital Theory for Excited States. J. Phys. Chem.1992, 96: 135~149
    122 R. Krishnan, H. B. Schlegel, J. A. Pople. Derivate Studies in Configuration Interaction Theory. J. Chem. Phys. 1980, 72: 4654~4655
    123 B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H. F. Schaefer. Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach. J. Chem. Phys. 1980, 72: 4652~4653
    124 J. A. Pople, M. Head-Gordon, K. Raghavachari. Quadratic Configuration Interaction. a general Technique for Determining Electron Correlation Energies. J. Chem. Phys. 1987, 87: 5968~5975
    125 M. Head-Gordon, J. A. Pople, M. J. Frisch. MP2 Energy Evaluation by Direct Methods. Chem. Phys. Lett. 1988, 153(6): 503~510
    126 M. J. Frisch, M. Head-Gordon, J. A. Pople. A Direct MP2 Gradient Method. Chem. Phys. Lett. 1990, 166(3): 275~280
    127 M. J. Frisch, M. Head-Gordon, J. A. Pople. Semi-Direct Algorithms for the MP2 Energy and Gradient. Chem. Phys. Lett. 1990, 166(3): 281~289
    128 M. Head-Gordon, T. Head-Gordon. Analytic MP2 Frequencies without Fifth Order Storage. Theory and Application to Bifurcated Hydrogen Bonds in the Water Hexamer. Chem. Phys. Lett. 1994, 220(25): 122~128
    129 S. Saebo, J. Almlof. Avoiding the Integral Storage Bottleneck in LCAO Calculations of Electron Correlation. Chem. Phys. Lett. 1989, 154(1): 83~89
    130 J. A. Pople, J. S. Binkley, R. Seeger. Reflections on the Scientific Career of Jeremy Musher. Int. J. Quant. Chem. Symp. 1976, 10: 1~8
    131 R. Krishnan, J. A. Pople. Approximate Fourth-Order Perturbation Theory of theElectron Correlation Energy. Int. J. Quant. Chem. 1978, 14: 91~100
    132 K. Raghavachari, J. A. Pople, E. S. Replogle, M. Head-Gordon. Fifth-Order M?ller-Plesset Perturbation Theory: Comparison of Existing Correlation Methods and Implementation of New Methods Correct to Fifth Order. J. Phys. Chem. 1990, 94: 5579~5586
    133 G. D. Purvis, R. J. Bartlett. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76(4): 1910~1918
    134 R. K Nesbet. Electronic Correlation in Atoms and Molecules. Adv. Chem. Phys. 1965, 9: 321~360
    135 O. Sinanoglu. Many-Electron Theory of Atoms, Molecules and Their Interactions. Adv. Chem. Phys. 1964, 6: 315~320
    136 J. Cizek. Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules. Adv. Chem. Phys 1969, 17: 34~38
    137 K. Raghavachari, G.W. Trucks, J. A. Pople, M. Head-Gordon. A Fifth-order Perturbation Comparison of Electron Correlation Theories. Chem. Phys. Lett. 1989, 157: 479~483
    138 R. G. Parr, W. Yang. Density Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989
    139戴瑛,黎乐民.密度泛函理论处理激发态与多重态结构研究进展.化学进展, 2001, 13(3) 167~176
    140 P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136 (3): 864~871
    141 D. Becke. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38: 3098~3100
    142 A. D. Becke. A New Mixing of Hartree–Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98: 1372~1377; C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density. Phys. Rev. B, 1988, 37: 785~789
    143冯平义,王岩,廖沐真.相对论效应和重原子簇的化学、光谱性质.化学通报. 1998, 5: 25~32
    144 P. Pyykk?. Relativistic Effects in Structural Chemistry. Chem. Rev. 1988, 88: 563~594
    145李继平,何鸿彬.用相对论效应解释第二周期性.化学研究与应用, 1996, 8(4): 284~485
    146刘文剑.相对论量子化学新进展.化学进展, 2007, 19(6): 832~851
    147 Y. S. Lee, W. C. Ermler, K. S. Pitzer. Ab initio effective core potentials includingrelativistic effects. I. Formalism and applications to the Xe and Au. J. Chem. Phys. 1977, 67 (12): 5861~5876
    148 L. R. Kahn, P. Baybutt, D. G. Truhlar. Ab initio Effective Core Potentials: Reduction of All-Electron Molecular Structure Calculations to Calculations Involving only Valence Electrons. J. Chem. Phys. 1976, 65(10): 3826~3853
    149 W. C. Ermler, P. A. Christiansen, K. S. Pitzer. Ab initio Effective Core Potentials Including Relativistic Effects. A Procedure for the Inclusion of Spin-Orbit Coupling in Molecular Wavefunctions. Chem. Phys. Lett. 1981, 81: 70~74
    150 L. A. Lajohn, P. A. Christiansen, R. B. Ros, T. Atashroo, W. C. Ermler. Ab initio Relativistic Effective Potentials with Spin-Orbit Operation III Rb through Xe. J. Chem. Phys. 1987, 87 (5): 2812~2824
    151 M. Dolg, U. Wedig, H. Stoll, H. Preuss. Energy-Adjusted ab initio Pseudopotentials for the First Row Transition Elements. J. Chem. Phys. 1987, 86 (2): 866~872
    152 Y. Sakai. E. Miyoski, M. Klobukowski, S. Huzinaga. Model Potentials for Molecular Calculations. I. The sd-MP Set for Transition Metal Atoms Scandium through Mercury. J. Comput. Chem. 1987, 8: 226~256
    153 L. S. Lim, H. Stoll, P. Schwerdtfeger. Relativistic Small-Core Energy-Consistent Pseudopotentials for the Alkaline-Earth Elements from Ca to Ra. J. Chem. Phys. 2006, 124: 034107-1~9
    154 P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker, P. D. W. Boyd. Relativistic Effects in Gold Chemistry. I. Diatomic Gold Compounds. J. Chem. Phys. 1989, 91: 1762~1774; Institut fur Theoretische Chemie, Univeritat Stuttgart, ECPs and corresponding Valence basis set; http://www.theochem.uni-stuttgart.de
    155 A. W. Ehlers, M. B?hme, S. Dapprich, A. Gobbi, A. H?llwarth, V. Jonas, K. F. K?hler, R. Stegmann, A. Veldkamp, G. Frenking. A set of f-polarization Functions for Pseudo-potential Basis Sets of the Transition Metals Sc---Cu, Y---Ag and La---Au. Chem. Phys. Lett. 1993, 208: 111~114
    156 D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss. Energy-Adjustedab initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 1990, 77: 123~141
    157 P. Pyykk?, N. Runeberg, F. Mendizabal. Theory of the d10-d10 Closed-Shell Attraction: 1. Dimers near Equilibrium. Chem. Eur. J. 1997, 3: 1451~1457
    158 A. Nicklass, M. Dolg, H. Stoll, H. Preuss. Ab initio Energy-Adjusted Pseudopotentials for the Noble Gases Ne through Xe: Calculation of Atomic Dipole and Quadrupole Polarizabilities. J. Chem. Phys. 1995, 102: 8942~8952
    159 S. F. Boys, F. Bernardi. The Calculation of Small Molecular Interactions by theDifferences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19: 553~566
    160 C. C. Lovallo, M. Klobukowski. Transition Metal–Noble Gas Bonding: the Next Frontier. Chem. Phys. Lett. 2003, 368: 589~593
    161 P. Tarakeshwar, K. S. Kim, B. Brutschy. Interaction of the Water Dimer withπ-systems: A Theoretical Investigation of Structures, Energies, and Vibrational Frequencies. J. Chem. Phys. 2000, 112: 1769~1781
    162 K. Buchhold, B. Reimann, S. Djafari, H. -D. Barth, B. Brutschy. Fluorobenzene and p-difluorobenzene Microsolvated by Methanol: An Infrared Spectroscopic and ab initio Theoretical Investigation. J. Chem. Phys. 2000, 112: 1844~1858
    163 C. Riehn, K. Buchhold, B. Reimann, S. Djafari, H. -D. Barth, B. Brutschy, P. Tarakeshwar, K. S. Kim. Van der Waals Isomers and Ionic Reactivity of the Cluster System Para-Chlorofluorobenzene/methanol. J. Chem. Phys. 2000, 112: 1170~1177
    164 E. C. Lee, H. M. Lee, P. Tarakeshwar, K. S. Kim. Structures, Energies, and Spectra of Aqua-Silver (I) Complexes. J. Chem. Phys. 2003, 119: 7725~7736
    165 R. S. Berry, S. A. Rice, J. Ross. The Structure of Matter: An Introduction to Quantum Mechanics, 2nd ed. Oxford, New York. 2002
    166 A. J. Herbert, F. J. Lovas, C. A. Melendres, C. D. Hollowell, T. L. Story, Jr., K. Street, Jr.. Dipole Moments of Some Alkali Halide Molecules by the Molecular Beam Electric Resonance Method. J. Chem. Phys. 1968, 48: 2824~2825
    167 F. H. de Leeuw, R. van Wachen, A. Dymanus. Radio-Frequency Spectrum of KBr by the Molecular-Beam Electric-Resonance Method. J. Chem. Phys. 1969, 50: 1393~1397
    168 S. Ikeda, T. Nakajima, K. Hirao. A Theoretical Study of Transition Metal Hydroxides: CuOH, AgOH, and AuOH. Mol. Phys. 2003, 101: 105~110
    169 D. N. Turnbull, R. P. Lowe. An Empirical Determination of the Dipole Moment Function of OH ( X 2∏). J. Chem. Phys. 1988, 89: 2763~2767
    170 D. R. Lide, Ed.. Handbook of Chemistry and Physics, 74th ed.; CRC Press: Boca Raton, 1993
    171 C. J. Whitham, H. Ozeki, S. Saito. Microwave Spectra of CuOD and AgOD: Molecular Structure and Harmonic Force Field of CuOH and AgOH. J. Chem. Phys. 2000, 112: 641~646
    172 T. C. Steimle, D. F. Nachman, D. A. Fletcher. Laboratory Measurement of the Permanent Electric Dipole Moment of Gas-Phase CuO in its X 2∏State. J. Chem. Phys. 1987, 87: 5670~5673
    173 J. Hoeft, F. J. Lovas, E. Tiemann, T. Z. T?rring. Naturforsch. 1970, 25a, 35
    174 K. P. R. Nair, J. Hoeft. Electric Dipole Moment of the Diatomic AgCl Molecule. J. Phys. B. 1984, 17: 735~738
    175 P. X. Zhang, Y. F. Zhao, F. Y. Hao, X.Y. Li. Bonding Analysis for NgAuOH (Ng = Kr, Xe). Int. J. Quant. Chem. 2008, 108: 937~944
    176 P. Pyykk?. Noblesse Oblige. Science 2000, 290: 64~65
    177 X. Y. Li, X. Cao. Ab initio Study of MXen+ (M = Cu, Ag, and Au; n = 1, 2). Phys. Rev. A 2008, 77: 022508-1~5
    178 T. K. Ghanty. Gold Behaves as Hydrongen: Prediction on the Existence of a New Class of Born-Containing Radicals, AuBX (X = F, Cl, Br). J. Chem. Phys. 2005, 123: 241101-1~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700