物理可实现的压缩成像理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩传感理论是一种新兴的信号采集与处理的新理论,其突破了传统的Shannon/Nyquist采样定理的限制,主要得益于自然界中绝大多数信号都普遍具有的稀疏先验知识,可以从远少于Nyquist采样率的线性非相干测量中精确重建原信号。显然,从不完全的测量数据中重建完整信号是一个非适定的逆问题。压缩传感应用范围涉及信号处理的诸多领域都有着巨大的应用价值,如信息论、信号处理、光学成像、模式识别、信号采集和通信等领域。
     压缩成像是压缩传感理论最重要的研究领域之一,第一个成功应用的压缩成像实例是美国Rice大学基于压缩传感理论设计的单像素相机,只使用一个探测器元素对场景成像。该相机有一个可以数字微控制的镜阵列,由一个伪随机二进制数组驱动,将感兴趣地场景投影到阵列上,投影聚集的强度使用单一的探测器测量,然后从得到的观测值重建原始图像。这种结构的一个主要优点是任何二进制投影矩阵可以很容易地在这个系统中实施,使现有的压缩传感理论可以直接应用到测量。单像素相机非常完美地与压缩传感理论相契合,一次随机调制仅仅获得一个测量值,在太赫兹成像等小部分成像领域成功地获得了实用。但是,单像素相机的最大缺陷之处在于同一时刻一次只能得到一个测量值,对于其它更广泛的高分辨率的应用领域,其获取足够测量的时间太长而不太实用。因此,Stern等人提出一种改进的压缩成像方法,可以在单次曝光条件下获得所有的测量值,在其他更广泛的成像领域中具有更大的应用潜力。
     本文借鉴Stern的单次曝光思想,围绕的压缩成像的理论与方法、成像架构、物理可实现的压缩成像系统以及三维压缩成像理论与方法中遇到的一系列问题展开深入研究。
     本文的研究工作及创新点主要集中在如下几个方面:
     1)探讨了双透镜加确定性光学相位掩膜所构成的一种成像系统,给出压缩成像的基本原理和公式描述,并以托普利兹和循环两种确定性相位掩膜矩阵为例验证确定性相位掩膜成像方法的有效性。与Stern提出的单次曝光随机相位掩膜调制压缩成像方法相比,采用托普利兹和循环等确定性相位掩膜矩阵更利于物理实现和快速计算。此外,本文推导出压缩双透镜与确定性相位掩膜组成的成像系统满足压缩传感理论中对应的测量矩阵的任意两列之间不相关所需满足一些基本的条件,并给出具体的推导分析过程。
     2)提出了几种新的随机间距稀疏测量矩阵,包括随机间距稀疏托普利兹/循环和随机三元间距稀疏托普利兹/循环矩阵,并给出这些测量矩阵满足相关限制等距性质的理论证明。与高斯矩阵等常用测量矩阵相比,新提出的矩阵随机独立元个数大大减少,重建速度有了较大的提高;然后将这几种新的随机间距稀疏测量矩阵应用到压缩双透镜成像系统中,验证其作为相位掩膜矩阵在实现对图像信息随机调制的有效性;结果表明所提出的随机间距稀疏相位掩膜矩阵在物理上更容易物理实现,存储量低,易于数据传输;并且在保证重建性能的同时,可以显著地节约了后端压缩传感重建的时间,对于压缩传感理论的实际应用具有重要意义。此外,还提出一种块状确定性矩阵作为相位掩膜矩阵,在也具有易于物理实现的优势的同时,更适宜多通道成像领域的应用,利于压缩成像理论走向实际应用。
     3)将压缩传感理论应用于超分辨率成像重建问题,给出了在不同模糊内核作用下从低分辨率到高分辨率的超分辨率图像重建方法,结果显著优于直接插值方法。此外,还提出一种改进的基于4-f傅里叶光学成像架构的频域相位随机编码压缩成像方法,实现了图像信息的有效记录与恢复;针对实际可记录的测量值非负的限制,利用卷积原理分析实现测量值非负的基本原理,并给出改进的频域相位编码成像系统实现非负测量值的记录与成功重建,利于大尺度图像的压缩编码与重建,及其在实际中的应用与推广。为了实际掩膜的物理实现,本文进一步给出了一种改进的二元随机相位掩膜编码,规避了均匀随机相位掩膜的实际制作难度太大的困难。
     4)提出一种基于4-f傅里叶光学成像架构的0/1频域振幅编码孔径以及与随机间距光栅或一般的均匀间距的光栅相结合的压缩成像方法。与传统的针孔相机相比,大大增加了光的利用率,提高了对噪声的鲁棒性。与随机相位掩膜编码相比,振幅编码孔径更易于物理实现。在此基础上,设计了一种改进的0/1频域振幅编码孔径压缩成像系统,保证了非负性约束,使得实际的物理测量矩阵与理论计算的测量矩阵之间有更好的一致性。
     5)探讨压缩传感理论在三维成像领域中的应用,提出一种从一个二维全息图重建3D层析相干成像的多波长压缩全息成像方法;将散斑非相干压缩成像方法从单波长扩展到多波长和把压缩全息成像理论应用于稀疏孔径合成压缩全息成像等。在稀疏孔径合成压缩全息成像应用中改善了从多个低分辨率的传感器阵列合成高分辨率数字全息图像中遇到的相位不稳定的问题。最后给出物理实验验证了压缩全息成像方法的有效性。
Compressive sensing is a novel emerging theory of signal acquisition and processing, which break through the limitations of the traditional Shannon/Nyquist sampling theorem, the main benefit from that the vast majority of signals in the nature generally has the prior knowledge of sparsity, which can help to reconstruct the original signal accurately from the far less linear incoherent measurements than the Nyquist sampling rate. Obviously, recovering the real signal from incomplete measurement data is an ill-posed inverse problem. Compressive sensing theory has a huge potential value in many areas ranging from most signal processing applications, such as the field of information theory, signal processing, optical imaging, pattern recognition, signal acquisition and communications.
     Compressive imaging is one of the most important research areas of compressive sensing theory, the first successful instance of compressive imaging applications is the single pixel camera designed by Rice University based on compressed sensing theory which use only one detector for scene imaging. The camera has a control of digital micro-mirror array, driven by a pseudo-random binary array, and reflects the the scene of interest onto a single detector array which gather the intensity of this projection, and then reconstruct the original image from the observation value. A major advantage of this structure is any binary projection matrix can be easily implemented in this imaging system, so that the compressed sensing theory can be naturally applied to the measurement. Single-pixel camera perfectly agrees with the compressive sensing theory, which using a random modulation only to obtain a measured value, and has successfully gained practical application in a small part of the imaging area such as Terahertz imaging. However, the most severely drawback of the single-pixel camera is that can only obtain a measured value at one time, however, in other more extensive high-resolution applications, the time to obtain sufficient measurements is too long and thus is not very practical. Therefore, Stern proposed an improved compressive imaging method, that all measured values can be obtained with a single exposure conditions, and has greater potential application in other more widely imaging areas.
     This thesis draws on Stern's single exposure ideology, surrounded with a series of problems encountered in compressive imaging theories and methods, imaging architecture, physical realizable imaging system and three-dimensional compressive imaging theory for deeply research.
     The main research works and contributions of this thesis are outlined as follows.
     1) A novel imaging system consisting of double lens and deterministic optical phase mask is proposed, and the basic principles and formulas for compressive imaging are described, and the validity of the phase mask imaging method with Toeplitz and Circulant two deterministic phase mask matrix for instance is verified in the numerical simulations. Compared with the random phase mask modulation compressive imaging method with single-exposure proposed by Stern, using Toeplitz and Circulant and other deterministic phase mask matrix are more conducive to physical implementation and fast calculation. In addition, any two columns of measurement matrix are corresponding to compressive imaging system consisting of double-lens and deterministic phase mask to meet some basic conditions and specific derivation analysis are derived.
     2) Several novel random spacing sparse measurement matrices, including the random spacing sparse Toeplitz/Circulant and random ternary spacing sparse Toeplitz/Circulant matrices are proposed, and the proofs for such measurement matrices to satisfiy the restricted isometric property are given. Compared with the Gaussian measurement matrices, the novel proposed matrices, independent component and storage spaces are reduced significantly, and the speed of reconstruction have greatly improved; then these novel types of random spacing sparse measurement matrices are applied into compressive double lens imaging system, the validity of them as a phase mask matrices to achieve image information random modulation is verified; The simulation results of proposed random spacing sparse phase mask matrix demonstrate that proposed masks is superior for its easier physical implementation, low storage capacity, ease of data transfer; and with the same reconstruction performance and the significantly reduced reconstruction time, which has great significance for practical application of compressed sensing theory. In addition, blocked measurement matrices as the phase mask matrices are also proposed, which have the advantage of easy physical implementation, and are more suitable for multi-channel imaging applications, and can help compressive imaging theory to practical application.
     3) Compressive sensing was introduced into image super-resolution reconstruction problem, numerical simulation results demonstrate that reconstruction from low resolution to high resolution with different blurring kernel, that are much better than the direct interpolation method. In addition, an improved optical imaging method based on the4-f Fourier frequency domain phase random encoding for compressed imaging is proposed, which can capture image information and recover the image effectivrly;
     Due to the measured values recorded in real-world should satisfy non-negative constraints, the convolution principle to analysis the basic principle for how to implementing the measurement values non-negative is analysized, and an improvement frequency domain phase encoding imaging method is proposed to implement non-negative recording of the measurement values and successful reconstruction after then, which is conducive to large-scale image compressed encoding and reconstruction, and its practical application and promotion. For the realization of actual mask, an improved encoding of binary random phase mask is also given in this thesis, to avoid the practical difficulty for producing uniform random phase mask.
     4) A Fourier optical imaging architecture based on the4-f0/1frequency domain amplitude mask aperture imaging method with random spacing grating or evenly spaced grating combined are proposed. Compared with the traditional pinhole camera, the utilization of illumination light can be greatly increased in our method to improve the robustness against noise. Compared with the random phase mask encoding, the amplitude coded aperture are much easier for physical implementation. Based on this point, an improved frequency-domain amplitude0/1mask aperture compressive imaging system is designed, non-negative constraints is guaranteed, making a better consistency between the actual physical measurement matrices and the theoretical calculation of the measurement matrices.
     5) Compressed sensing theory is applied in three-dimensional imaging, and a multi-wavelength compressive holography method is proposed which can reconstruct a3D coherent tomography imaging from a two-dimensional hologram; compressive imaging method with single wavelength speckle incoherent is extended to multi-wavelength, and compressive holography imaging is also applied into sparse aperture synthetic holography imaging which improves the phase instability problems encountered in sparse aperture synthetic holography imaging for mosaics of multiple low-resolution and low cost2D sensor arrays which can achieve large aperture; and the effectiveness of compressive holography imaging method is verified by physical experiments.
引文
[1]E. Whittaker. On the functions which are represented by the expansions of the interpolation theory. Proc. Royal Soc. Edinburgh, Sec. A,35:181-194,1915.
    [2]C. Shannon. Communication in the presence of noise. Proc. Institute of Radio Engineers, 37(1):10{21,1949.
    [3]H. Nyquist. Certain topics in telegraph transmission theory. Transactions on AIEE, 47:617-644,1928.
    [4]V. Kotelnikov. On the carrying capacity of the ether and wire in telecommunications. In Izd. Red. Upr. Svyazi RKKA, Moscow, Russia,1933.
    [5]D. Healy. Analog-to-information:Baa#05-35,2005. Available online at http://www.darpa.mil /mto/solicitations/baa05-35/s/index.html.
    [6]R. Walden. Analog-to-digital converter survey and analysis. IEEE J. Selected Areas Comm., 17(4):539-550,1999.
    [7]D. Baron, M. Duarte, S. Sarvotham, M. Wakin, and R. Baraniuk. Distributed compressed sensing of jointly sparse signals. In Proc. Asilomar Conf. Signals, Systems, and Computers, Pacic Grove, CA, Nov.2005.
    [8]P. T. Boufounos, R. G. Baraniuk, "1-Bit compressive sensing," 42nd Annual Conference on Information Sciences and Systems,2008. CISS 2008, vol., no., pp.16-21,19-21 March 2008
    [9]Shihao Ji; Ya Xue; L. Carin, "Bayesian Compressive Sensing," IEEE Transactions on Signal Processing, vol.56, no.6, pp.2346-2356,2008
    [10]E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2):489-509.2006.
    [11]E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math.,59(8):1207-1223,2006.
    [12]E. Candes and T. Tao. Near optimal signal recovery from random projections:Universal encoding strategies? IEEE Transactions on Information Theory,52(12):5406-5425,2006.
    [13]D. Donoho. Compressed sensing. IEEE Transactions on Information Theory,52(4):1289-1306.2006.
    [14]E. Candes, J. Romberg, Quantitative robust uncertainty principles and optimally sparse decompositions [J], Foundations of Comput. Math,2006,6(2):227-254.
    [15]Emmanuel Candes and Terence Tao, Decoding by linear programming IEEE Transactions on on Information Theory[J],2005,51(12):4203-4215.
    [16]J. Haupt and R. Nowak, Signal reconstruction from noisy random projections [J], IEEE Transactions on Information Theory,2006,52(9):4036-4048.
    [17]S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA,1999.
    [18]D. Needell and J. Tropp. CoSaMP:Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal.,26(3):301-321,2009.
    [19]J. Tropp and A. Gilbert. Signal recovery from partial information via orthogonal matching pursuit. IEEE Transactions on Information Theory,53(12):4655-4666,2007.
    [20]A. Cohen, W. Dahmen, and R. DeVore. Instance optimal decoding by thresholding in compressed sensing. In Int. Conf. Harmonic Analysis and Partial Differential Equations, Madrid, Spain, Jun.2008.
    [21]P. Indyk and M. Ruzic. Near-optimal sparse recovery in the L1 norm. In Proc. IEEE Symp. Found. Comp. Science (FOCS), Philadelphia, PA, Oct.2008.
    [22]J. Tropp, A. Gilbert, and M. Strauss. Algorithms for simultaneous sparse approximation. Part 1:Greedy pursuit. Signal Processing,86(3):572-588,2006.
    [23]Y. Erlich, N. Shental, A. Amir, and O. Zuk. Compressed sensing approach for high throughput carrier screen. In Proc. Allerton Conf. Communication, Control, and Computing, Monticello, IL, Sept.2009.
    [24]R, Kainkaryam, A. Breux, A. Gilbert, P. Woolf, and J. Schiefelbein. poolMC:Smart pooling of mRNA samples in microarray experiments. BMC Bioinformatics,11(1):299,2010.
    [25]N. Shental, A. Amir, and O. Zuk. Identi cation of rare alleles and their carriers using compressed se(que)nsing. Nucleic Acids Research,38(19):e179,2009.
    [26]A. C. Gilbert, M. J. Strauss, J. Tropp, R.Vershynin, Algorithmic linear dimension reduction in the L1 norm for sparse vectors [J], Proceedings of the 44th Annual Allerton Conference on Communication, Control and Computing, Allerton, September 2006.
    [27]M. Lustig, D. Donoho, and J. Pauly. Rapid MR imaging with compressed sensing and randomly under-sampled 3DFT trajectories. In Proc. Annual Meeting of ISMRM. Seattle, WA, May 2006.
    [28]M. Lustig, J. Lee, D. Donoho, and J. Pauly. Faster imaging with randomly perturbed, under-sampled spirals and L1 reconstruction. In Proc. Annual Meeting of ISMRM, Miami, FL. May 2005.
    [29]M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk. Single-pixel imaging via compressive sampling. IEEE Signal Processing Mag.,25(2):83-91, 2008.
    [30]R. Marcia, Z. Harmany, and R. Willett. Compressive coded aperture imaging. In Proc. IS&T/SPIE Symp. Elec. Imag.:Comp. Imag., San Jose, CA, Jan.2009.
    [31]R. Robucci, L. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson. Compressive sensing on a CMOS separable transform image sensor. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Las Vegas, NV, Apr.2008.
    [32]D. Baron, M. Duarte, S. Sarvotham, M. Wakin, and R. Baraniuk. Distributed compressed sensing of jointly sparse signals. In Proc. Asilomar Conf. Signals, Systems, and Computers, Pacic Grove, CA, Nov.2005.
    [33]M. Davenport, C. Hegde, M. Duarte, and R. Baraniuk. Joint manifolds for data fusion. IEEE Transactions on Image Processing,19(10):2580-2594,2010.
    [34]J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak. Compressed sensing for networked data. IEEE Signal Processing Mag.,25(2):92-101,2008.
    [35]M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, R. Baraniuk, An architecture for compressive imaging[C], Int. Conf. on Image Processing, Atlanta, Georgia,2006
    [36]M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, R Baraniuk, Compressive imaging for video representation and coding[C], Proc. Picture Coding Symposium, Beijing, China,2006.
    [1]V. Kotelnikov. On the carrying capacity of the ether and wire in telecommunications. In Izd. Red. Upr. Svyazi RKKA, Moscow, Russia,1933.
    [2]H. Nyquist. Certain topics in telegraph transmission theory. Transactions on AIEE, 47:617-644,1928.
    [3]C. Shannon. Communication in the presence of noise. Proc. Institute of Radio Engineers, 37(1):10-21,1949.
    [4]E. Whittaker. On the functions which are represented by the expansions of the interpolation theory. Proc. Royal Soc. Edinburgh, Sec. A,35:181-194,1915.
    [5]D. Healy. Analog-to-information:Baa #05-35,2005. Available online at http://www.darpa. mil/mto/sol icitations/baa05-35/s/index.html.
    [6]R. Walden. Analog-to-digital converter survey and analysis. IEEE J. Selected Areas Comra., 17(4):539-550,1999.
    [7]A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev.,51(1):34-81, Feb.2009.
    [8]R. DeVore. Nonlinear approximation. Acta Numerica,7:51-150,1998.
    [9]M. Elad. Sparse and Redundant Representations:From Theory to Applications in Signal and Image Processing. Springer, New York, NY,2010.
    [10]R. Baraniuk. Compressive sensing. IEEE Signal Processing Mag.,24(4):118-120,124. 2007.
    [12]E. Candes and J. Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math.,6(2):227-254,2006.
    [13]E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory,52(2):489-509,2006.
    [14]E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math.,59(8):1207-1223,2006.
    [15]E. Candes and T. Tao. Near optimal signal recovery from random projections:Universal encoding strategies, IEEE Transactions on Information Theory,52(12):5406-5425,2006.
    [16]D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289-1306,2006.
    [17]R. Prony. Essai experimental et analytique sur les lois de la Dilatabilite des uides elastiques et sur celles de la Force expansive de la vapeur de l'eau et de la vapeur de l'alkool, a di erentes temperatures. J. de 1'Ecole Polytechnique, Floreal et Prairial III, 1(2):24-76,1795. R. Prony is Gaspard Riche, baron de Prony.
    [18]C. Caratheodory. Uber den Variabilitatsbereich der Koezienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann.,64:95-115.1907.
    [19]C. Caratheodory. Uber den Variabilit atsbereich der Fourierschen Konstanten von positive harmonischen Funktionen. Rend. Circ. Mat. Palermo,32:193-217,1911.
    [20]I. Gorodnitsky, J. George, and B. Rao. Neuromagnetic source imaging with FOCUSS:A recursive weighted minimum norm algorithm. Electroencephalography and Clinical Neurophysiology,95(4):231-251,1995.
    [21]I. Gorodnitsky and B. Rao. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 45(3):600-616,1997.
    [22]I. Gorodnitsky, B. Rao, and J. George. Source localization in magnetoencephalagraphy using an iterative weighted minimum norm algorithm. In Proc. Asilomar Conf. Signals, Systems, and Computers, Pacic Grove, CA, Oct.1992.
    [23]B. Rao. Signal processing with the sparseness constraint. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Seattle, WA, May 1998.
    [24]Y. Bresler and P. Feng. Spectrum-blind minimum-rate sampling and reconstruction of 2-D multiband signals. In Proc. IEEE Int. Conf. Image Processing (ICIP), Zurich, Switzerland, Sept.1996.
    [25]P. Feng. Universal spectrum blind minimum rate sampling and reconstruction of multi-band signals. PhD thesis, University of Illinois at UrbanChampaign, Mar.1997.
    [26]P. Feng and Y. Bresler. Spectrum-blind minimum-rate sampling and reconstruction of multiband signals. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Atlanta, GA, May 1996.
    [27]R. Venkataramani and Y. Bresler. Further results on spectrum blind sampling of 2-D signals. In Proc. IEEE Int. Conf. Image Processing (ICIP), Chicago, IL, Oct.1998.
    [28]M. Vetterli, P. Marziliano, and T. Blu. Sampling signals with finite rate of innovation. IEEE Transactions on Signal Processing,50(6):1417-1428,2002.
    [29]A. Beurling. Sur les integrales de Fourier absolument convergentes et leur applicationa une transformation fonctionelle. In Proc. Scandinavian Math. Congress, Helsinki, Finland,1938.
    [30]E. Candes. Compressive sampling. In Proc. Int. Congress of Math., Madrid, Spain, Aug. 2006.
    [31]Y. C. Eldar and T. Michaeli. Beyond bandlimited sampling. IEEE Signal Processing Mag., 26(3):48-68,2009.
    [32]M. Unser. Sampling|50 years after Shannon. Proc. IEEE,88(4):569-587,2000.
    [33]J. Tropp and S. Wright. Computational methods for sparse solution of linear inverse problems. Proc. IEEE,98(6):948-958,2010.
    [34]M. Lustig, D. Donoho, and J. Pauly. Rapid MR imaging with compressed sensing and randomly under-sampled 3DFT trajectories. In Proc. Annual Meeting of ISMRM, Seattle, WA, May 2006.
    [35]M. Lustig, J. Lee, D. Donoho, and J. Pauly. Faster imaging with randomly perturbed, under-sampled spirals and L1 reconstruction. In Proc. Annual Meeting of ISMRM, Miami, FL, May 2005.
    [36]M. Lustig, J. Santos, J. Lee, D. Donoho, and J. Pauly. Application of compressed sensing for rapid MR imaging. In Proc. Work. Struc. Parc. Rep. Adap. Signaux (SPARS),Rennes, France, Nov.2005.
    [37]J. Trzasko and A. Manduca. Highly undersampled magnetic resonance image reconstruction via homotopic LO-minimization. IEEE Transactions on Med. Imaging,28(1):106-121,2009.
    [38]S. Vasanawala, M. Alley, R. Barth, B. Hargreaves, J. Pauly, and M. Lustig. Faster pediatric MRI via compressed sensing. In Proc. Annual Meeting Soc. Pediatric Radiology (SPR), Carlsbad, CA, Apr.2009.
    [39]K. Gedalyahu and Y. C. Eldar. Time-delay estimation from low-rate samples:A union of subspaces approach. IEEE Transactions on Signal Processing,58(6):3017-3031,2010.
    [40]K. Gedalyahu, R. Tur, and Y. C. Eldar. Multichannel sampling of pulse streams at the rate of innovation. IEEE Transactions on Signal Processing, vol.59, no.4, pp.1491-1504,2011.
    [41]M. Mishali and Y. C. Eldar. Blind multi-band signal reconstruction:Compressed sensing for analog signals. IEEE Transactions on Signal Processing,57(3):993-1009,2009.
    [42]M. Mishali and Y. C. Eldar. From theory to practice:Sub-Nyquist sampling of sparse wideband analog signals. IEEE J. Select. Top. Signal Processing,4(2):375-391,2010.
    [43]M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan. Xampling:Analog to digital at sub-Nyquist rates. IET Circuits, Devices,& Systems,5(1):8-20,2011.
    [44]J. Treichler, M. Davenport, and R. Baraniuk. Application of compressive sensing to the design of wideband signal acquisition receivers. In Proc. U.S./Australia Joint Work. Defense Apps. of Signal Processing (DASP), Lihue, Hawaii, Sept.2009.
    [45]J. Tropp, J. Laska, M. Duarte, J. Romberg, and R. Baraniuk. Beyond Nyquist:Efficient sampling of sparse, bandlimited signals. IEEE Transactions on Information Theory, 56(l):520-544,2010.
    [46]J. Tropp, M. Wakin, M. Duarte, D. Baron, and R. Baraniuk. Random lters for compressive sampling and reconstruction. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Toulouse, France, May 2006.
    [47]R. Tur, Y. C. Eldar, and Z. Friedman. Innovation rate sampling of pulse streams with application to ultrasound imaging. IEEE Transactions on Signal Processing, vol.59, no.4, pp.1827-1842,2011.
    [48]M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk. Single-pixel imaging via compressive sampling. IEEE Signal Processing Mag.,25(2):83-91, 2008.
    [49]R. Marcia. Z. Harmany. and R. Willett. Compressive coded aperture imaging. In Proc. 1S&T/SPIE Symp. Elec. Imag.:Comp. Imag.. San Jose, CA, Jan.2009.
    [50]R. Robucci, L. Chiu. J. Gray, J. Romberg, P. Hasler, and D. Anderson. Compressive sensing on a CMOS separable transform image sensor. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Las Vegas, NV, Apr.2008.
    [51]D. Baron, M. Duarte, S. Sarvotham, M. Wakin, and R. Baraniuk. Distributed compressed sensing of jointly sparse signals. In Proc. Asilomar Conf. Signals, Systems, and Computers, Pacic Grove, CA, Nov.2005.
    [52]M. Davenport, C. Hegde, M. Duarte, and R. Baraniuk. Joint manifolds for data fusion. IEEE Transactions on Image Processing,19(10):2580-2594,2010.
    [53]J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak. Compressed sensing for networked data. IEEE Signal Processing Mag.,25(2):92-101,2008.
    [54]P. Casazza and G. Kutyniok. Finite Frames. Birkh auser, Boston, MA,2012.
    [55]O. Christensen. An Introduction to Frames and Riesz Bases. Birkhauser, Boston, MA,2003.
    [56]I. Daubechies. Ten lectures on wavelets. SIAM, Philadelphia, PA,1992.
    [57]J. Kovacevic and A. Chebira. Life beyond bases:The advent of frames (Part I). IEEE Signal Processing Mag.,24(4):86-104,2007.
    [58]J. Kovacevic and A. Chebira. Life beyond bases:The advent of frames (Part II). IEEE Signal Processing Mag.,24(4):115-125.2007.
    [59]S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA,1999.
    [60]B. Bodmann, P. Cassaza, and G. Kutyniok. A quantitative notion of redundancy for finite frames. Applied and Computational Harmonic Analysis,30(3):348-362,2011.
    [61]W. Pennebaker and J. Mitchell. JPEG Still Image Data Compression Standard. Van Nostrand Reinhold,1993.
    [62]D. Taubman and M. Marcellin. JPEG 2000:Image Compression Fundamentals, Standards and Practice. Kluwer,2001.
    [63]D. Donoho. Denoising by soft-thresholding. IEEE Transactions on Information Theory, 41(3):613-627,1995.
    [64]V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, NY,1999.
    [65]T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, New York, NY,2001.
    [66]R. Tibshirani. Regression shrinkage and selection via the Lasso. J. Royal Statist. Soc B, 58(l):267-288,1996.
    [67]B. Olshausen and D. Field. Emergence of simple-cell receptive eld properties by learning a sparse representation. Nature,381:607-609,1996.
    [68]D. Donoho and M. Elad. Optimally sparse representation in general (nonorthogonal) dictionaries via L1 minimization. Proc. Natl. Acad. Sci.,100(5):2197-2202.2003.
    [69]A. Cohen, W. Dahmen. and R. DeVore. Compressed sensing and best k-tenn approximation. J. Amer. Math. Soc., 22(1):211-231, 2009.
    [70]E. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):4203-4215, 2005.
    [71]D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal., 26(3):301-321, 2009.
    [73]J. Tropp and A. Gilbert. Signal recovery from partial information via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12):4655-4666, 2007.
    [74]M. Rosenfeld. The Mathematics of Paul Erd}os II, chapter In praise of the Gram matrix, pages 318-323. Springer, Berlin, Germany, 1996.
    [75]T. Strohmer and R. Heath. Grassmanian frames with applications to coding and communication. Appl. Comput. Harmon. Anal., 14(3):257-275, Nov. 2003.
    [76]L. Welch. Lower bounds on the maximum cross correlation of signals. IEEE Transactions on Information Theory, 20(3):397-399, 1974.
    [77]P. Boufounos, H. Rauhut, and G. Kutyniok. Sparse recovery from combined fusion frame measurements. IEEE Transactions on Information Theory, 57(6):3864-3876, 2011.
    [78]Y. C. Eldar. Uncertainty relations for shift-invariant analog signals. IEEE Transactions on Information Theory, 55(12):5742-5757, 2009.
    [79]Y. C. Eldar, P. Kuppinger, and H. Bolcskei. Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing, 58(6):3042-3054,2010.
    [80]S. Gersgorin. Uber die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR Sen Fiz.-Mat.,6:749{754, 1931.
    [81]R. Varga. Gersgorin and His Circles. Springer, Berlin, Germany, 2004.
    [82]M. Herman and T. Strohmer. High-resolution radar via compressed sensing. IEEE Transactions on Signal Processing, 57(6):2275-2284, 2009.
    [83]J. Bourgain, S. Dilworth, K. Ford, S. Konyagin and D. Kutzarova, Explicit constructions of RIP matrices and related problems, Duke Math. J. 159 (2011) 145-185.
    [84]R. DeVore. Deterministic constructions of compressed sensing matrices. J. Complex., 23(4):918-925, 2007.
    [85]J. Haupt, L. Applebaum, and R. Nowak. On the restricted isometry of deterministically subsampled Fourier matrices. In Conf. Information Sciences and Systems (CISS), Princeton, NJ, Mar. 2010.
    [86]P. Indyk. Explicit constructions for compressed sensing of sparse signals. In Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 30-33, Jan. 2008.
    [87]T. Cai and T. Jiang. Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices. Preprint, 2010.
    [88]E. Candes and Y. Plan. Near-ideal model selection by L1 minimization. Ann. Stat.. 37(5A):2145-2177,2009.
    [89]D. Donoho. For most large underdetermined systems of linear equations, the minimal L1-norm solution is also the sparsest solution. Comm. Pure Appl. Math.,59(6):797-829, 2006.
    [90]M. Davenport, J. Laska, P. Boufouons, and R. Baraniuk. A simple proof that random matrices are democratic. Technical Report TREE 0906, Rice Univ., ECE Dept., Nov.2009.
    [91]J. Laska, P. Boufounos, M. Davenport, and R. Baraniuk. Democracy in action:Quantization. saturation, and compressive sensing. Preprint,2009.
    [92]R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted isometry property for random matrices. Const. Approx.,28(3):253-263,2008.
    [93]M. Mishali and Y. C. Eldar. From theory to practice:Sub-Nyquist sampling of sparse wideband analog signals. IEEE J. Select. Top. Signal Processing,4(2):375{391,2010.
    [94]W. Bajwa, J. Haupt, G. Raz, S. Wright, and R. Nowak. Toeplitz-structured compressed sensing matrices. In Proc. IEEE Work. Stat. Signal Processing, Madison, WI, Aug.2007.
    [95]J. Romberg. Compressive sensing by random convolution. SI AM J. Imag. Sci.,2(4):1098-1128,2009.
    [96]J. P. Slavinsky, J. Laska. M. Davenport, and R. Baraniuk. The compressive multiplexer for multi-channel compressive sensing. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Prague, Czech Republic, May 2011.
    [97]Y. Chi, L. Scharf, A. Pezeshki, and R. Calderbank. Sensitivity to basis mismatch in compressed sensing. Preprint, May 2010.
    [98]M. Herman and T. Strohmer. General deviants:An analysis of perturbations in compressed sensing. IEEE J. Select. Top. Signal Processing,4(2):342-349,2010.
    [99]E. Candes, Y. C. Eldar, D. Needell, and P. Randall. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis,31(1):59-73,2011.
    [100]A. Cohen, W. Dahmen, and R. DeVore. Instance optimal decoding by thresholding in compressed sensing. In Int. Conf. Harmonic Analysis and Partial Differential Equations, Madrid, Spain, Jun.2008.
    [101]J. Haupt and R. Nowak. Signal reconstruction from noisy random projections. IEEE Transactions on Information Theory,52(9):4036-4048,2006.
    [102]S. Muthukrishnan. Data Streams:Algorithms and Applications. volume 1 of Found. Trends in Theoretical Comput. Science. Now Publishers, Boston, MA.2005.
    [103]S. Chen, D. Donoho. and M. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comp.,20(1):33-61,1998.
    [104]E. Candes. The restricted isometry property and its implications for compressed sensing. Comptes rendus de l'Academie des Sciences, Serie I.346(9-10):589-592,2008.
    [105]Z. Ben-Haim, T. Michaeli, and Y. C. Eldar. Performance bounds and design criteria for estimating nite rate of innovation signals. Preprint,2010.
    [106]Z. Ben-Haim, Y. C. Eldar, and M. Elad. Coherence-based performance guarantees for estimating a sparse vector under random noise. IEEE Transactions on Signal Processing, 58(10):5030-5043,2010.
    [107]D. Donoho and M. Elad. On the stability of basis pursuit in the presence of noise. EURASIP Signal Processing J.,86(3):511-532,2006.
    [108]D. Donoho, M. Elad, and V. Temlyahov. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 52(1):6-18,2006.
    [109]J. Laska, M. Davenport, and R. Baraniuk. Exact signal recovery from corrupted measurements through the pursuit of justice. In Proc. Asilomar Conf. Signals, Systems, and Computers, Pacic Grove, CA, Nov.2009.
    [110]E. Candes and T. Tao. The Dantzig selector:Statistical estimation when p is much larger than n. Ann. Stat.,35(6):2313-2351,2007.
    [111]M. Duarte, M. Davenport, M. Wakin, and R. Baraniuk. Sparse signal detection from incoherent projections. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Toulouse, France, May 2006.
    [112]M. Duarte, M. Davenport, M. Wakin, J. Laska, D. Takhar, K. Kelly, and R. Baraniuk. Multiscale random projections for compressive classification. In Proc. IEEE Int. Conf. Image Processing (ICIP), San Antonio, TX, Sept.2007.
    [113]J. Haupt, R. Castro, R. Nowak, G. Fudge, and A. Yeh. Compressive sampling for signal classification. In Proc. Asilomar Conf. Signals, Systems, and Computers, Pacic Grove, CA, Nov.2006.
    [114]J. Haupt and R. Nowak. Compressive sampling for signal detection. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Honolulu, HI, Apr.2007.
    [115]J. Nocedal and S. Wright. Numerical Optimization. Springer-Verlag,1999.
    [116]M. Figueiredo, R. Nowak, and S.Wright. Gradient projections for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Select. Top. Signal Processing, 1(4):586-597,2007.
    [117]J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. J. Stats. Software,33(1):1-22,2010.
    [118]E. Hale, W. Yin, and Y. Zhang. A xed-point continuation method for L1-regularized minimization with applications to compressed sensing. Technical Report TR07-07, Rice Univ., CAAM Dept.,2007.
    [119]I. Loris. On the performance of algorithms for the minimization of L1-penalized functions. Inverse Problems,25(3):035008,2009.
    [120]Z. Wen. W. Yin. D. Goldfarb. and Y. Zhang. A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation. SIAM J. on Sci. Comp., 32(4):1832-1857.2010.
    [121]Y. C. Eldar. Generalized SURE for exponential families:Applications to regularization. IEEE Transactions on Signal Processing,57(2):471-481,2009.
    [122]N. Galatsanos and A. Katsaggelos. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Transactions on Image Processing, 1(3):322-336,1992.
    [123]G. Golub and M. Heath. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics,21(2):215-223,1970.
    [124]S. Becker, J. Bobin, and E. Candes. NESTA:A fast and accurate rst-order method for sparse recovery. SIAM J. on Imaging Sciences 4(1),1-39,2009.
    [125]S. Becker, E. Candes, and M. Grant. Templates for convex cone problems with applications to sparse signal recovery. Preprint,2010.
    [126]E. van den Berg and M. Friedlander. Probing the Pareto frontier for basis pursuit solutions. SIAM J. on Sci. Comp.,31 (2):890-912,2008.
    [127]P. Indyk and M. Ruzic. Near-optimal sparse recovery in the L1 norm. In Proc. IEEE Symp. Found. Comp. Science (FOCS), Philadelphia, PA, Oct.2008.
    [128]J. Tropp, A. Gilbert. and M. Strauss. Algorithms for simultaneous sparse approximation. Part I:Greedy pursuit. Signal Processing,86(3):572-588,2006.
    [129]S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing,41 (12):3397-3415,1993.
    [130]M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky. A wide-angle view at iterated shrinkage algorithms. In Proc. SPIE Optics Photonics:Wavelets, San Diego, CA, Aug.2007.
    [131]T. Blumensath and M. Davies. Iterative hard thresholding for compressive sensing. Appl. Comput. Harmon. Anal.,27(3):265-274,2009.
    [132]M. Davenport and M. Wakin. Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Transactions on Information Theory,56(9):4395-4401,2010.
    [133]J. Tropp. Greed is good:Algorithmic results for sparse approximation. IEEE Transactions on Information Theory,50(10):2231-2242,2004.
    [134]E. Livshitz. On eciency of Orthogonal Matching Pursuit. Preprint, Apr.2010.
    [135]T. Zhang. Sparse recovery with Orthogonal Matching Pursuit under RIP. Preprint, May 2010.
    [136]P. Bechler and P. Wojtaszczyk. Error estimates for orthogonal matching pursuit and random dictionaries. Preprint, Aug.2009.
    [137]D. Du and F. Hwang. Combinatorial group testing and its applications.World Scientic, Singapore,2000.
    [138]Y. Erlich, N. Shental. A. Amir, and O. Zuk. Compressed sensing approach for high throughput carrier screen. In Proc. Allerton Conf. Communication, Control, and Computing, Monticello, IL, Sept.2009.
    [139]R. Kainkaryam, A. Breux, A. Gilbert, P. Woolf, and J. Schiefelbein. poolMC:Smart pooling of mRNA samples in microarray experiments. BMC Bioinformatics,11(1):299,2010.
    [140]N. Shental, A. Amir, and O. Zuk. Identi cation of rare alleles and their carriers using compressed se(que)nsing. Nucleic Acids Research,38(19):e179,2009.
    [141]G. Cormode and M. Hadjieleftheriou. Finding the frequent items in streams of data. Comm. ACM,52(10):97-105,2009.
    [142]D. Baron, S. Sarvotham, and R. Baraniuk. Sudocodes-fast measurement and reconstruction of sparse signals. In Proc. IEEE Int. Symp. Information Theory (ISIT), Seattle, WA, Jul. 2006.
    [143]A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proc. IEEE,98(6):937-947, 2010.
    [144]S. Jafarpour, W. Xu, B. Hassibi, and R. Calderbank. Efficient and robust compressed sensing using optimized expander graphs. IEEE Transactions on Information Theory, 55(9):4299-4308,2009.
    [145]R. Berinde, A. Gilbert, P. Indyk, H. Karlo, and M. Strauss. Combining geometry and combinatorics:a unied approach to sparse signal recovery. In Proc. Allerton Conf. Communication, Control, and Computing, Monticello, IL, Sept.2008.
    [146]A. Gilbert, Y. Li, E. Porat, and M. Strauss. Approximate sparse recovery:Optimizaing time and measurements. In Proc. ACM Symp. Theory of Comput., Cambridge, MA, Jun.2010.
    [147]A. Gilbert, M. Strauss, J. Tropp, and R. Vershynin. One sketch for all:Fast algorithms for compressed sensing. In Proc. ACM Symp. Theory of Comput., San Diego, CA, Jun.2007.
    [148]Compressed sensing webpage. http://www.dsp.ece.rice.edu/cs/.
    [149]杨海蓉,张成,丁大为,韦穗.压缩传感理论与重构算法.电子学报,2011,39(1):142-148.
    [1]D. Takhar, J. N. Laska, M. B. Wakin. M. F. Durate, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk,"A new compressive imaging camera architecture using optical-domain compression", Proc. of Computational Imaging IV at SPIE Electronic Imaging, San Jose. California (2006).
    [2]P.T. Boufounos, R.G. Baraniuk.1-bit compressive sensing[J]. in Conf. Information Sciences and Systems (CISS), (Princeton, NJ), pp.16-21, Mar.2008.
    [3]Wakin, M.B.; Laska, J.N.; Duarte, M.F.; Baron, D.; Sarvotham, S.; Takhar, D.; Kelly, K.F.; Baraniuk, R.G.;, "An Architecture for Compressive Imaging," Image Processing,2006 IEEE International Conference on, vol., no., pp.1273-1276,8-11 Oct. 2006
    [4]Duarte, M.F.; Davenport. M.A.; Takhar, D.; Laska, J.N.; Ting Sun; Kelly, K.F. Baraniuk, R.G.;, "Single-Pixel Imaging via Compressive Sampling," Signal Processing Magazine, IEEE, vol.25, no.2, pp.83-91, March 2008
    [5]A. Stern, B. Javidi,"Random projections imaging with extended space-bandwidth product.' Journal of Display Technology.2007,3 (3):315-320.
    [6]A. Stern, Yair Rivenson, Bahrain Javidi. "Single Exposure Optically Compressed Imaging and Visualization Using Random Aperture Coding". Journal of Physics:Conference Series 139(2008)012018.
    [7]A. Stern. Y. Rivenson. B. Javidi. "Single-shot compressive imaging". In Optics East. Proceedings Vol.6778.2007.
    [8]A Stern. Yair Rivenson, Bahrain Javidi. Single exposure optically compressed imaging and visualization using random aperture coding.2008 J. Phys.:Conf. Ser.139012018.
    [9]A. Stem, Y. Rivenson, and B. Javidi, "Optically Compressive imaging sensing using random aperture coding," in Keynote at Enabling Photonics Technologies for Defense, Security, and Aerospace Applications IV, SPIE, Orlando, FL, Mar.2008.
    [10]Marcia, R. F. and Willett, R. M., "Compressive coded aperture superresolution image reconstruction," in " Proc. of IEEE Int. Conf. Acoust., Speech, Signal Processing,"2008.
    [11]Marcia, R. F. and Willett, R. M., "Compressive coded aperture video reconstruction," in [Proceedings of the 16th European Signal Processing Conference, EUSIPCO 2008], (August 2008).
    [12]R. F. Marcia, Z. T. Harmany, and R. M. Willet, Compressive coded aperture imaging, in Proc. SPIE Conference on Computational Imaging VII, January 2009.
    [13]R. F. Marcia, Z. T. Harmany, and R. M. Willett, "Compressive coded apertures for high-resolution imaging," in Proceedings of the 2010 SPIE Photonics Europe, Brussels, Belgium (2010).
    [14]R. Marcia, R. Willett, and Z. Harmany. "Compressive optical imaging:Architectures and algorithms". To appear in Optical and Digital Image Processing Fundamentals and Applications, edited by G. Cristobal, P. Schelkens and H. Thienpont,2010.
    [15]R. Baraniuk and P. Steeghs, "Compressive radar imaging," in Proceedings of 2007 IEEE Radar Conference, Boston, MA 2007, pp.128-133.
    [16]M. A. Herman and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, vol.57, no.6, pp.2275-2284, Jun.2009.
    [17]Mahesh C. Shastry, Ram M. Narayanan, and Muralidhar Rangaswamy, Compressive Radar Imaging Using White Stochastic Waveforms. (5th IEEE International Conference on Waveform Diversity and Design, Niagara Falls, ON, Canada, August 2010)
    [18]Xie Xiaochun,Zhang Yunhua. Fast Compressive Sensing Radar Imaging Based on Smoothed 10 Norm[C].APSAR 2009, Xian:443-447.
    [19]Xie Xiao-Chun, Zhang Yun-Hua. High-resolution imaging of moving train by ground-based radar with compressive sensing[J]. Electronics Letters,2010,46(7):529-531.
    [20]N. P. Pitsianis, D. J. Brady, and X. Sun, "Sensor-layer image compression based on the quantized cosine transform," in SPIE Visual Information Processing XIV,2005.
    [21]D. J. Brady, M. Feldman, N. Pitsianis, J. P. Guo, A. Portnoy, and M. Fiddy, "Compressive optical MONTAGE photography," in SPIE Photonic Devices and Algorithms for Computing VII,2005.
    [22]David Brady, Kerkil Choi, Daniel Marks. Ryoichi Horisaki, and Sehoon Lim. Compressive holography. Optics Express, 17:13040-13049. 2009.
    [23]Y. Rivenson, A. Stern, and B. Javidi, "Compressive Fresnel holography," J. Disp. Technol. 6(10), 506-509(2010).
    [24]Kerkil Choi, Ryoichi Horisaki, Joonku Hahn, Sehoon Lim, Daniel L. Marks, Timothy J. Schulz, and David J. Brady. Compressive holography of diffuse objects. Appl. Opt., 49(34):Hl-H10,2010.
    [25]Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 2007; 58(6): 1182-1195.
    [26]Chang TC, He L, Fang T. MR image reconstruction from sparse radial samples using bregman iteration. In Proceedings of the 13th Annual Meeting of ISMRM, Seattle, 2006. p 696.
    [27]Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 2007; 57:1086-1098.
    [28]Yu H, Wang G. Compressed sensing based interior tomography. Phys. Med. Biol. 2009; 54(9):2791-2805.
    [29]Lu Y, Zhang X, Douraghy A, Stout D, Tian J, Chan TF, Chatziioannou AF. Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information. Opt. Express. 2009; 17(10):8062-8080.
    [30]Gao H, Zhao H. Multilevel bioluminescence tomography based on radiative transfer equation Part 1:11 regularization. Opt. Express. 2010; 18(3): 1854-1871.
    [31]Guang-Hong Chen, Jie Tang, and Shuai Leng. Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys. 2008; 35(2): 660-663.
    [32]Bobin, J.; Starck, J.-L.; Ottensamer, R.; , "Compressed Sensing in Astronomy," Selected Topics in Signal Processing, IEEE Journal of, vol.2, no.5, pp.718-726, Oct. 2008
    [33]Albert C. Fannjiang, Thomas Strohmer, and Pengchong Yan. Compressed Remote Sensing of Sparse Objects. SIAM J. Imaging Sciences. 3(3), pp. 595-618
    [34]David L. Donoho, "Compressed Sensing," IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.
    [35]E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Inf. Theory, vol. 52, 2006.
    [36]Emmanuel J. Candes and Terence Tao, "Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?," IEEE Transactions on Information Theory., vol. 52, no. 12, pp. 5406-5425, Dec. 2006.
    [37]E. Candes, J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Problems, vol.23. pp.969-985.2007
    [38]Candes. E.J., and Wakin. M.B., "An Introduction to Compressive Sampling." IEEE Signal Processing Magazine., pp.21-30, March.2008.
    [39]E. Candes, and T. Tao, Error correction via linear programming [J]. in Proc. Of IEEE Symposium on Foundations of Computer Science. FOCS 2005:295-308
    [40]S. Chen, D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM J. on Sci. Comp., vol.20, no.1, pp.33-61,1998.
    [41]D. Baron, M. B. Wakin, M. F. Duarte, S. Sarvotham, and R. G. Baraniuk,"Distributed compressed sensing," 2005, Available at http://www.dsp.rice.edu/cs.
    [42]G. Cormode and S. Muthukrishnan, "Towards an algorithmic theory of compressed sensing," DIMACS Tech. Report 2005-25,2005.
    [43]Zhang Cheng, Yang Hairong, Wei Sui. Compressive Double-Lens Imaging Using Circulant-Toeplitz-Block Phase Mask[J]. Acta Optica Sinica,2011,31(8):811001张成,杨海蓉,韦穗.循环-托普利兹块相位掩模可压缩双透镜成像[J].光学学报,2011,31(8):811001
    [44]Zhang Cheng, Yang Hairong, Wei Sui. Compressive Double-Lens Imaging Using Deterministic Phase Mask[J]. Acta Photonica Sinica,2011 Vol.40 (6):949-954.张成,杨海蓉,韦穗.确定性相位掩膜可压缩双透镜成像.光子学报,2011 Vol.40(6):949-954.
    [45]Zhang Cheng, Yang Hairong, Wei Sui. Compressive Imaging Using Toeplitz-Circulant-Block Phase Mask Matrices[J]. Acta Photonica Sinica,2011 Vol.40(9): 1322-1327.张成,杨海蓉,韦穗.托普利兹-循环块相位掩模矩阵压缩成像[J].光子学报,2011,Vo1.40(9):1322-1327.
    [46]张成,杨海蓉,韦穗.循环托普利兹块相位掩模可压缩双透镜成像[J].光学学报,2011,31(8):811001.
    [47]张成,沈川,程鸿,杨海蓉,韦穗.随机间距稀疏三元Toeplitz矩阵相位掩模压缩成像[J].光学学报,2012,32(2):0211002.
    [48]杨海蓉,张成,丁大为,韦穗.压缩传感理论与重构算法.电子学报,2011,39(1):142-148.
    [49]张成,杨海蓉,韦穗.基于随机间距稀疏Toeplitz测量矩阵的压缩传感.自动化学报[已录用].
    [50]张成,杨海蓉,沈川,韦穗.循环-循环块相位掩膜矩阵压缩双透镜成像,光电子·激光,2012,23(1),174-179.
    [51]张成,程鸿,沈川,韦穗,夏云.随机间距稀疏三元循环相位掩膜矩阵可压缩成像.电子与信息学报(已录用).
    [52]Bajwa, W. U., Haupt, J. D., Raz, G. M., Wright, S. J., and Nowak, R. D. Toeplitz-structured compressed sensing matrices, Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing,2007,294-298
    [53]Rauhut, H., Circulant and toeplitz matrices in compressed sensing, In Proc. SPARS'09, Saint Malo,2009.
    [54]DeVore, R., "Deterministic constructions of compressed sensing matrices," Journal of Complexity 2007,8,23:918-925.
    [55]J. Haupt, W. U. Bajwa, RAZ G, et al. Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation," IEEE Transactions on Information Theory, 2010,56(11):5862-5875.
    [56]R.G. Baraniuk, M. Davenport, R. DeVore, and M.B. Wakin, "A simple proof of the restricted isometry principle for random matrices (aka the Johnson-Lindenstrauss lemma meets compressed sensing)," Constructive Approximation., vol.28, no.3, pp.253-263, Dec.2008
    [57]Yang Hairong, Zhang Cheng, Ding Dawei, Wei Sui. The Theory of Compressed Sensing and Reconstruction Algorithm [J]电子学报,2011,39(1):142-148.杨海蓉,张成,丁大为,韦穗.压缩传感理论与重构算法[J].电子学报,2011,39(1):142-148.
    [58]Yang Hairong, Fang Hong, Zhang Cheng, Wei Sui. Iterative Hard Thresholding Algorithm Based on Backtracking [J].Acta Automatica Sinica,2011,37(3):276-282杨海蓉,方红,张成,韦穗.基于回溯的迭代硬阈值算法[J].自动化学报,2011,37(3):276-282.
    [59]Fang Hong, Zhang Quanbing, Wei Sui. Image Reconstruction Based on Improved Backward Optimized Orthogonal Matching Pursuit Algorithm.. Journal of South China University of Technology,2008,36(8):23-27(in Chinese)方红,章权兵,韦穗,基于改进的后退型最优正交匹配追踪的图像重建方法.华南理工大学学报.2008,36(8):23-27.
    [60]Shi Guangming, Liu Danhua, Gao Dahua, Liu Zhe, Lin Jie, Wang Liangjun. Advance in Theory and Application of Compressed Sensing. Acta Sinica Electronica,2009, 37(5):1070-1081(in Chinese).石光明,刘丹化,高大化,刘哲,林杰,王良君.压缩传感理论及其研究发展,电子学报,2009,37(5):1070-1081).
    [61]W. Dai, O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory,2009,55(5):2230-2249.
    [62]A. Papoulis, Probability, Random Variables and Stochastic Processes,2nd ed. New York: McGraw-Hill,1984, ch.9.
    [63]J. W. Goodman, Statistical Optics. New York:Wiley,1985, ch.8.3.
    [1]Donoho D L. Compressed Sensing [J]. IEEE Transactions Information Theory,2006,52(4): 1289-1306.
    [2]E Candes, T. Tao, Decoding by linear programming [J], IEEE Transactions on Information Theory,2005,51(12):4203-4215,
    [3]Candes E, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions Information Theory, 2006,52(2):489-509.
    [4]E. Candes, T. Tao, Near optimal signal recovery from random projections and universal encoding strategies [J]. IEEE Transactions on Information Theory,2006,52(12):5406-5425.
    [5]Candes E J. Romberg J K. Tao T. "Stable signal recovery from incomplete and inaccurate measurements." Communications on Pure and Applied Mathematics 59(8).1207-1223 (2006).
    [6]Bajwa W U, Haupt J D, Raz G M, Wright S J, Nowak R D. Toeplitz-structured compressed sensing matrices[C]. Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing,2007:294-298
    [7]Rauhut H, Circulant and Toeplitz matrices in compressed sensing[C]. In Proc. SPARS'09, Saint Malo,2009.
    [8]Haupt J, Bajwa W U, Raz G, et al. Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation," IEEE Transactions on Information Theory. 2010,56(11):5862-5875.
    [9]DeVore R. Deterministic constructions of compressed sensing matrices[J]. Journal of Complexity 2007,8,23:918-925.
    [10]Calderbank R, Howard S, Jafarpour S. "Construction of a Large Class of Deterministic Sensing Matrices That Satisfy a Statistical Isometry Property," Selected Topics in Signal Processing, IEEE Journal of, vol.4, no.2, pp.358-374, April 2010
    [11]Wang Kai, Liu Yulin, Zhang Jianxin. RIP analysis for quasi-Toeplitz CS matrices.2010 International Conference on Future Information Technology and Management Engineering (FITME).2010, vol.2, no., pp.223-226,9-10.
    [12]Zhang Gesen, Jiao Shuhong, Xu Xiaoli;, "Compressed sensing and reconstruction with Semi-Hadamard matrices," Signal Processing Systems (ICSPS),2010 2nd International Conference on, vol.1, no., pp.V1-194-V1-197,5-7 July 2010
    [13]Yu Lei, Barbot, J P, Zheng Gang; Sun Hong., "Toeplitz-structured Chaotic Sensing Matrix for Compressive Sensing," Communication Systems Networks and Digital Signal Processing (CSNDSP),2010 7th International Symposium on, vol., no., pp.229-233,21-23 July 2010
    [14]He Zaixing, Ogawa T; Haseyama M. "The simplest measurement matrix for compressed sensing of natural images," Image Processing (ICIP),201017th IEEE International Conference on, vol., no., pp.4301-4304,26-29 Sept.2010
    [15]Li Xiaobo, Zhao Ruizhen, Hu Shaohai, "Blocked Polynomial Deterministic Matrix for Compressed Sensing," Wireless Communications Networking and Mobile Computing (WiCOM),2010 6th International Conference on, vol., no., pp.1-4,23-25 Sept.2010
    [16]方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27
    [17]R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted isometry property for random matrices. Const. Approx.,28(3):253-263,2008.
    [18]S. Dasgupta, A. Gupta, An Elementary Proof of the Johnson-Lindenstrauss Lemma [J], Tech Report Technical report 99-006, U.C. Berkeley,1999.
    [19]张成,杨海蓉,韦穗.基于随机间距稀疏Toeplitz测量矩阵的压缩传感.自动化学报[已录用].
    [20]张成,杨海蓉,韦穗.确定性随机间距稀疏循环测量矩阵压缩传感.电子科技大学学报[已录用].
    [21]A. Hajnal and E. Szemeredi, "Proof of a conjecture of P.Erdos." in Combinatorial Theory and its Application, P. Erdos, A. Renyi, and V. T. Sos, Eds., pp.601-623. North-Holland, Amsterdam,1970.
    [22]Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory,2009,55(5):2230-2249
    [23]A. Stern, B. Javidi. Random projections imaging with extended space-bandwidth product[J]. J. Display Technology.2007,3 (3):315-320
    [24]张成,杨海蓉,韦穗.确定性相位掩膜可压缩双透镜成像.光子学报2011,40(6):949-954.
    [25]张成,沈川,程鸿,杨海蓉,韦穗.随机间距稀疏三元Toeplitz矩阵相位掩模压缩成像[J].光学学报,2012,32(2):0211002.
    [26]张成,程鸿,沈川,韦穗,夏云.随机间距稀疏三元循环相位掩膜矩阵可压缩成像.电子与信息学报(已录用).
    [27]http://users.ece.gatech.edu/-justin/llmagic/
    [28]张成,杨海蓉,韦穗.托普利兹-循环块相位掩膜矩阵压缩成像.光子学报2011,40(9)1322-1327.
    [29]张成,杨海蓉,沈川,韦穗.循环-循环块相位掩膜矩阵压缩双透镜成像,光电子·激光,2012,23(1),174-179.
    [30]Zhang Cheng, Yang Hairong, Wei Sui. Compressive Double-Lens Imaging Using Circulant-Toeplitz-Block Phase Mask[J]. Acta Optica Sinica,2011,31(8):811001张成,杨海蓉,韦穗.循环托普利兹块相位掩模可压缩双透镜成像[J].光学学报,2011,31(8):811001.
    [1]M. A. T. Figueiredo, R. D. Nowak. and S. J. Wright, "Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems," IEEE J. Sel. Top. Sign. Proces.:Special Issue on Convex Optimization Methods for Signal Processing 1(4), pp.586-597,2007.
    [2]J. Bioucas-Dias and M. Figueiredo, A new TwIST:Two-step iterative shrinkage/ thresholding algorithms for image restoration, IEEE Transactions on Image Process.,16 (2007), pp.2992-3004.
    [3]Wright, S., Nowak, R. and Figueiredo, M., "Sparse reconstruction by separable approximation," IEEE Transactions on Signal Processing,57(7):2479-2493,2009.
    [4]Junfeng Yang, Yin Zhang. Alternating direction algorithms for L1-problems in compressive sensing, SIAM Journal on Scientific Computing,33,1-2,250-278,2011.
    [5]27. Tsaig Y, Donoho DL. Extensions of compressed sensing. Signal Processing 2006,86:533-548.
    [6]H. Andrews and B. Hunt. Digital Image Restoration, Prentice Hall, Englewood Cliffs, NJ, 1977.
    [7]M. Banham and A. Katsaggelos. "Spatially adaptive waveletbased multiscale image restoration," IEEE Tr. Image Proc., vol.5, pp.619-634,1996.
    [8]R. Neelamani, H. Choi, and R. Baraniuk. "ForWaRD:Fourier-wavelet regularized deconvolution for ill-conditioned systems." IEEE Tr. Signal Proc., vol.52, pp.418-433, 2004.
    [9]A. Jalobeanu, N. Kingsbury, and J. Zerubia."Image deconvolution using hidden Markov tree modeling of complex wavelet packets," in Proc. IEEE ICIP'01,2001.
    [10]S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R. Baraniuk, Analog-to-information conversion via random demodulation, in Proc. IEEE Dallas/CAS Workshop on Design, Applications, Integration, and Software, Richardson, TX, October 2006, pp.71-74.
    [11]E. Candes and J. Romberg, Sparsity and incoherence in compressive sampling, Inverse Problems,23 (2007), pp.969-986.
    [12]R. G. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, A simple proof of the restricted isometry property for random matrices, Constructive Approximation,28(2008), pp. 253-263.
    [13]E. Candes and T. Tao, Near-optimal signal recovery from random projections and universal encoding strategies, IEEE Transactions on Information Theory,52 (2006), pp.5406-5245.
    [14]D. Donoho, "Compressed sensing," IEEE Transactions on Inf. Theory 52(4).1289-1306 (2006).
    [15]R. Coifrnan, F. Geshwind. and Y. Meyer, Noiselets, Appl. Comp. Harmonic Analysis, 10(2001), pp.27-44.
    [16]B. Le, T. W. Rondeau, J. H. Reed, and C. W. Bostian, Analog-to-digital converters, IEEE Signal Proc. Mag.,22 (2005). pp.69-77.
    [17]R. H. Walden, Analog-to-digital converter survey and analysis, IEEE Journal of Select Areas in Communications,17 (1999), pp.539-550.
    [18]E. Candes, J. Romberg, and T. Tao, Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory,52 (2006), pp.489-509.
    [19]E. Candes, The restricted isometry property and its implications for compressed sensing, C. R. Acad. Sci. Paris, Ser. I,346 (2008), pp.589-592.
    [20]J. J. Fuchs, Recovery of exact sparse representations in the presence of bounded noise, IEEE Transactions on Information Theory,51 (2005), pp.3601-3608.
    [21]J. A. Tropp, J. N. Laska, M. F. Duarte, J. Romberg, and R. G. Baraniuk, Beyond Nyquist: efficient sampling of sparse bandlimited signals. Submitted to IEEE. Transactions on Information Theory, February 2009.
    [22]W. Hoeffding, Probability inequalities for sums of bounded random variables, J. American Stat.Assoc.,58(1963), pp.13-30.
    [23]M. Herman and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, vol.57, no.6, pp.2275-2284.2009.
    [24]E. Candes, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. on Pure and Applied Math.,59 (2006), pp.1207-1223.
    [25]M. Ledoux, The Concentration of Measure Phenomenon, American Mathematical Society, 2001.
    [26]J. Haupt, W. Bajwa, G. Raz, and R. Nowak, Toeplitz compressed sensing matrices with applications to sparse channel estimation, Submitted to IEEE Transactions on Information Theory, (2008).
    [27]J. Romberg, "Compressive sensing by random convolution," SIAM J. Imaging Sci.2(4), 1098-1128(2009).
    [28]W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, Toeplitz-structured compressed sensing matrices, in Proc. IEEE Stat. Sig. Proc. Workshop, Madison, WI, August 2007, pp.294-298.
    [29]J. A. Tropp, M. B. Wakin, M. F. Duarte, D. Baron, and R. G. Baraniuk, Random filters for compressive sampling and reconstruction, in Proc. IEEE Int. Conf. Acoust. Speech Sig. Proc, Toulouse, France, May 2006.
    [30]R. Baraniuk and P. Steeghs, Compressive radar imaging, in Proc. IEEE Radar Conference, Boston, MA, April 2007,pp.128-133.
    [31]S. R. J. Axelsson, Analysis of random step frequency radar and comparison with experiments. IEEE Transactions on Geosci. Remote Sens., 45 (2007). pp. 890-904.
    [32]S. R. J. Axelsson, Random noise radar/sodar with ultrawideband waveforms. IEEE Transactions on Geosci. Remote Sens., 45 (2007), pp. 1099-1114.
    [33]S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, second edition, 1999.
    [34]R. F. Marcia, Z. T. Harmany, and R. M. Willet, Compressive coded aperture imaging, in Proc. SPIE Conference on Computational Imaging VII, January 2009.
    [35]R. F. Marcia and R. M. Willet, Compressive coded aperture superresolution image reconstruction, in Proc. IEEE Int. Conf. Acoust. Speech Sig. Proc, April 2008, pp. 833-836.
    [36]D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using optical-domain comrpession,"' in Proc. SPIE Conference on Computational Imaging IV, San Jose, CA, January 2006.
    [37]M. Herman and T. Strohmer, "Compressed rensing radar," in Proc. IEEE Int'l Conf. Acoust. Speech Signal Process, Las Vegas, NV, pp. 2617 - 2620,2008.
    [38]S. Park, M. Park, and M. Gang, "Super-resolution image reconstruction: a technical overview," IEEE Signal Process. Mag. 20(3), 21-36 (2003).
    139] Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer-Verlag, 2003).
    [40]S. Farsiu, M. D. Robinson. M. Elad, and P. Milanfar, "Fast and robust multiframe super resolution," IEEE Transactions onlmage Process. 13(10), 1327-1344 (2004).
    [41]S. Prasad, and X. Luo, "Support-assisted optical superresolution of low-resolution image sequences: the one-dimensional problem, Opt. Express 17(25), 23213-23233 (2009).
    [42]A. Stern, Y. Porat, A. Ben-Dor, and N. S. Kopeika, "Enhanced-resolution image restoration from a sequence of low-frequency vibrated images by use of convex projections," Appl. Opt. 40(26), 4706-4715 (2001).
    [43]J. Garcia, Z. Zalevsky, and D. Fixler, "Synthetic aperture superresolution by speckle pattern projection,"' Opt.Express 13(16), 6073-6078 (2005).
    [44]A. Borkowski, Z. Zalevsky, and B. Javidi, "Geometrical superresolved imaging using nonperiodic spatial masking," J. Opt. Soc. Am. A 26(3), 589-601 (2009).
    [45]http://dsp.rice.edu/software/rice-wavelet-toolbox
    [1]E. J. Candes, and Tao, T. Decoding by linear programming. IEEE Transactions on Information Theory,15,4203-4215,2005.
    [2]E. Candes and J. Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math.,6(2):227-254,2006.
    [3]E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math.,59(8):1207-1223,2006.
    [4]E. J. Candes and J. Romberg. Sparsity and incoherence in compressive sampling. Inverse Problems,23,969-985,2006.
    [5]E. J. Candes and M. Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine,21-30, March 2008.
    [6]Donoho, D.L. (2006) Compressed sensing. IEEE Transactions on Information Theory,52, 1289-1306.
    [7]Natarajan, B.K. (1995) Sparse approximate solutions to linear systems. SIAM J. Comput., 24,227-234.
    [8]Tibshirani, R. (1996) Regression shrinkage and selection via the LASSO. J. R. Statist. Soc. Ser. B,58,267-288.
    [9]Tropp, J.A. (2006) Just relax:convex programming methods for identifying sparse signals in noise. IEEE Transactions on Information Theory,52,1030-1051.
    [10]Neifeld, M. and Ke, J. (2007) Optical architectures for compressive imaging. Appl. Opt.,46, 5293-5303.
    [11]M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, "Single-pixel imaging via compressive sampling," IEEE Signal Process. Mag. 25(2),83-91,2008.
    [12]W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, "A single-pixel terahertz imaging system based on compressed sensing,"Appl. Phys. Lett.93, 121105(2008).
    [13]M.E. Gehm, R. John, D.J. Brady, R.M. Willett, and T.J. Schulz, "Single-shot compressive spectral imaging with a dual-disperser architecture," Opt. Express 15 14013-14027 (2007).
    [14]D.J. Brady and M.E. Gehm, "Compressive imaging spectrometers using coded apertures," Proc. SPIE 6246 (Proceedings of 2006 SPIE Defense and Security Symposium).
    [15]Ashwin Wagadarikar, Daniel Marks, Kerkil Choi, Ryoichi Horisaki, and David Brady, "Imaging through turbulence using compressive coherence sensing," Optics Letters 35 (6). 838-840(2010)
    [16]Ashwin Wagadarikar, Nikos Pitsianis, Xiaobai Sun, and David Brady, "Video rate spectral imaging using a coded aperture snapshot spectral imager," Optics Express 17 (8), 6368-6388 (2009)
    [17]David Brady, Michael Gehm, Tim Schulz, Renu John, Rebecca Willett, and Ashwin Wagadarikar, "Optical Designs for Compressive Single Shot Spectral Imaging," at OSA Topical Meeting on Computational Optical Sensing and Imaging in Vancouver, Canada (2007)
    [18]Maggioni, M. et al. (2006) Hyperspectral microscopic analysis of normal, benign and carcinoma microarray tissue sections, in Proceedings of SPIE, Optical Biopsy VI, San Jose, CA, vol.6091.
    [19]Ashok, A., Baheti, P.K., and Neifeld, M.A. (2008) Compressive imaging system design using task-specific information. Appl. Opt.,47,4457-4471.
    [20]Marcia, R.F. and Willett, R.M. (2008) Compressive Coded Aperture Superresolution Image Reconstruction. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, Las Vegas, NV.
    [21]R. F. Marcia, Z. T. Harmany, and R. M. Willett, "Compressive coded aperture imaging," in Proceedings of the 2009 IS&T/SPIE Electronic Imaging:Computational Imaging VII, San Jose, CA (2009).
    [22]Stern, A. and Javidi, B. (2007) Random projections imaging with extended space-bandwidth product. IEEE/OSA J. Disp. Technol.,3,315-320.
    [23]A. Stern, Y. Rivenson, and B. Javidi, "Single-shot compressive imaging", Proceedings of SPIE Volume:6778.2007
    [24]A. Stern, and B. Javidi, "Optically Compressive imaging sensing using random aperture coding", Keynote at Enabling Photonics Technologies for Defense, Security, and Aerospace Applications IV, SPIE, Orlando, March 2008.
    [25]A. Stern, Y. Rivenson, and B. Javidi,"Single Exposure Optically Compressed Imaging and Visualization Using Random aperture", Journal of Physics:Conference Series:Seventh international Workshop on Information Optics 2008
    [26]W. Yin, S. P. Morgan, J. Yang, and Y. Zhang,"Practical compressive sensing with Toeplitz and circulant matrices," in Proceedings of Visual Communications and Image Processing (VCIP), SPIE, San Jose, CA (2010).
    [27]R. Fergus, A. Torralba, and W. T. Freeman, "Random lens imaging," Tech. Rep. MIT-CSAIL-TR-2006-058, MIT Computer Science and Artificial Intelligence Laboratory (2006).
    [28]R. Robucci, J. D. Gray, L. K. Chiu, J. Romberg. and P. Hasler,"Compressive sensing on a CMOS separable-transform image sensor,"Proc. IEEE 98(6),1089.1101 (2010).
    [29]V. Majidzadeh. L. Jacques. A. Schmid. P. Vandergheynst. and Y. Leblebici. "A (256*256) pixel 76.7mW CMOS imager/compressor based on real-time in-pixel compressive sensing,' in IEEE International Symposium on Circuits and Systems, Paris, France, pp.2956.2959 (2010).
    [30]Dicke, R.H. (1968) Scatter-hole cameras for X-rays and gamma-rays. Astrophys. J.,153, L101-L106.
    [31]J. G. Ables, "Fourier transform photography:a new method for X-ray astronomy," Proc. Astron. Soc. Aust.1, p.172,1968.
    [32]R. H. Dicke, "Scatter-hole cameras for X-rays and gamma-rays," Astrophys. J.153, pp. L101-L106,1968.
    [33]L. Mertz and N. O. Young, "Fresnel transformations of images," in Proc. Conf. Opt. Instrum. Tech., (London),1961.
    [34]E. Caroli, J. B. Stephen, G. D. Cocco, L. Natalucci, and A. Spizzichino, "Coded aperture imaging in X-and gammaray astronomy," Space Science Reviews 45, pp.349-403,1987.
    [35]G. Skinner, "Imaging with coded-aperture masks," Nucl. Instrum. Methods Phys. Res.221, pp.33-40, Mar.1984.
    [36]R. Accorsi, F. Gasparini, and R. C. Lanza, "A coded aperture for high-resolution nuclear medicine planar imaging with a conventional anger camera:experimental results," IEEE Transactions on Nucl. Sci.28, pp.2411-2417,2001.
    [37]G. R. Gindi, J. Arendt. H. H. Barrett, M. Y. Chiu, A. Ervin, C. L. Giles, M. A. Kujoory, E. L. Miller, and R. G. Simpson, "Imaging with rotating slit apertures and rotating collimators,' Med. Phys.9, pp.324-339,1982.
    [38]S. R. Meikle, R. R. Fulton, S. Eberl, M. Bahlbom, K. Wong, and M. J. Fulham, "An investigation of coded aperture imaging for small animal SPECT,"IEEE Transactions on Nucl. Sci.28, pp.816-821,2001.
    [39]Levin, A. et al. (2007) Image and Depth from a Conventional Camera with a Coded Aperture. Proceedings of International Conference on Computer Graphics and Interactive Techniques, San Diego, CA.
    [40]Sloane, N.J.A. and Harwit, M. (1976) Masks for Hadamard transform optics, and weighing designs. Appl. Opt.,15,107.
    [41]Ashok, A. and Neifeld, M.A. (2007) Pseudorandom phase masks for superresolution imaging from subpixel shifting. Appl. Opt.,46,2256-2268.
    [42]Gottesman, S.R. and Fenimore, E.E. (1989) New family of binary arrays for coded aperture imaging. Appl. Opt.,28,4344-4352.
    [43]Duarte, M. F., Davenport, M. A., Takhar. D., Laska. J. N., Sun, T., Kelly, K. F., and Baraniuk, R. G., "Single pixel imaging via compressive sampling." IEEE Signal Processing Magazine 25(2),83-91 (2008).
    [44]Bajwa W U, Haupt J D, Raz G M, et al. Toeplitz-structured compressed sensing matrices[C]. Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison. Wisconsin,2007,294-298.
    [45]H. Rauhut. Circulant and Toeplitz matrices in compressed sensing[C], Proceedings of the 2009 Workshop on Signal Processing with Adaptive Sparse Structured Representations, Saint-Malo (France).
    [46]Haupt J, Bajwa W U, RAZ G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory,2010, 56(11):5862-5875.
    [47]Florian Sebert, Leslie Ying, Yi Ming Zou. Toeplitz Block Matrices in Compressed Sensing. arXiv:0803.0755vl.
    [48]F. Sebert, L. Ying, and Y. Zou, "Toeplitz block matrices in compressed sensing and their applications in imaging," in Proc. ITAB, May 30-31,2008, pp.47-50.
    [49]J. Romberg. Compressive sensing by random convolution. SIAM Journal of Imaging Science,2,1098-1128,2009.
    [50]L. Jacques, P. Vandergheynst, A. Bibet, V. Majidzadeh, A. Schmid, Y. Leblebici. CMOS compressed imaging by Random Convolution. Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, vol., no., pp.1113-1116,19-24 April 2009.
    [51]Romberg, J., "Sensing by Random Convolution," IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,2007. CAMPSAP 2007.2nd, vol., no., pp.137-140,12-14 Dec.2007.
    [52]M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems," IEEE J. Sel. Top. Sign. Proces.:Special Issue on Convex Optimization Methods for Signal Processing 1(4), pp.586-597,2007.
    [53]Tibshirani, R.,"Regression shrinkage and selection via the lasso," J. Roy. Statist. Soc. Ser. B, 58, pp.267-288,1996.
    [54]Wright, S., Nowak, R. and Figueiredo, M.,'"Sparse reconstruction by separable approximation," IEEE Transactions on Signal Processing,57(7):2479-2493,2009.
    [55]Yin, W. et al., "Bregman iterative algorithms for 11-minimization with applications to compressed sensing," SIAM J. Imag. Sci.,1, pp.143-168,2008.
    [56]Tropp, J. A., "Greed is good:Algorithmic results for sparse approximation," IEEE Transactions on Information Theory,50, pp.2231-2242,2004.
    [57]Candes, E., Romberg, J., and Tao, T.,"Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory 52(2).489-509 (2006).
    [58]Candes. E. and Tao. T. "Near optimal signal recovery from random projections:Universal encoding strategies," IEEE Transactions on Information Theory,52(12):5406-5425.2006.
    [59]Haupt, J. and Nowak. R.. "Signal reconstruction from noisy random projections," IEEE Transactions on Information Theory 52(9),4036-4048 (2006).
    [60]Baraniuk, R., Davenport, M., DeVore. R., and Wakin. M., "A simple proof of the restricted isometry property for random matrices," Constructive Approximation,28(3):253-263,2008.
    [1]W. Jueptner and U. Schnars, Digital Holography, (New York, Springer-Verlag, Berlin Heidelberg,2005).
    [2]T. C. Poon, Digital holography and three-dimensional display, (New York; London: Springer,2006).
    [3]M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch,"Short-coherence photorefractive holography in multiplequantum-well devices using light-emitting diodes," Appl. Phys. Lett 75,363-365,1999.
    [4]M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherence light," Appl. Phys. B 70, 151-154,2000.
    [5]E. J. Candes, J. K. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Communications on Pure and Applied Mathematics 59, 1207-1223 (2006).
    [6]D. L. Donoho, "Compressed sensing," IEEE Transactions on Information Theory 52, 1289-1306(2006).
    [7]M. A. Neifeld and P. Shankar, "Feature-specific imaging," Applied Optics 42.3379-3389 (2003).
    [8]D. J. Brady, N. Pitsianis, X. Sun. and P. Potuluri. "Compressive sampling and signal inference," US patents 7283231,7432843.7463179,7616306.7463174. and 7427932, (2005).
    [9]X. Zhang, E. Y. Lam, and T.-C. Poon,"Reconstruction of sectional images in holography using inverse imaging," OPTICS EXPRESS 16,17215-17226(2008).
    [10]X. Zhang and E. Y. Lam, "Edge-preserving sectional image reconstruction in optical scanning holography," JOURNAL OF THE OPTICAL SOCIETY OF AMERICA AOPTICS IMAGE SCIENCE AND VISION 27,1630-1637 (2010).
    [11]D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, "Compressive holography," Opt. Express 17,13040-13049 (2009).
    [12]J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, "Video-rate compressive holographic microscopic tomography," Opt. Express 19,7289-7298 (2011).
    [13]C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, "Millimeter-wave compressive holography," Appl. Opt.49, E67-E82 (2010).
    [14]K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, "Compressive holography of diffuse objects," Appl. Opt.49, H1-H10 (2010).
    [15]L. Denis, D. Lorenz, E. Thivebaut, C. Fournier, and D. Trede, "Inline hologram reconstruction with sparsity constraints," Opt. Lett.34,3475-3477 (2009).
    [16]C. Fournier, L. Denis, and T. Fournel, "On the single point resolution of on-axis digital holography,"J. Opt. Soc. Am. A 27,1856-1862 (2010).
    [17]M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, "Compressed sensing with off-axis frequency-shifting holography," Opt. Lett.35,871-873 (2010).
    [18]M. Marim, E. Angelini, J.-C. Olivo-Marin, and M. Atlan, "Off-axis compressed holographic microscopy in low-light conditions," OPTICS LETTERS 36,79-81 (2011).
    [19]Y. Rivenson, A. Stern, and B. Javidi, "Compressive fresnel holography,"J. Display Technol.6,506-509(2010).
    [20]Y. Rivenson, A. Stern, and J. Rosen, "Compressive multiple view projection incoherent holography," Opt. Express 19,6109-6118 (2011).
    [21]Q. Xu, K. Shi, H. Li, K. Choi, R. Horisaki, D. Brady, D. Psaltis, and Z. Liu, "Inline holographic coherent anti-Stokes Raman microscopy,"OPTICS EXPRESS 18,8213-8219 (2010).
    [22]Z. Xu and E. Y. Lam. "Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging," JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION 27,1637-1646 (2010).
    [23]A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, "Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects," OPTICS EXPRESS 18, 10510-10523.(2010).
    [24]M. Suezen, A. Giannoula, and T. Durduran, "Compressed sensing in diffuse optical tomography," OPTICS EXPRESS 18,23676-23690 (2010).
    [25]M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, "Single-shot compressive spectral imaging with a dual-disperser architecture," Opt. Express 15(21). 14013-14027(2007).
    [26]A.Wagadarikar, R. John, R.Willett, and D. J. Brady, "Single disperser design for coded aperture snapshot spectral imaging,"'Appl. Opt.47(10), B44-B51 (2008).
    [27]D. Gabor, "A new microscopic principle," Nature 161,777-778 (1948).
    [28]E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc.Am.52,1123-1130(1962).
    [29]S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, "Lensfree holographic imaging for on-chip cytometry and diagnostics," Lab on a Chip 9(6),777-787 (2009).
    [30]M. E. Brezinski, Optical coherence tomography. (Amsterdam; Boston:Academic Press, 2006).
    [31]D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady,"Visible cone-beam tomography with a lensless interferometric camera," Science 284(5423),2164-2166 (1999).
    [32]J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, and J. Hecksher-Sorensen, R. Baldock, and D. Davidson, "Optical projection tomography as a tool for 3d microscopy and gene expression studies," Science 296(5567),541-545 (2002).
    [33]A. J. Devaney, "Nonuniqueness in the inverse scattering problem," Journal of Mathematical Physics 19(7),1526.1531 (1978).
    [34]A. J. Devaney,"Geophysical diffraction tomography," IEEE Transactions on Geoscience and Remote Sensing GE-22,3-13 (1984).
    [35]W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman,"Terahertz imaging with compressed sensing and phase retrieval," Opt. Lett.33(9),974-976 (2008).
    [36]I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, "Image reconstruction only by phase data in phase-shifting digital holography," Appl. Opt.45(5),975-983 (2006).
    [37]R. Baraniuk and P. Steeghs, "Compressive radar imaging," IEEE Radar Conference, pp. 128-133, April, (2007).
    [38]L. Li, W. Zhang, F. Li, "Compressive diffraction tomography for Weakly Scattering,' Submitted to IEEE Transactions on on Geosciences and Remote Sensing (2009).
    [39]E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am.52,1123-1130(1962).
    [40]E. J. Candes and M. B. Wakin, "An introduction to compressive sampling," IEEE SIGNAL PROCESSING MAGAZINE pp.21-30 (March 2008).
    [41]U. Schnars and W. Juptner, Digital Holography. Digital Hologram Recording, Numerical Reconstruction and Related Techniques (Springer. 2005).
    [42]J. W. Goodman. Introduction to Fourier optics. 3rd Ed. (Roberts and Company Publishers, New York, 2005).
    [43]U. Schnars and W. P. O. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
    [44]D. J. Brady. Optical Imaging and Spectroscopy (Wiley, 2009).
    [45]T. Kreis, M. Adams, and W. Juptner, "Methods of digital holography: A comparison," (1997), vol. 3098 of PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE), pp. 224-233.
    [46]D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
    [47]A. C. Kak and M. Slaney, Principle of Computerized Tomographic Imaging, (Society for Industrial and Applied Mathematics, 2001).
    [48]J. W. Goodman, Introduction to Fourier optics, 3rd Ed., (Roberts and Company Publishers, 2005).
    [49]R. E. Blahut, Theory of Remote Image Formation, (Cambridge University Press, 2004).
    [50]D. M. Paganin, Coherent X-ray Optics. (Oxford Science Publications, 2006).
    [51]D. J. Brady, Optical Imaging and Spectroscopy, (Wiley, 2009).
    [52]L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms;" Physica D60(l-4), 259.268 (1992).
    [53]J. M. Bioucas-Dias and M. A. T. Figueiredo. "A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration,",IEEE Transactions on Image Processing 16, 2992.3004 (2007).
    [54]J. W. Goodman, Statistical Optics (Wiley Inter-Science, 2000).
    [55]T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing (Prentice-Hall, 2000).
    [56]J. Tropp, "Just relax: Convex programming methods for identifying sparse signals in noise," IEEE TRANSACTIONS ON INFORMATION THEORY 52, 1030-1051 (2006).
    [57]S. Lim, K. Choi, J. Hahn, D. L. Marks, and D. J. Brady, "Image-based registration for synthetic aperture holography," Opt. Express 19, 11716-11731 (2011).
    [58]A. R. Thompson, J. M. Moran, and J. G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 2001).
    [59]V. Mic v o, J. Garcia, Z. Zalevsky, and B. Javidi, "Phase-shifting Gabor holography," Opt. Express 17, 1492-1494(2009).
    [60]T. Latychevskaia and H. W. Fink. "Solution to the Twin Image Problem in Holography, Phys. Rev. Lett. 98. 233901 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700