用户名: 密码: 验证码:
基于荧光分子印迹材料与表面增强拉曼基底对五氯酚的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
五氯酚(PCP)作为有机氯农药广泛地用作杀菌剂、杀藻剂、杀虫剂和除草剂,以及木材防腐剂。由于其化学性质稳定、残效期长、毒性高,对生物体具有广谱毒性和致突变性,属于我国严格控制的环境污染物。在美国环保局公布的优先污染物分类表中,PCP位列其中。实验室检测PCP的常用方法有气相色谱法,比色法,高效液相色谱法,气相色谱-质谱法联用,在上述几种方法中,比色法专一性和灵敏度差;气相色谱-质谱法不仅灵敏度高,精确度好,而且分辨率高。但这类方法除需要使用昂贵的仪器设备外,还经常面临常规检测中繁琐费时的样品提取、净化、衍生化等前处理步骤,检测时间很长,检测费用很高,不利于大规模样品的检测。由于PCP的存在基质体系比较复杂,能够快速检测而避免其他物质的干扰是一个重要的课题。针对此,本论文采取两种手段来选择性的检测PCP,这是本文的主要目标。一种是利用分子印迹技术。分子印迹技术是指制备对某一特定目标分子具有特异选择性的聚合物,即分子印迹聚合物的过程,常被形象地描绘为制造识别“分子钥匙”的“人工锁”的技术。分子印迹是在模板分子周围形成一个高度交联的刚性高分子,除去模板分子后在聚合物的网络结构中留下具有结合能力的反应基团,对模板客体分子表现高度的选择识别性能,因此在识别富集和识别分析中具有美好的应用前景。利用分子印迹材料可以对PCP进行选择性的吸附分离,但是分子印迹聚合物本身没有信号输出,需要后续的洗脱检测。我们将量子点引入分子印迹材料中,利用其荧光信号来监测分子印迹材料的吸附情况。在分析测试中,利用分子本身的信号输出进行检测是最直接最准确的方法。表面增强拉曼散射(SERS)可以提供分析物的结构特征指纹信息,具有高灵敏性、高选择性和快速的特点,在许多重要化学物质和生物分子的检测中具有潜在的应用价值。因此,我们选择的第二种手段是利用表面增强拉曼散射对PCP进行检测。在SERS中,合成一种具有强的增强因子的可靠的基底是很重要的研究方向。在铜箔或铝箔等平面结构上合成金属纳米结构因其高增强因子和容易储备等优点常常用于SERS快速检测。
     本论文中,利用分子印迹材料来选择性的将PCP分离出来,依据印迹材料中量子点的信号变化来检测PCP。基于PCP本身的拉曼信号检测的要求,合成了一种高增强因子的SERS基底。在此基础上,分别发展了以荧光分子印迹材料和银质铜基拉曼基底为探针检测PCP的应用。论文主要内容归纳如下:
     1.合成了一种负载了磁性Fe304纳米颗粒和ZnS:Mn2+量子点的PCP的分子印迹材料。将Fe304纳米颗粒加入到印迹材料中可以在外加磁场存在下进行磁分离,方便分离过程。复合材料中的ZnS:Mn2+量子点可以提供输出信号,用于监测吸附到印迹材料上的PCP的量,进而来衡量印迹的效率。所得的印迹材料用X射线粉末衍射(XRD),透射电子显微镜(TEM),傅立叶变换红外(FTIR)来表征。小角X射线衍射和氮气吸附脱附分析表明所得印迹材料具有短程周期性介孔结构。研究了磁性印迹材料的吸附行为,介孔的存在使得吸附很快达到平衡,并且印迹材料比非印迹材料对PCP的吸附容量要大。利用ZnS:Mn2+量子点的荧光信号监测了PCP的吸附量的变化。常见的离子如K+, Na+, Ca2+, Mg2+, Cl-, CO32对磁性荧光印迹材料对PCP的检测的影响很小与其他芳香族化合物如2,4-二氯苯氧乙酸(2,4-d),2,4-二氯苯酚(2,4-dp)和苯酚(phOH)相比,合成的印迹材料对PCP有更好的亲和作用。将这种材料用于泉水和自来水样的检测中得到较好的回收率,分别是101%和97%。
     2.研究了PCP对ZnS:Mn2+量子点的两个发光峰的不同影响的原因,并基于此建立了一种荧光比率法来检测PCP。在本工作中,在水相中合成了ZnS:Mn2+量子点,这种量子点有缺陷发光(467nm)和杂质离子发光(595nm)两个发光峰。当PCP加入到量子点溶液中时,两个峰对PCP的响应不同,杂质离子发光被淬灭而缺陷发光强度基本没有变化。我们通过对ZnS:Mn2+量子点的两个发光峰不寿命进行测试,推断了PCP对两个发光峰影响不同是由于两者寿命相差约6个数量级,导致了淬灭效率的差异,并依此建立了荧光比率法来测试对PCP。为了提高对PCP的选择性,对ZnS:Mn2+量子点进行了表面印迹。首先对ZnS:Mn2+量子点用巯丙基硅烷修饰,之后加入到以PCP为模板,氨丙基三乙氧基硅烷(APTES)为功能单体的混合液中,正硅酸四乙酯(TEOS)为交联剂进行印迹。对合成的荧光印迹材料用了XRD、TEM、FTIR进行表征。同时用ZnS:Mn2+量子点的荧光比率(F467/F595)来衡量印迹的效率,结果表明F467/F595与PCP的加入量在0-5μmoL-1范围内呈线性关系。与其它结构类似物相比,合成的荧光印迹材料对PCP亲和作用更强。常见离子对荧光比率法检测PCP基本没有影响。因此,基于这种方法,我们把合成的荧光印迹材料应用于泉水和自来水两种实际水样中PCP的检测,得到了较好的回收率。
     3.为了利用PCP的拉曼信号来检测,我们以硝酸银、氢氟酸为原料在铜箔上合成了银的微纳结构。硝酸银与铜箔基于置换反应会在铜箔上沉积银单质。在氟离子存在的情况下,铜的电极电势φθ(Cu2+/Cu)=0.3419V变为了0.2353V,与银的电极电势φθ(Ag+/Ag)=0.7996V电势差变大,反应更容易进行。调节硝酸银的浓度、银离子和氟离子的配比以及反应时间等参数来优化合成的基底。将所合成的基底进行XRD、SEM的表征,利用巯基苯胺来标定合成基底的SERS效果。最终选择在硝酸银浓度为10mmol L-1,银离子与氟离子比例为1:10,反应时间为60s时合成的基底用于PCP的检测。
As an organochlorine pesticide, pentachlorophenol (PCP) has been widely used as fungicides, algicides, herbicides and wood preservatives. Because of its chemical stability, high toxicity and mutagenicity, PCP has been listed as strictly controlled envioremental pollutants in China. Envioremental Protection Agency in U.S. also classified it as a priority pollution. Common methods for PCP detection in lab include gas chromatography (GC), high performance liquid chromatography (HPLC), colcorimetry and gas chromatography-mass spectrometry (GC-MS). However, drawbacks exist in the methods. In colorimetry method, specificity and sensitivity are relatively poor. Although GC-MS method is able to give a high sensitivity, accuracy and resolution detection, such a method needs expensive equipments and cumbersome, time-consuming routine sample extraction, purification, derivatization, making it not suitable to large-scale sample testing. As PCP existence condition is relatively complex, it is an important issue to detect PCP quickly without interface of the other co-existant substances. In this paper, two proposals were chosen to sense PCP with high selectivity. This is the main objective of this paper. One way is using molecular imprinting technique. Molecular imprinting technique is a progress to prepare a matrix with specific selectivity to a particular target molecule. Molecularly imprinted polymers (MIPs) are complentary in spatial structure and functionality to template and promising in enrichment and analysis indentically. MIPs of PCP can be synthesized to adsorb and seprate selectively. However, MIPs cannot give the output signal. Quantum dots (QDs) were introduced to MIPs, making it possible to monitor the adsorption. In analytical testing, the most direct and accurate method for detection is using the output signal of the analyte. Surface enhanced Raman scattering (SERS) can provide the fingerprint information of analyte, with potential application in the detection of chemicals and biological molecules for the characterization of high sensitivity and selectivity. Therefore, the second proposal to detect PCP is using SERS.
     In this paper, fluorescent molecularly imprinted matrix and SERS substrates were synthesized for the detection of PCP with fluorescent and Raman spectra. The main contents can be summarized as follows:
     1. An imprinted silica matrix of PCP co-loaded with FeO4nanoparticles and ZnS:Mn2+QDs was fabricated. The introduction of Fe3O4nanoparticles to the imprinted matrix provided an easy way to separate PCP under an external magnetic field. ZnS:Mn2+QDs offered a readout signal to monitor the amount of PCP bound to the imprinted matrix and evaluate the efficiency of imprinting. X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy were used to characterize the imprinted matrix. The low angle X-ray diffraction and N2adsorption-desorption analysis indicated a periodic mesoporous structure. The adsorption of magnetic imprinted matrix was studied. The adsorption reached equilibrium quickly because of the mesoporous structure. The as-synthesized imprinted matrix preferred to adsorb PCP rather than the other aromatic compounds like2,4-dichlorophenoxy acetic acid,2,4-dichlorophenol and phenol. The common ions like K+, Na+, Ca2+, Mg2+, Cl-,CO32-interfaced little to the detection. The recoveries of spiked PCP in spring water and tap water with Fe3O4-ZnS:Mn2+co-loaded MIPsare101%and97%, respectively.
     2. The two emissions of ZnS:Mn2+QDs exhibited different responces when PCP was added. A ratiometric fluorescent method was established to detect PCP. In this work, water soluble ZnS:Mn2+QDs were synthesized with defect-related emission (467nm) and impurity emission (595nm). When PCP was added, impurity emission was quenched whileas defect-related emission changed little. The fluorescent lifetimes of the two emissions were measured. A possible reason was deduced for this phenomenane. The lifetime of impurity emission is about6magnitudes longer than defect-related emission, which affect the quenching efficiency. To improve the selectivity to PCP, surface imprinting was fabricated on ZnS:Mn2+QDs. PCP was preassembled with the functional monomer3-aminopropyltriethoxysilane (APTES) and copolymerized with cross-linkers tetraethoxysilane (TEOS). The as synthesized fluorescent imprinted matrix was characterized with XRD, TEM and FTIR. The ratio of two emission bands (F467/F595) was employed to evalue the efficiency of the imprinting. The ratio (F467/F595) exhibited a linearship with PCP concentration range of0-5μmol L-1. Compared with the other structural analogues, fluorescent imprinted matrix exhibited more affinity to PCP. Great recoveries were obtained in real sample detection with this approach.
     3. Silver structures were obtained on copper foil by the galvanic displacement reaction between copper and silver nitrate in the presence of hydrogen fluoride for the detection of PCP. The electrode potential of copper changed from0.3419V to0.2353V in the presence of fluoride ions. The electric potential difference of copper and silver nitrate (0.7996V) became larger, promoting the reaction. Experimental conditions like the concentration of silver nitrate, ratio of silver ion and fluoride ion and reaction time were optimized to obtain substrates with high enhancement factor. Substrates prepared with10m mol L-1silver nitrate, ratio of silver ion and fluoride ion1:10and reaction time of60s were used for the SERS detection of PCP.
引文
[1]T Colborn, F S vom Saal, A M Soto, Developmental effects of endocrine-disrupting chemicals in wildlife and humans [J]. Environ. Health Perspect.,1993,101 (5):378-384.
    [2]H C Hong, H Y Zhou, C Y Lan, Y Liang, Pentachlorophenol induced physiological-biochemical changes in Chlorella pyrenoidosa culture [J]. Chemosphere,2010,81 (10):1184-1188.
    [3]江夕夫,李延平,王术恩,张文生,王晓红,汪小丰,樊文中,杨润,人群五氯酚环境暴露、体负荷和健康效应的研究[J].中国公共卫生,1994,(10):436-439.
    [4]杨润,杨沛,钱松,江夕夫,人群五氯酚环境暴露量的调查分析[J].环境监测管理与技术,1996,(04):19-21.
    [5]王晓红,钱松,杨润,杨沛,人体五氯酚环境接触量的研究[J].环境与健康杂志,1998,(01):26-28.
    [6]洪华嫦,周海云,蓝崇钰,五氯酚对斜生栅藻的毒性效应研究[J].环境科学研究,2003,(06):23-25.
    [7]杨淑贞,韩晓冬,陈伟,五氯酚对生物体的毒性研究进展[J].环境与健康杂志,2005,(05):396-398.
    [8]王诗生,王芳,蒋新,五氯酚在土壤生态系统中的环境行为研究进展[J].生态学报,2010,(07):1894-1902.
    [9]熊力,马永鹏,毛思予,苏永良,金帮明,刘堰,五氯酚对稀有鮈鲫胚胎毒性效应研究[J].中国环境科学,2012,(02):337-344.
    [10]L Hovander, T Malmberg, M Athanasiadou, I Athanassiadis, S Rahm, A Bergman, E K Wehler, Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma [J]. Arch. Environ. Contam. Toxicol.,2002,42(1):105-117.
    [11]H Leon-Santiesteban, M Meraz, K Wrobel, A Tomasini, Pentachlorophenol sorption in nylon fiber and removal by immobilized Rhizopus oryzae ENHE [J]. J. Hazard. Mater,2011,190 (1-3):707-712.
    [12]C Nicholls, K Karim, S Piletsky, S Saini, S Setford, Displacement imprinted polymer receptor analysis (DIPRA) for chlorophenolic contaminants in drinking water and packaging materials [J]. Biosens. Bioelectron.,2006,21 (7): 1171-1177.
    [13]常浩,金泰廙,五氯酚的内分泌干扰作用研究进展[J].环境与健康杂志,2002,(03):279-281.
    [14]E Gremaud, R J Turesky, Rapid analytical methods to measure pentachlorophenol in wood [J]. J. Agric. Food Chem.,1997,45 (4):1229-1233.
    [15]X Wang, J Xiong, A Li, C Gao, S Yang, Study on the optimal method for determination of pentachlorophenol residues in environment by GC-mu ECD [J]. Huazhong Shifan Daxue Xuebao (Ziran Kexue Ban),2006,40 (4):540-543.
    [16]陈亚妍,李连元,胡志芬,李淑敏,刘景兰,环境样品中五氯酚的气相色谱测定法[J].卫生研究,1980,(02):60-65.
    [17]王彦,胡志声,杨玉森,刘离,五氯酚及五氯酚钠的测定--藏红T比色法[J].铁道劳动卫生通讯,1986,(03):51-55.
    [18]乔静镕,虞爱如,比色法测定人尿中五氯酚规范化研究[J].工业卫生与职业病,1988,(05):297-300.
    [19]裘淑华,藏红花红比色法测定水中五氯酚钠的改进[J].浙江预防医学2000,(05):66.
    [20]廖林川,颜有仪,林岚,杨林,高效液相色谱法检测生物样品中五氯酚[J].匹川大学学报(医学版),2004,(03):427-428.
    [21]杨秋红,程小艳,杨坪,钱蜀,但德忠,固相萃取-高效液相色谱串联质谱法同时检测地表水中的2,4-二氯酚、2,4,6-三氯酚和五氯酚[J].分析化学,2011,(08):1208-1212.
    [22]韦进宝,罗瑞祯,唐智勇,肖玫,导数示波极谱法测定微量五氯酚[J].武汉大学学报(自然科学版),1996,(04):47-51.
    [23]胡林林,李鱼,耿辉,雷金津,伏亚萍,王晓丽,紫外分光光度法测定水样中五氯酚[J].吉林大学学报(理学版),2007,(02):320-323.
    [24]肖振林,丛俏,曲蛟,袁星,张占峰,紫外分光光度法测定土壤中五氯酚[J].理化检验(化学分册),2010,(06):660-662.
    [25]J Li, N Wang, T T Tran, C a Huang, L Chen, L Yuan, L Zhou, R Shen, Q Cai, Electrogenerated chemiluminescence detection of trace level pentachlorophenol using carbon quantum dots [J]. Analyst,2013,138 (7):2038-2043.
    [26]C Li, Q Kang, Y Chen, J Li, Q Cai, S Yao, Electrochemiluminescence of luminol on Ti/TiO2 NT electrode and its application for pentachlorophenol detection [J]. Analyst,2010,135 (11):2806-2810.
    [27]Y Wu, Nano-TiO2/dihexadecylphosphate based electrochemical sensor for sensitive determination of pentachlorophenol [J]. Sens. Actuat. B Chem.,2009, ·137(1):180-184.
    [28]W Q Zhang, G B Zhu, J Y Ma, X H Zhang, J H Chen, A new electrochemical sensor based on W-doped titania-CNTs composite for detection of pentachlorophenol [J]. Indian J. Chem. A,2011,50 (1):15-21.
    [29]A Remes, A Pop, F Manea, A Baciu, S J Picken, J Schoonman, Electrochemical determination of pentachlorophenol in water on a multi-wall carbon nanotubes-epoxy composite electrode [J]. Sensors,2012,12 (6):7033-7046.
    [30]B Yu, H Wu, P Zhou, S Nan, G Lu, F Song, Fluorescence quench of bovine serum albumin by pentachlorophenol [J]. Huanjing Kexue,2006,27 (5): 977-980.
    [31]H Guo, J Fan, Y Guo, A fluorimetric method for the determination of trace pentachlorophenol, based on its inhibitory effect on the redox reaction between the improved Fenton reagent and rhodamine B [J]. Luminescence,2007,22 (5): 407-414.
    [32]Y Q Wang, G C Zhang, H-M Zhang, Study on the interaction of pentachlorophenol with urease in aqueous solution by multiple spectroscopic techniques [J]. J. Solution Chem.,2011,40 (3):458-469.
    [33]X Zhao, X Pang, N Chaisuwan, Developing a qPCR method to quantify AhR-PCP-DNA complex for detection of environmental trace-level PCP [J]. Ecotoxicology,2011,20 (5):1148-1153.
    [34]L Pauling, A theory of the structure and pProcess of formation of antibodies [J]. J. Am. Chem. Soc.,1940,62 (10):2643-2657.
    [35]F H Dickey, The preparation of specific adsorbents [J]. Pro. Nati. Acad. Sci. USA, 1949,35 (5):227-229.
    [36]G Wuff, A Sarhan, K Zabrocki. Enzyme-analogue built polymers and their use for the resolution of racemates [J]. Tetrahedron Lett.,1973,14 (44):4329-4332.
    [37]O Norrlow, M Glad, K Mosbach. Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates [J]. J. Chromatogr.,1984, 299:29-41.
    [38]M J Whitcombe, M E Rodrihuez, P Villar. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol [J]. J. Am. Chem. Soc.,1995,117(27):7105-7111.
    [39]S A Johnson, Ordered mesoporous polymers of tunable pore size from colloidal silica templates [J]. Science,1999,283 (5404):963-965.
    [40]K Haupt, K Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors [J]. Chem. Rev,2010,100(7):2495-2504.
    [41]A Martin-Esteban, Molecularly imprinted polymers:new molecular recognition materials for selective solid-phase extraction of organic compounds [J]. Fresen. J. Anal. Chem.,2001,370 (7):795-802.
    [42]X Jiang, C Zhao, N Jiang, H Zhang, M Liu, Selective solid-phase extraction using molecular imprinted polymer for the analysis of diethylstilbestrol [J]. Food Chem.,2008,108 (3):1061-1067.
    [43]L Chimuka, M van Pinxteren, J Billing, E Yilmaz, J A Jonsson, Selective extraction of triazine herbicides based on a combination of membrane assisted solvent extraction and molecularly imprinted solid phase extraction [J]. J. Chromatogr. A,2011,1218 (5):647-653.
    [44]Z Cobb, L I Andersson, Determination of ropivacaine in human plasma using highly selective molecular imprint-based solid phase extraction and fast LC-MS analysis [S].Anal. Bioanal. Chem.,2005,383 (4):645-650.
    [45]J Matsui, K Fujiwar. Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent [J]. J Chromatogr. A,2000,889 (1-2):25-31.
    [46]J Matsui, Y Miyoshi. A molecularly imprinted synthetic polymer receptor selective for atrazine [J]. Anal. Chem.,1995,67 (23):4404-4408.
    [47]B Bjarnason, L Chimuka. On-line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment [J]. Anal. Chem.,1999,71 (11):2152-2156.
    [48]E Caro, R M Marce, P A G Cormack. Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water [J]. J Chromatogr. A,2004,1047 ·(2):175-180.
    [49]T Jing, H Du, Q Dai, H Xia, J Niu, Q Hao, S Mei, Y Zhou, Magnetic molecularly imprinted nanoparticles for recognition of lysozyme [J]. Biosens. Bioelectron., 2010,26 (2):301-306.
    [50]X Wang, L Wang, X He, Y Zhang, L Chen, A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition [J]. Talanta,2009,78 (2):327-332.
    [51]L Li, X He, L Chen, Y Zhang, Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin [J]. Chem. Asian J.,2009,4 (2):286-293.
    [52]Y Watabe, T Kondo, M Morita, N Tanaka, J Haginaka, K Hosoya, Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device [J]. J Chromatogr. A,2004,1032 (1):45-49.
    [53]C Baggiani, G Giraudi, C Giovannoli, F Trotta, A Vanni, Chromatographic characterization of molecularly imprinted polymers binding the herbicide 2,4, 5-trichlorophenoxyacetic acid [J]. J Chromatogr. A,2000,883 (1):119-126.
    [54]A Rachkov, M Hu, E Bulgarevich, T Matsumoto, N Minoura, Molecularly imprinted polymers prepared in aqueous solution selective for [Sar1, Ala8] angiotensin Ⅱ [J].Anal. Chim. Acta,2004,504 (1):191-197.
    [55]T A Sergeyeva, S A Piletsky. Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection [3]. Anal. Chim. Acta,1999,392 (2-3):105-111.
    [56]严守雷,高志贤.用于农药残留检测的分子印迹技术研究进展[J].卫生研究,2005,34(2):227-230.
    [57]A L Graham, C A Carlson, P L Edmiston, Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT [J]. Anal Chem.,2002,74 (2):458-467.
    [58]F L Dickert, P Achatz, K Halikias, Double molecular imprinting-a new sensor concept for improving selectivity in the detection of polycyclic aromatic hydrocarbons (PAHs) in water [J]. Fresen. J. Anal. Chem.,2001,371 (1):11-15.
    [59]董里.CdS壳层对Mn离子掺杂的ZnS纳米溶胶发光性质的影响.中国海洋大学,2007.
    [60]R Bhargava, D Gallagher, X Hong, A Nurmikko, Optical properties of manganese-doped nanocrystals of ZnS [J]. Phys. Rev. Lett.,1994,72 (3): 416-419.
    [61]S Sapra, A Prakash, A Ghangrekar, N Periasamy, D Sarma, Emission properties of manganese-doped ZnS nanocrystals [J]. J. Phys. Chem. B,2005,109 (5): 1663-1668.
    [62]D Denzler, M Olschewski, K Sattler, Luminescence studies of localized gap states in colloidal ZnS nanocrystals [J]. JAppl. Phys.,1998,84 (5):2841-2845.
    [63]H Li, W Y Shih, W H Shih, Stable aqueous ZnS quantum dots obtained using (3-mercaptopropyl) trimethoxysilane as a capping molecule [J]. Nanotechnology, 2007,18 (49):495605-495611.
    [64]M Koneswaran, R Narayanaswamy,1-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ion [J]. Sens. Actuators B Chem.,2009,139 (1): 104-109.
    [65]J Duan, X Jiang, S Ni, M Yang, J Zhan, Facile synthesis of N-acetyl-1-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg 2+[J]. Talanta,2011,85 (4):1738-1743.
    [66]C Frigerio, D S M Ribeiro, S S M Rodrigues, V L R G Abreu, J A C Barbosa, J A V Prior, K L Marques, J L M Santos, Application of quantum dots as analytical tools in automated chemical analysis:A review [J]. Anal. Chim. Acta,2012,735: 9-22.
    [67]R Gill, M Zayats, I Willner, Semiconductor quantum dots for bioanalysis [J]. Angew. Chem. Int. Ed.,2008,47 (40):7602-7625.
    [68]F M Raymo, I Yildiz, Luminescent chemosensors based on semiconductor quantum dots [J]. Phys. Chem. Chem. Phys.,2007,9 (17):2036-2043.
    [69]A C Vinayaka, M S Thakur, Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens [J]. Anal. Bioanal. Chem.,2010,397 (4):1445-1455.
    [70]R Freeman, T Finder, L Bahshi, R Gill, I Willner, Functionalized CdSe/ZnS QDs for the detection of nitroaromatic or RDX explosives [J]. Adv. Mater.,2012,24 (48):6416-6421.
    [71]X F Chen, M Zhou, Y P Chang, C-L Ren, H-L Chen, X-G Chen, Novel synthesis of beta-cyclodextrin functionalized CdTe quantum dots as luminescent probes [J]. Appl. Surf. Sci.,2012,263:491-496.
    [72]Y Xia, L Song, C Zhu, Turn-on and near-infrared fluorescent sensing for 2,4, 6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly [J]. Anal. Chem.,2011,83 (4):1401-1407.
    [73]A Touceda-Varela, E I Stevenson, J A Galve-Gasion, D T Dry den, J C Mareque-Rivas, Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots [J]. Chem. Commun.,2008, (17): 1998-2000.
    [74]Y Xia, J Wang, Y Zhang, L Song, J Ye, G Yang, K Tan, Quantum dot based turn-on fluorescent probes for anion sensing [J]. Nanoscale,2012,4 (19): 5954-5959.
    [75]H Wang, Y Wang, J Jin, R Yang, Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury (II) ions in aqueous solution [J]. Anal. Chem.,2008,80 (23):9021-9028.
    [76]H Xu, R Miao, Z Fang, X Zhong, Quantum dot-based "turn-on" fluorescent probe for detection of zinc and cadmium ions in aqueous media [J]. Anal. Chim. Acta,2011,687 (1):82-88.
    [77]E Oh, M Y Hong, D Lee, S-H Nam, H C Yoon, H S Kim, Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles [J]. J. Am. Chem. Soc.,2005,127 (10): 3270-3271.
    [78]L Shi, V De Paoli, N Rosenzweig, Z Rosenzweig, Synthesis and application of quantum dots FRET-based protease sensors [J]. J. Am. Chem. Soc.,2006,128 (32):10378-10379.
    [79]A M Dennis, G Bao, Quantum dot- fluorescent protein pairs as novel fluorescence resonance energy transfer probes [J]. Nemo Lett.,2008,8 (5): 1439-1445.
    [80]A M Dennis, W J Rhee, D Sotto, S N Dublin, G Bao, Quantum dot-fluorescent protein FRET probes for sensing intracellular pH [J]. ACS Nano,2012,6 (4): 2917-2924.
    [81]R Ganguly, S Wang, D Huang, Salen derivatives functionalized CdSe-ZnS quantum dots as fluorescent probes for selective Cu(II) and Fe(II) sensing [J]. Nanosci. Nanotechnol. Lett,2010,2 (3):208-212.
    [82]V R Hering, G Gibson, R I Schumacher, A Faljoni-Alario, M J Politi, Energy transfer between CdSe/ZnS Core/Shell quantum dots and fluorescent proteins [J]. Bioconjug. Chem.,2007,18 (6):1705-1708.
    [83]L Shi, N Rosenzweig, Z Rosenzweig, Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors [J]. Anal. Chem.,2007,79 (1):208-214.
    [84]H Y Liu, S M Wu, F Cheng, Y Z Hu, Z Y Yan, Fluorescence resonance energy transfer between quantumn dots [J]. Chinese J. Anal. Chem.,2010,38 (7): 1036-1039.
    [85]Y He, H F Wang, X P Yan, Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids [J]. Anal. Chem.,2008,80 (10):3832-3837.
    [86]Y He, X Yan, Mn-doped ZnS quantum dots/methyl violet nanohybrids for room temperature phosphorescence sensing of DNA [J]. Set China Chem.,2011,54 (8):1254-1259.
    [87]L Tan, Y Li, Y Tang, C Kang, Z Yu, S Xu, Room temperature phosphorescence sensor for Hg2+ based on Mn-doped ZnS quantum dots [J]. J. Nanosci. Nanotechno.2012,12 (10):7788-7795.
    [88]Y Q Wang, W S Zou,3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution [J]. Talanta,2011,85 (1): 469-475.
    [89]H Wu, Z Fan, Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of raceanisodamine hydrochloride and atropine sulfate in biological fluids [J]. Spectrochimica Acta A.,2012,90:131-134.
    [90]W S Zou, D Sheng, X Ge, J Q Qiao, H Z Lian, Room-temperature phosphorescence chemosensor and rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots [J]. Anal. Chem.,2010,83 (1):30-37.
    [91]P Wu, L N Miao, H F Wang, X G Shao, X P Yan, A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots [J]. Angew. Chem. Inter. Ed.,2011,50 (35):8118-8121.
    [92]M Fleischmann, P Hendra, A McQuillan, Raman spectra of pyridine adsorbed at a silver electrode [J]. Chem. Phys. Lett.,1974,26 (2):163-166.
    [93]D L Jeanmaire, R P Van Duyne, Surface Raman spectroelectrochemistry:Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. J. Electroanal. Chem. Interfacial Electrochem.,1911,84 (1):1-20.
    [94]M G Albrecht, J A Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode [J]. J. Am. Chem. Soc.,1977,99 (15):5215-5217.
    [95]D Cialla, A Maerz, R Boehme, F Theil, K Weber, M Schmitt, J Popp, Surface-enhanced Raman spectroscopy (SERS):progress and trends [J]. Anal. Bioanal. Chem.,2012,403 (1):27-54.
    [96]M Fan, G F S Andrade, A G Brolo, A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry [3]. Anal. Chim. Acta,2011,693 (1-2):7-25.
    [97]K Hering, D Cialla, K Ackermann, T Dorfer, R Moller, H Schneidewind, R Mattheis, W Fritzsche, P Rosch, J Popp, SERS:a versatile tool in chemical and biochemical diagnostics [J]. Anal. Bioanal. Chem.,2008,390 (1):113-124.
    [98]X M Lin, Y Cui, Y H Xu, B Ren, Z Q Tian, Surface-enhanced Raman spectroscopy:substrate-related issues [J]. Anal. Bioanal. Chem.,2009,394 (7): 1729-1745.
    [99]A Otto, I Mrozek, H Grabhorn, W Akemann, Surface-enhanced Raman scattering [J]. J. Phy Condens. Mat.,1992,4 (5):1143-1212.
    [100]M Moskovits, Surface-enhanced Raman spectroscopy:a brief retrospective [J]. J. Raman Spectrosc.,2005,36 (6-7):485-496.
    [101]J Jackson, S Westcott, L Hirsch, J West, N Halas, Controlling the surface enhanced Raman effect via the nanoshell geometry [J]. Appl. Phys. Lett.,2003, 82 (2):257-259.
    [102]A Campion, P Kambhampati, Surface-enhanced Raman scattering [J]. Chem. Soc. Rev.1998,27 (4):241-250.
    [103]M Moskovits, Surface-enhanced spectroscopy [J]. Rev. Mod. Phys.,1985,57 (3): 783-826.
    [104]C Chen, E Burstein, Giant Raman scattering by molecules at metal-island films [J]. Phys. Rev. Lett.1980,45 (15):1287-1291.
    [105]A Otto, T Bornemann, U Erturk, I Mrozek, C Pettenkofer, Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver [J]. Surf. Sei.,1989,210 (3):363-386.
    [106]Z Q Tian, B Ren, D Y Wu, Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures [J]. J. Phys. Chem. B,2002,106 (37):9463-9483.
    [107]B Ren, X F Lin, J W Yan, B W Mao, Z Q Tian, Electrochemically roughened rhodium electrode as a substrate for surface-enhanced Raman spectroscopy [J]. J. Phys. Chem. B,2003,107 (4):899-902.
    [108]P Gao, M J Weaver, Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding:benzene and monosubstituted benzenes adsorbed at gold electrodes [J]. J. Phys. Chem.,1985,89 (23):5040-5046.
    [109]C S Allen, G C Schatz, R P Van Duyne, Tunable laser excitation profile of surface enhanced Raman scattering from pyridine adsorbed on a copper electrode surface [J]. Chem. Phys. Lett.1980,75 (2):201-205.
    [110]M Pileni, Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains [J]. J. Phys. Chem. C.,2007,111 (26): 9019-9038.
    [111]K Kneipp, Y Wang, H Kneipp, L T Perelman, I Itzkan, R R Dasari, M S Feld, Single molecule detection using surface-enhanced Raman scattering (SERS) [J]. Phys. Rev. Lett.1997,78 (9):1667-1670.
    [112]S Nie, S R Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science 1997,275 (5303):1102-1106.
    [113]K Kim, H B Lee, K S Shin, Silanization of polyelectrolyte-coated particles:An effective route to stabilize Raman tagging molecules adsorbed on micrometer-sized silver particles [J]. Langmuir,2008,24 (11):5893-5898.
    [114]S P Mulvaney, M D Musick, C D Keating, M J Natan, Glass-coated, analyte-tagged nanoparticles:a new tagging system based on detection with surface-enhanced Raman scattering [J]. Langmuir,2003,19 (11):4784-4790.
    [115]Y Cui, B Ren, J L Yao, R A Gu, Z Q Tian, Synthesis of Ag core Au shell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy [J]. J. Phys. Chem. B,2006,110 (9):4002-4006.
    [116]K R Brown, M J Natan, Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces [J]. Langmuir,1998,14 (4):726-728.
    [117]P N Bartlett, P R Birkin, M A Ghanem, Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates [J]. Chem. Commun.,2000, (17):1671-1672.
    [118]K A Willets, R P Van Duyne, Localized surface plasmon resonance spectroscopy and sensing [J].Annu. Rev. Phys. Chem.2007,58:267-297.
    [119]P Bartlett, J Baumberg, S Coyle, M Abdelsalam, Optical properties of nanostructured metal films [J]. Faraday Discuss.,2004,125:117-132.
    [120]M Kahl, E Voges, S Kostrewa, C Viets, W Hill, Periodically structured metallic substrates for SERS [J]. Sens. Actuators B Chem.,1998,51 (1):285-291.
    [121]D Y Wu, J F Li, B Ren, Z Q Tian, Electrochemical surface-enhanced Raman spectroscopy of nanostructures [J]. Chem. Soc. Rev.,2008,37 (5):1025-1041.
    [122]P R Brejna, P R Griffiths, J Yang, Nanostructural silver and Gold substrates for surface-enhanced Raman spectroscopy measurements prepared by galvanic fisplacement on germanium fisks [J].Appl. Spectrosc.,2009,63 (4):396-400.
    [123]A Gutes, C Carraro, R Maboudian, Silver nanodesert rose as a substrate for surface-enhanced Raman spectroscopy [J]. ACSAppl. Mater. Interf.2009,1 (11): 2551-2555.
    [124]Y Wang, M Becker, L Wang, J Liu, R Scholz, J Peng, U Goesele, S Christiansen, D H Kim, M Steinhart, Nanostructured gold films for SERS by block copolymer-templated galvanic fisplacement reactions [J]. Nano Lett.,2009,9 (6): 2384-2389.
    [125]A Gutes, C Carraro, R Maboudian, Silver dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate [J]. J. Am. Chem. Soc.,2010,132(5):1476-1477.
    [126]J Yuan, Y Lai, J Duan, Q Zhao, J Zhan, Synthesis of a beta-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs [J]. J. Colloid Interf. Sci.,2012,365 (1):122-126.
    [127]G A Baker, D S Moore, Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis [J]. Anal. Bioanal. Chem., 2005,382 (8):1751-1770.
    [128]A Kudelski, Analytical applications of Raman spectroscopy [J]. Talanta,2008, 76(1):1-8.
    [129]C Shi, Y Zhang, C Gu, B Chen, L Seballos, T Olson, J Z Zhang, Molecular fiber sensors based on surface enhanced Raman scattering (SERS) [J]. J.Nanosci. Nanotechno.,2009,9 (4):2234-2246.
    [130]R A Alvarez-Puebla, L M Liz-Marzan, Environmental applications of plasmon assisted Raman scattering [J]. Energ. Environ. Sci.,2010,3 (8):1011-1017.
    [1]G Wulff, Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies [J]. Angew. Chem. Int. Ed. Engl, 1995,34(17):1812-1832.
    [2]K Haupt, K Mosbach, Molecularly imprinted polymer and their use in biomimetic sensors [J]. Chem. Rev.,2000,100 (7):2495-2504.
    [3]E Yilmaz, K Haupt, K Mosbach, The use of immobilized templates-a new approach in molecular imprinting [J]. Angew. Chem. Int. Ed.,2000,39 (12): 2115-2118.
    [4]D M Gao, Z P Zhang, M H Wu, C G Xie, G J Guan, D P Wang, A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles [J]. J. Am. Chem. Soc.,2007,129 (25):7859-7866.
    [5]Y Li, X F Yin, F R Chen, H H Yang, Z X Zhuang, X R Wang, Synthesis of magnetic molecularly imprinted polymer nanowires using a nanoporous alumina template [J]. Macromolecules,2006,39 (13):4497-4499.
    [6]J E Lofgreen, I L Moudrakovski, G A Ozin, Molecularly imprinted mesoporous organosilica [J]. ACS Nano,2011,5 (3):2277-2287.
    [7]G J Guan, B H Liu, Z Y Wang, Z P Zhang, Imprinting of molecular recognition sites on nanostrucures and its applications in chemosensors [J]. Sensor,2008,8 (12):8291-8320.
    [8]B M Jung, M S Kim, W J Kim, J Y Chang, Molecularly imprinted mesoporous silica particles showing a rapid kinetic binding [J]. Chem. Commun.,2010,46 (21):3699-3701.
    [9]J Tan, H F Wang, X P Yan, A fluorescent sensor array based on ion imprinted mesoporous silica [J]. Biosens. Bioelectron.,2009,24 (11):3316-3321.
    [10]C Baggiani, P Baravalle, C Giovannoli, L Anfossi, C Passini, G Giraudi, Binding behaviour of molecularly imprinted polymers prepared by a hierarchical approach in mesoporous silica beads of varying porosity [J]. J. Chromatogr. A, 2011,1218(14):1828-1834.
    [11]D M Han, G Z Fang, X P Yan, Preparation and evaluation of a molecularly imprinted sol-gel material for on-line solid-phase extraction coupled with high performance liquid chromatography for the determination of trace pentachlorophenol in water samples [J]. J. Chromatogr. A,2005,1100 (2): 131-136.
    [12]Q Z Feng, L X Zhao, J M Lin, Molecularly imprinted polymer as micro-solid phase extration combined with high performance liquid chromatagraphy to determine phenolic compounds in environmental water samples [J]. Anal. Chim. Acta.,2009,650 (1):70-76.
    [13]Q Z Feng, L X Zhao, W Yan, J M Lin, Z X Zheng, Molecularly imprinted solid-phase extration combined with high performance liquid chromatagraphy for analysis of phenolic compounds from environmental water samples [J]. J. Hazard. Mater.,2009,167 (1-3):282-288.
    [14]R J Anesell, K Mosbach, Magnetic molecularly imprinted polymer beads for drug radioligand binding assay [J]. Analyst,1998,123 (7):1611-1616.
    [15]X Wang, L Y Wang, X W He, Y K Zhang, L X Chen, A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recogmition [J]. Talanta,2009,78 (2):327-332.
    [16]G Y Jin, W Li, S N Yu, Y Y Peng, J L Kong, Novel superparamagnetic core-shell molecular imprinting microspheres towards high selective sensing [J]. Analyst,2008,133 (10):1367-1372.
    [17]Y Zhang, R J Liu, Y L Hu, G K Li, Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples [S].Anal. Chem.,2009,81 (3):967-976.
    [18]Y Li, C K Dong, J Chu, J Y Qi, X Li, Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization:a facile three-in-one system for recognition and separation of endocrine disrupting chemicals [J]. Nanoscale,2011,3 (1): 280-287.
    [19]Y F Chen, Z Rosenzweig, Luminescent CdS quantum dots as selective ion probes [3]. Anal. Chem.,2002,74 (19):5132-5138.
    [20]. J L Duan, L X Song, J H Zhan, One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+ -sensitive properties [J]. Nemo Res.,2009,2 (1):61-68.
    [21]J L Duan, X C Jiang, S Q Ni, M Yang, J H Zhan, Facial synthesis of N-acetyl-L-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg2+[J]. Talanta,2011,85 (4):1738-1743.
    [22]H F Wang, Y He, T R Ji, X P Yan, Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water [J].Anal. Chem.,2009,81 (4):1615-1621.
    [23]C I Lin, A K Joseph, C K Chang, Y D Lee, Synthesis and photoluminescence study of molecularly imprinted polymers appended onto CdSe/ZnS core-shells [J]. Biosens. Bioelectron.,2004,20 (1):127-131.
    [24]B. Tang, L. H. Cao, K.H. Xu, L.H. Zhuo, J.C. Ge, Q.L. Li, L.J. Yu, A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles [J]. Chem. Eur. J.,2008,14 (12):3637-3644.
    [25]J X Liu, H Chen, Z Lin, J M Lin, Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water [J]. Anal. Chem., 2010,82 (17):7380-7386.
    [26]H B Li, Y L Li, J Cheng, Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids [J]. Chem. Mater.,2010,22 (8):2451-2457.
    [27]E Oh, M Y Hong, D Lee, S H Nam, H C Yoon, H S Kim, Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles [J]. J. Am. Chem. Soc,2005,127 (10): 3270-3271.
    [28]B N Estevinho, E Ribeiro, A Alves, L Santos, A preliminary feasibility study for pentachlorophenol column sorption by almond shell residues [J]. Chem. Eng. J., 2008,136(2-3):188-194.
    [29]G W Muna, N Tasheva, G M Swain, Electro-oxidation and amperometric detection of chlorinated phenols at boron-doped diamond electrodes:a comparison of microcrystalline and nanocrystalline thin films [J]. Environ. Sci. Technol.,2004,38 (13):3674-3682.
    [30]G Z Li, W C Peng, X Y Li, X B Fan, X J Li, G L Zhang, F B Zhang, Pressure and solvent induced low-temperature synthesis of monodisperse superparamagnetic nanocrystals:the case of Fe3O4 in alkanols [J]. Appl. Surf. Sci..2008,254 (16):4970-4979.
    [31]J Kim, J E Lee, J Lee, J H Yu, B C Kim, K An, Y Hwang, C H Shin, J G Park, J Kim, T Hyeon, Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals [J]. J. Am. Chem. Soc.,2006,128 (3):688-689.
    [32]J Q Zhuang, X D Zhang, G Wang, D M Li, W S Yang, T J Li, Synthesis of water-soluble ZnS:Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer [J]. J. Mater. Chem.,2003,13 (7):1853-1857.
    [33]J S Beck, J C VartUli, W J Roth, M E Leonowicz, C T Kresge, K D Schmitt, C T Chu, D H Olson, E W Sheppard, S B McCullen, J B Higgins, J L Schlenkert, A new family of mesoporous molecular sieves prepared with liquid crystal templates [J].J.Am. Chem. Soc.,1992,114 (27):10834-10843.
    [34]J Lee, T Isobe, M Senna, Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH [J]. J. Colloid Interface Sci.,1996,177 (2): 490-494.
    [35]Q Xiao, C Xiao, Preparation and characterization of silica-coated magnetic-fluorescent bifunctional microspheres [J]. Nanoscale Res. Lett.,2009, 4(9):1078-1084.
    [36]V Salgueirino-Maceira, M A Correa-Duarte, M Spasova, L M Liz-Marzan, M Farle, Composite silica spheres with magnetic and luminescent functionalities [J]. Adv. Fund. Mater.,2006,16 (4):509-514.
    [37]Y Xu, A Karmakar, D Y Wang, M W Mahmood, F Watanabe, Y B Zhang, A Feileh, P Fejleh, Z R Li, G Kannarpady, S Ali, A R Bins, A S Biris, Multifunctional Fe3O4 cored magnetic-quantum dot fluorescent nanocomposites for RF nanohyperthermia of cancer cells [J]. J. Phys. Chem. C,2010,114 (11): 5020-5026.
    [38]T R Sathe, A Agrawal, S M Nie, Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals:dual-function microcarriers for optical encoding and magnetic separation [J]. Anal. Chem., 2006,78 (16):5627-5632.
    [39]P Sun, H Y Zhang, C Liu, J Fang, M Wang, J Chen, J P Zhang, C B Mao, S K Xu, Preparation and Characterization of Fe3O4/CdTe magnetic Fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells [J]. Langmuir,2010,26 (2),1278-1284.
    [40]S Sapra, A Prakash, A Ghangrekar, N Periasamy, D D Sarma, Emission properties of manganese-doped ZnS nanocrystals [J]. J. Phys. Chem. B,2005, 109(5):1663-1668.
    [I]J W Lichtman, J Conchello, Fluorescence microscopy [J]. Nat. Methods,2005,2 (12):910-919.
    [2]R Yuste, Fluorescence microscopy today [J]. Nat. Methods,2005,2 (12):902-904.
    [3]I L Medintz, H T Uyeda, E R Goldman, H Mattoussi, Quantum dot bioconjugates for imagine, labelling and sensing [J]. Nat. Mater.,2005,4 (6):435-446.
    [4]T Gunnlaugsson, M Glynn, G M Tocci (nee Hussey), P E Kruger, F M Pfeffer, Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors [J]. Coord. Chem. Rev.,2006,250 (23-24):3094-3117.
    [5]X L Zhang, Y Xiao, X H Qian, A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells [J]. Angew. Chem. Int. Ed.,2008,47 (42): 8025-8029.
    [6]L E Page, X Zhang, A M Jawaid, P T Snee, Detection of toxic mercury ions using a ratiometric CdSe/ZnS nanocrystal sensor [J]. Chem. Comm.,2011,47 (27): 7773-7775.
    [7]A W Zhu, Q Qu, X L Shao, B Kong, Y Tian, Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions [J]. Angew. Chem. Int. Ed.,2012,51 (29):7185-7189.
    [8]M Liu, H M Zhao, X Quan, S Chen, H T Yu, Signal amplication via cation exchange reaction:an example in the ratiometric fluorescence probe for ultrasensitive and selective sensing of Cu(Ⅱ) [J]. Chem. Comm.,2010,46 (7): 1144-1146.
    [9]X Lv, J Liu, Y L Liu, Y Zhao, Y Q Sun, P Wang, W Guo, Ratiometric fluorescence detection of cyanide based on a hybrid counmarin-hemicyanine dye:the large emission shift and high selectivity [J]. Chem. Comm.,2011,47 (48): 12843-12845.
    [10]T Doussineau, M Smaihi, G J Mohr, Two-dye core/shell zeolite nanoparticles:a new tool for ratiometric pH measurements [J]. Adv. Funct. Mater.,2009,19 (1): 117-122.
    [11]X J Wang, C Boschetti, M J Ruedas-Rama, A Tunnacliffe, E A H Hall, Ratiometric pH-dot ANSor [J]. Analyst,2010,135 (7):1585-1591.
    [12]K Zhang, H B Zhou, Q S Mei, S H Wang, G J Guan, R Y Liu, J Zhang, Z P Zhang, Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid [J]. J. Am. Chem. Soc.,2011,133 (22):8424-8427.
    [13]W S Zou, J Q Qiao, X Hu, X Ge, H Z Lian, Synthesis in aqueous solution and characterization of a new cobalt-doped ZnS quantum dot as a hybrid ratiometric chemosensor [J].Anal. Chim. Acta.,2011,708 (1-2):134-140.
    [14]C Ma, F Zeng, G F Wu, S Z Wu, A nanoparticle-supported fluorescence resonance transfer system formed via layer-by-layer approach as a ratiometric sensor for mercury ions in water [J]. Anal. Chim. Acta.,2012,734:69-78.
    [15]C Ma, F Zeng, L F Huang, S Z Wu, FRET-based ratiometric detection system for mercury ions in water with polymeric particles as scaffolds [J]. J. Phys. Chem. B, 2011,115 (5):874-882.
    [16]B Y Liu, F Zeng, Y Liu, S Z Wu, A FRET system built on quartz plate as a ratiometric fluorescence sensor for mercury ions in water [J]. Analyst,2012,137 (7):1698-1705.
    [17]H Z Liu, P Yu, D Du, C Y He, B Qiu, X Chen, G N Chen, Rhodamine-based ratiometric fluorescence sensing for the detection of mercury(Ⅱ) in aqueous solution [J]. Talanta,2010,81 (1-2):433-437.
    [18]X Y Sun, B Liu, Y B Xu, Dual-emission quantum dots nanocomposites bearing an internal standard and visual detection for Hg2+[J]. Analyst,2012,137 (5): 1125-1129.
    [19]G Q Zhang, G M Palmer, M W Dewhirst, C L Fraser, A dual-emissive-materials design concept enables tumor hypoxia imaging [J]. Nat. Mater.,2009,8 (9): 747-751.
    [20]W S Zou, D Sheng, X Ge, J Q Qiao, H Z Lian, Room-temperature phosphorescence chemosensor and Rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots [J]. Anal. Chem.,2011,83 (1):30-37.
    [21]P Wu, Y He, H F Wang, X P Yan, Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids [J]. Anal. Chem.,2010,82 (4):1427-1433.
    [22]P Wu, L N Miao, H F Wang, X G Shao, X P Yan, A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots [J].Angew. Chem. Int. Ed,2011,50 (35):8118-8121.
    [23]B H Dong, L X Cao, G Su, W Liu, H Qu, D X Jiang, Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions [J]. J. Colloid Interface Sci.,2009,339 (1): 78-82.
    [24]H B Li, C P Han, Sonochemical synthesis of cyclodetrin-coated quantum dots for optical detection of pollution phenols in water [J]. Chem. Mater.,2008,20 (19): 6053-6059.
    [25]P Liu, Q S Wang, X Li, Studies on CdSe/L-cysteine quantum dots synthesized in aqueous solution for biological labeling [J]. J. Phys. Chem. C,2009,113 (18): 7670-7676.
    [26]Y F Chen, Zeev Rosenzweig, Luminescent CdS quantum dots as selective ion probes [J]. Anal. Chem.,2002,74 (19):5132-5138.
    [27]C Y Zhang, H C Yeh, M T Kuroki, T H Wang, Single-quantum-dot-based DNA nanosensor [J]. Nat. Mater,2005,4 (11):826-831.
    [28]R Gill, M Zayats, I Willner, Semiconductor quantum dots for bioanalysis [J]. Angew. Chem. Int. Ed.,2008,47 (40):7602-7625.
    [29]L Basabe-Desmonts, D N Reinhoudt, M Crego-Calama, Design of fluorescent materials for chemical sensing [J]. Chem. Soc. Rev.,2007,36 (6):993-1017.
    [30]K Haupt, K Mosbach, Molecularly imprinted polymers and their use in biomimetric sensors [J]. Chem. Rev.,2000,100 (7):2495-2504.
    [31]D M Han, G Z Fang, X P Yan, Preparation and evaluation of a molecularly imprinted sol-gel material for on-line solid-phase extraction coupled with high performance liquid chromatography for the determination of trace pentachlorophenol in water samples [J]. J. Chromatogr. A,2005,1100 (2): 131-136.
    [32]Q Z Feng, L X Zhao, J M Lin, Molecularly imprinted polymer as micro-solid phase extration combined with high performance liquid chromatagraphy to determine phenolic compounds in environmental water samples [J]. Anal. Chim. Acta.,2009,650 (1):70-76.
    [33]Q Z Feng, L X Zhao, W Yan, J M Lin, Z X Zheng, Molecularly imprinted solid-phase extration combined with high performance liquid chromatagraphy for analysis of phenolic compounds from environmental water samples [J]. J. Hazard. Mater.,2009,167 (1-3):282-288.
    [34]H F Wang, Y He, T R Ji, X P Yan, Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water [3]. Anal. Chem.,2009,81 (4):1615-1621.
    [35]C I Lin, A K Joseph, C K Chang, Y D Lee, Synthesis and photoluminescence study of molecularly imprinted polymers appended onto CdSe/ZnS core-shells [J]. Biosens. Bioelectron.,2004,20 (1):127-131.
    [36]J X Liu, H Chen, Z Lin, J M Lin, Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water [J]. Anal. Chem., 2010,82 (17):7380-7386.
    [37]M Yang, A J Han, J L Duan, Z P Li, Y C Lai, J H Zhan, Magnetic nanoparticles and quantum dots co-loaded imprinted matrix for pentachlorophenol [J]. J. Hazard. Mater.,2012,237-238:63-70.
    [38]R Y Tu, B H Liu, Z Y Wang, D M Gao, F Wang, Q L Fang, Z P Zhang, Amine-capped ZnS-Mn2+nanocrystals for fluorescence detection of trace TNT explosive [J].Anal. Chem.,2008,80 (9):3458-3465.
    [39]RN Bhargava, D Gallagher, Optical properties of Manganese-doped nanocrystals of ZnS [J]. Phys. Rev. Lett.,1994,72 (3):416-419.
    [40]A A Bol, A Meijerink, Long-lived Mn2+ emission in nanocrystalline ZnS:Mn2+[J]. Phys. Rev. B,1998,58 (24):15997-16000.
    [41]J L Duan, X C Jiang, S Q Ni, M Yang, J H Zhan, Facial synthesis of N-acetyl-L-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg2+[J]. Talanta,2011,85 (4):1738-1743.
    [42]J R Lakowicz, Principles of fluorescence spectroscopy [M],2006, the third edition.
    [1]B N Estevinho, E Ribeiro, A Alves, L Santos, A preliminary feasibility study for pentachlorophenol column sorption by almond shell residues [J]. Chem. Eng. J., 2008,136(2-3):188-194.
    [2]G W Muna, N Tasheva, G M Swain, Electro-oxidation and amperometric detection of chlorinated phenols at boron-doped diamond electrodes:a comparison of microcrystalline and nanocrystalline thin films [J]. Environ. Sci. Technol,2004,38 (13):3674-3682.
    [3]冯亚平,环境中五氯酚监测研究进展[J].四川环境,1992,11(1):23-26.
    [4]LG Candace, C Philip, PS Rene, Simultaneous determination of chlorophenol, chlorobenzens and chlorobenzoates microbial solution using pentafluorobenzybromide derivatization and analysis by gas chromatography with electron-capture detection [J]. JChromatogr.,1996,749 (1-2):165-171.
    [5]P Luciana, LR Maria, Methods for determination of hexachlorobenzene and pentachlorophenol in soil sample [J]. Talanta,1998,46 (5):915-920.
    [6]B Roland, B Hans-Gerhard, TinWin, Determination of pentachlorophenol in waste wood method comparison by acollaborative trial [J]. Chemosphere,2002,47 (9): 1001-1006.
    [7]ST Indu, KV Praveen, CU Kailash, Involvment of plasmid in degradation of pentachlorophenol by pseudomonas sp. from a chemostat [J]. Biochem. Biophy. Res. Commun.,2001,286 (1):109-113.
    [8]G Bartelt, HG Buge, W Gorner, Determination of chlorine and pentachlorophenol in wood [J]. Anal. Bioanal. Chem,1998,360 (3-4):433-434.
    [9]齐文启,孙光宗,痕量有机污染物的监测[M],北京:化学工业出版社,2002.
    [10]G A Baker, D S Moore, Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis [J].Anal. Bioanal. Chem., 2005,382(8):1751-1770.
    [11]A Kudelski, Analytical applications of Raman spectroscopy [J]. Talanta,2008,76 (1):1-8.
    [12]C Shi, Y Zhang, C Gu, B Chen, L Seballos, T Olson, J Z Zhang, Molecular fiber sensors based on surface enhanced Raman scattering (SERS) [J]. J. Nanosci. Nanotechno.,2009,9 (4):2234-2246.
    [13]R A Alvarez-Puebla, L M Liz-Marzan, Environmental applications of plasmon assisted Raman scattering [J]. Energ. Environ. Sci.,2010,3 (8):1011-1017.
    [14]K Kneipp, H Kneipp, R Mano, EB Hanlon, I Itzkan, RR Dasari, MS Feld, Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters [J]. Appl. Spectrosc.,1998,52 (12):1493-1497.
    [15]PR Brejna, P R Griffiths, J Yang, Nanostructural silver and gold substrates for surface-enhanced Raman spectroscopy measurements prepared by galvanic displacement on germanium Disks [J]. Appl. Spectros.,2009,63 (4):396-400.
    [16]A Gutes, C Carraro, R Maboudian, Silver nanodesert rose as a substrate for sSurface-enhanced Raman spectroscopy [J]. ACS Appl. Mater. Interf.,2009,1 (11):2551-2555.
    [17]Y Wang, M Becker, L Wang, J Liu, R Scholz, J Peng, U Goesele, S Christiansen, D H Kim, M Steinhart, Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions [J]. Nano Lett.,2009,9 (6): 2384-2389.
    [18]A Gutes, C Carraro, R Maboudian, Silver dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate [J]. J. Am. Chem. Soc.,2010,132 (5):1476-1477.
    [19]S. Lv, H. Suo, H. Wang, C. Wang, Ji. Wang, Y.Xu, C. Zhao, Effect of additives on the morpholog ies of silver nanostr uctures prepared by galvanic displacement reaction [J]. Solid State Sci.,2010,12 (7):1287-1291.
    [20]S. Lv, H. Suo, T. Zhou, C. Wang, S. Jing, Q. Fu, Y. Xu, C. Zhao, Effect of synthesis route on the morphologies of silver nanostructures by galvanic displacement reaction [J]. Solid State Commun.,2009,149 (5-6):227-230.
    [21]J Yuan, Y Lai, J Duan, Q Zhao, J Zhan, Synthesis of a p-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs [J]. J. Colloid Interf. Sci.,2012,365 (1):122-126.
    [22]P H C Camargo, M Rycenga, L Au, Y N Xia, Isolating and probing the hot spot formed between two silver nanocubes [J]. Angew. Chem. Int. Ed.,2009,48 (12): 2180-2184.
    [23]H Kochkar, M Aouine, A Ghorbel, G Berhault, Shape-controlled synthesis of silver and palladium nanoparticles Using (3-cyclodextrin [J]. J. Phys. Chem. C, 2011,115(23):11364-11373.
    [24]K Kneipp, H Kneipp, I Itzkan, R R Dasari, M S Feld, Ultrasensitive chemical analysis by Raman spectroscopy [J]. Chem. Rev.,1999,99 (10):2957-2975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700