管道缺陷检测中超声信号稀疏解卷积及稀疏压缩方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底管道超声无损检测技术是目前国际无损检测领域的研究热点,开展管道检测相关技术、方法和手段的研究具有重大的理论和现实意义。论文依托国家863项目“海底管道内爬行器及其检测技术”及国家自然科学基金项目“超声信号稀疏分量压缩及其硬件实现”,针对海底管道的检测要求,采用稀疏分量分析的信息处理技术,深入研究管道缺陷检测及海量超声数据的压缩理论与实际问题,为研制具有我国自主知识产权的海洋输油管道超声智能检测系统提供技术基础。
     论文首先对稀疏分量分析相关理论进行了探讨和研究,重点研究了稀疏信号的精确重构条件与稀疏分解算法的收敛性。构造了鲁棒性更好的稀疏性度量函数,并给出与证明了所构造稀疏性度量函数的相关性质。为超声信号的稀疏分解与稀疏压缩提供了必要的预备知识。
     论文通过分析超声回波窄带性、稀疏性等性质与过完备原子库的结构提出了精简过完备原子库的思想。根据过完备原子库的结构,定义了内置相干累积量和外置相干累积量这两个概念,并通过对这两个概念性质的分析,提出并证明了原子库集合划分定理,在此基础上首次设计出针对超声信号稀疏分解的MP集合搜索快速算法,提出并证明了MP集合搜索定理,完善了MP集合搜索快速算法的理论。在此基础上进一步研究了MP集合搜索快速算法迭代终止条件。通过理论推导,设计出残差比阂值迭代终止条件,克服了传统迭代终止条件针对信噪比较低的超声信号稀疏分解无法选择迭代终止阂值的问题。MP集合搜索快速算法解决了现存稀疏分解技术计算速度十分缓慢的问题,极大地提高了超声信号稀疏分解的速度。
     针对管道近表面缺陷难以检测及缺陷检测精度不高等问题,论文从超声信号的卷积模型入手,根据超声反射序列的稀疏性,独立的设计出稀疏序列非线性变换函数,并在此基础上设计了非线性最小熵解卷积算法。同时,在研究稀疏分解方法的基础上,首次设计出加权迭代稀疏解卷积算法,并从理论的角度推导与论证了该算法的原理及其在应用上的灵活性。两种解卷积算法不仅能精确的计算出管道的壁厚,并且可以准确的检测出管道内部缺陷,特别是可以检测出传统方法无法检测的管道近表面缺陷。实验结果显示加权迭代稀疏解卷积算法还起到了良好的滤波作用,这种滤波方法与一般的滤波方法不同,它体现了超声信号本质的特征,反映了每个回波的固有特性。
     为了提高海量超声信号的压缩比,论文在研究超声信号的固有特征的基础上,构造了针对超声信号压缩的原子库。在此基础上首次设计出计算效率较高、实时性强的稀疏压缩算法。稀疏压缩算法与本文设计的匹配小波压缩算法相比具有压缩比高、均方根误差小、分解系数算术-几何平均比高及失真小的优点。在无明显失真的情况下,最大压缩比约为200:1。稀疏分解得到的系数还可以直接用来检测油气管道中是否存在缺陷,起到了对超声信号压缩与缺陷检测的两种功能,并且重构的信号有着极好的降噪作用。
Currently, offshore pipeline ultrasonic detection technology is a research hotspot in international non-destructive testing field. It has great theoretical and realistic sense to research the technologies, methods, and approaches for pipeline detection. Based on "863" of the high technology research and development program "Offshore pipeline detection device and inspection technology" and National Natural Science Foundation of China "Sparse compression for ultrasonic signal and its hardware implementation", according to the detection requirements of offshore pipeline, the sparse component analysis method have been used to study the theory and techniques of flaw detection and mass ultrasonic data compression deeply, such theory and technologies explored in the dissertation can provide key technologies for the data analysis system of the pipeline intelligent detection device.
     Firstly this dissertation studied the theory of sparse component analysis method, and the exact recovery conditions and astringency have been explored emphatically. Based on the properties of sparse component analysis method, a new sparsity measure function was constructed with better robustness, and the related properties of such function has been given and proved. Such function can provide the essential preliminary knowledge for ultrasonic signal sparse decomposition and sparse compression.
     Based on the properties of ultrasonic echo and the construction of the over-complete dictionary, a simplified over-complete dictionary has been provided. According to the structure of over-complete dictionary, the concept of inner cumulative coherence and outer cumulative coherence have been defined, after analysis the properties of this two concept, the over-complete dictionary aggregate divisional theorem was put forward and proved., and based on such theorem, a novel fast batch MP method has been developed which can attain the same effect as MP method, but the computational complexity with the proposed method is greatly reduced. At the same time, the residual ratio iteration termination condition for fast batch MP method has been developed, it can erase the disadvantage of the traditional termination condition which can not terminated in terms of an ultrasonic signal with an extremely low SNR. Such fast batch MP method is fast enough to be implemented in a real-time system.
     The received signal in ultrasonic pulse-echo inspection can be modelled as a convolution between an impulse response and the reflection sequence that is the impulse characteristic of the inspected object. In order to improve the time resolution so that the overlap between echoes from closely spaced reflectors becomes small, this dissertation presents a non-linear minimum entropy deconvolution algorithm that is robust to deconvolution ultrasonic signals. The robustness is obtained by including a non-linear function which can increase the sparsity of the iteration output and decrease the influence of the added noise. Meanwhile, based on the study of sparse decompose method, the dissertation presents an innovation weighted iteration sparse deconvolution algorithm and the theoretical investigation of the proposed algorithm principle, the algorithm is very flexible for its application. The two deconvolution algorithm can not only calculates the thickness of the pipeline wall accuracy, but also detect the flaw in pipeline with high precise, especially the near surface flaw which the traditional method can not. The experiment results show the weighted iteration sparse deconvolution algorithm can take a role of filtering that is not the same comparing to the normal filter method, it can show the intrinsic character of the ultrasonic signal, and reflect the intrinsic property of each echo wave.
     Based on the properties of ultrasonic echo, a simplified over-complete dictionary in which some atoms is ultrasonic wavelet has been provided, and the sparse compression algorithm was presented for ultrasonic signal compression. Because the ultrasonic wavelet is the approximation of the ultrasonic echo, the ultrasonic signal has a sparsest representation, and the sparsity of weight vectors attained by decomposing the ultrasonic signal using the sparse compression algorithm is very big. The energy of the sparse weight vectors is highly centralized, only a limited number of non-zero weight vectors can reconstruct the ultrasonic signal with a minimal loss in signal quality. Comparing with the matching wavelet compression algorithm, the sparse compression algorithm is capable of compressing the ultrasonic signal at higher compression rates、smaller root-mean-square error、minimal loss in signal quality and higher ratio of arithmetic mean to geometric mean. For compressing the ultrasonic signal, the sparse compression algorithm can achieve the biggest compression rates about 200:1 with virtually no loss in signal quality. Because the amount of the atoms in the over-complete dictionary is very small, it is fast enough to be implemented in a real-time data compression system. Because the ultrasonic wavelet is the approximation of the ultrasonic echo, the sparse compression algorithm can not only give better sparse representations and better compression results, but also give excellent performance for feature extraction and ultrasonic signal denoising.
引文
[1]Sony Baby, T. Balasubramanian, R.J. Pardikar, Ultrasonic sizing of embedded vertical cracks in ferritic steel welds, Theoretical and Applied Fracture Mechanics, Vol.40,2003, pp.145-151
    [2]Gregorio Andria, Filippo Attivissimo, Nicola Giaquinto, Digital signal processing techniques for accurate ultrasonic sensor measurement, Measurement, Vol.30,2001, pp.105-114
    [3]应崇福主编.超声学.北京:科学出版社,1990
    [4]李家伟,陈积懋主编.无损检测手册.北京:机械业出版社,2002
    [5]美国无损检测学会编,《美国无损检测手册》译审委员会译.美国无损检测手册·超声卷(上册).上海:世界图书出版公司,1996
    [6]金长善.超声工程.哈尔滨:哈尔滨工业大学出版社,1989
    [7][英]J.西拉特,陈积懋,余南廷译.超声检测新技术.北京:科学出版社,1991
    [8]蒋危平,王务同.超声探伤仪发展简史.无损检测,1997,19(1):24-25
    [9]蒋危平.超声波探伤仪及数字化超声波探伤仪.无损检测,1997,19(2):55-59
    [10]胡建恺,张谦琳.超声检测原理和方法.合肥:中国科学技术大学出版社,1993
    [11]Abbate A, Frankel J, Das P. Wavelet transform signal processing for dispersion analysis of ultrasonic signals, IEEE Ultrasonics Symposium [J].1995,1: 751-755.
    [12]Kachanov V K, Kartashev V G, Popko V P. Application of signal processing methods to ultrasonic non-destructive testing of articles with high structural noise [J], Nondestructive Testing and Evaluation.2001,17(1):15-26.
    [13]Ghouti L, Chen C H. Deconvolution of ultrasonic nondestructive evaluation signals using higher-order statistics [J], ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings,1999,3: 1457-1468.
    [14]Bettayeb F, Rachedi T, Benbartaoui H. An improved automated ultrasonic NDE system by wavelet and neuron networks, Ultrasonics.2004,42:853-858.
    [25]Honarvar F, Sheikhzadeh H, Moles M, etc, Improving the time-resolution and signal-to-noise ratio of ultrasonic NDE signals [J], Ultrasonics.2004,41(9): 755-766.
    [16]Kim J, Udpa L, Udpa S. Multi-stage adaptive noise cancellation for ultrasonic NDE [J], NDT and E International.2001,34(5):319-331.
    [17]Izquierdo M A G, Hernandez M G, Graullera O, etc. Time-frequency wiener filtering for structural noise reduction[J], Ultrasonics.2002,40(1-8):259-270.
    [18]Rodriguez-Hernandez M A. Ultrasonic Non-Destructive evaluation with spatial combination of Wigner-Ville transforms [J], NDT and E International.2003, 36(6):441-453.
    [19]Zhang G, Zhang S, Wang Y. Application of adaptive time-frequency decomposition in ultrasonic NDE of highly-scattering materials[J], Ultrasonics. 2000,38(10):961-972.
    [20]Michalodimitrakis N, Laopoulos T. On the use of wavelet transform in ultrasonic measurement systems, Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference [J],2001,1:589-594.
    [21]Drai R, Khelil M, Benchaala A. Time frequency and wavelet transform applied to selected problems in ultrasonics nde[J], NDT and E International.2002, 35(8):567-576.
    [22]San Emeterio J L, Lazaro J C, Ramos A, etc. Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets [J], Ultrasonics, 2002,40(1-8):263-273.
    [23]Shi Y, Chen J. Wavelet analysis of ultrasonic a-scan signal of solid-state welded joints [J], China Welding (English Edition).2000,9(1):20-32.
    [24]Yang W-X, Hull J B, Seymour M D, A contribution to the applicability of complex wavelet analysis of ultrasonic signals [J], NDT and E International. 2004,37(6):497-509.
    [25]Zhang G M, Hou C G, Wang Y W, etc, Optimal frequency-to-bandwidth ratio of wavelet in ultrasonic non-destructive evaluation [J], Ultrasonics.2001,39(1): 13-24.
    [26]Legendre S, Goyette J, Massicotte D. Ultrasonic NDE of composite material structures using wavelet coefficients, NDT and E International [J],2001,34: 31-37.
    [27]Bettayeb F, Rachedi T, Benbartaoui H. An improved automated ultrasonic NDE system by wavelet and neuron networks, Ultrasonics [J].2004,42:853-858.
    [28]Honarvar F, Sheikhzadeh H, Moles M, etc, Improving the time-resolution and signal-to-noise ratio of ultrasonic NDE signals. Ultrasonics [J],2004,41: 755-763.
    [29]Izquierdo M A G, Hernandez M G, Graullera O, etc, Time-frequency Wiener filtering for structural noise reduction [J], Ultrasonics,2002,40:259-261.
    [30]Izquierdo M A G, Hernandez M G., Anaya J J, etc, Speckle reduction by energy time and frequency filtering. Ultrasonics,2004,42:843-846.
    [31]Drai R, Benammar A, Benchaala A. Signal processing for the detection of multiple imperfection echoes drowned in the structural noise [J]. Ultrasonics, 2004,42:831-835.
    [32]Vicen R, Gil R, Jarabo P, etc, Non-linear filtering of ultrasonic signals using neural networks [J], Ultrasonics,2004,42:355-360.
    [33]Michailovich. O, Tannenbaum. A, Blind deconvolution of medical ultrasound images:A parametric inverse filtering approach [J], IEEE transactions on image processing,2007,16(12):3005-3019.
    [34]Mu. ZP, Plemmons. RJ, Santago. P, Iterative ultrasonic signal and image deconvolution for estimation of the complex medium response [J], International journal of imaging systems and technology,2005,15(6): 266-277.
    [35]Kim. YH, Song. SJ, Kim. JY, A new technique for the identification of ultrasonic flaw signals using deconvolution [J], Ultrasonics,2004,41(10): 799-804.
    [36]Lingvall. F, A method of improving overall resolution in ultrasonic array imaging using spatio-temporal deconvolution [J], Ultrasonics,2004,42(1): 961-968.
    [37]E. Hundt, E.A. Trautenberg, Digital processing of ultrasonic data by deconvolution [J], IEEE Transactions on sonics and ultrasonics,1980,27(5): 249-252.
    [38]Izquierdo, MAG; Anaya, JJ; Martinez, O, et al, Multi-pattern adaptive inverse filter for real-time deconvolution of ultrasonic signals in scattering media[J], Sensors and actuators a-physical,1999,76(3):26-31.
    [39]Andrieu. C, Barat. E, Doucet. A, Bayesian deconvolution of noisy filtered point processes [J], IEEE Transactions on signal processing,2001,49(1):134-146.
    [40]R. A. Wiggins, Minimum entropy deconvolution, Geophys. Exploration,1978,16, 21-35.
    [41]Claerbout J F, Fundamentals of Geophysical Data Processing—WITH A PPL ICAT ION TO PETROL EUM PROSPECT IN G[M]. NewYork:Blackwell Scientific Publications,1985.
    [42]Robinson E A, T reitel SI Geophysical signal analysis[M]1 p rentice2Hall, Inc. 1980.
    [43]刘喜武,刘洪,实现稀疏反褶积的预条件共轭梯度法,物探化探计算技术,2003,18(3):215-219.
    [44]S. Mallat, Z.Zhang, Matching pursuits with time-frequency dictionaries [J], IEEE Transanctions on Signal Processing,1993,41 (12):3397-3415.
    [45]Qian, Shie, Chen, Dapang. Signal representation using adaptive normalized Gaussian functions [J], Signal Processing,1994,36(1):1-11.
    [46]Huber, P. J. Projection pursuit [J], Ann. Stat,13(2):435-475.
    [47]Chen S, Doncho DL, Saunders M. Atomic Decomposition by Basis Pursuit SIAM J.Sci Camp,1999,20 (1),33-61.
    [48]Daubechies, I. Time-frequency location operators:a geometric phase space approach [J]. IEEE Transanctions on Information Theory,1988,34(7): 645-612.
    [49]Coifman R, Wickerhauser M, Entropy-based algorithms for best-basis selection, IEEE Trans Inform. Theory,1992,38,605-612.
    [50]D. L. Donoho and X. Huo, Uncertainty principles and ideal atomic decomposition [J]. IEEE Transanctions on Information Theory. Theory,2001, 47,2845-2862.
    [51]D.L.Donoho, Wedgelets:nearly-minimax estimation of edges. Ann. Statist, 1999,27:959-897.
    [52]D.L.Donoho, Sparse Components of Images and Atomic Decompositions.1998. Available online at:http:llwww.stat.stanford.edWdoncho/Reparts.
    [53]Huo XM, Sparse Image Representation via Combined Transforms. PILO Paper of Stanford unite 1999.
    [54]B.D.Rao, Aalysis and extensions of the FOCUSS algorithm, In Asilomar,1996.
    [55]Olshausen B, Field D, Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J], Nature,1996,381:607-609.
    [56]TaoGan, Yanmin He, Weile Zhu, Fast M-term pursuit for sparse image representation [J], IEEE Signal Processing Letters,2008,15:16-19.
    [57]Wang Chun-Guang, Liu Jin-Jiang, Sun Ji-Xiang, The compression algorithm for electrocardiogram based on sparse decomposition [J], Chinese Journal of Biomedical Engineering,2008,27(1):13-17.
    [58]Akujuobi, C.M.; Odejide,O.O.; Annamalai, A., et al. Sparseness measures of signals for compressive sampling, IEEE International Symposium on Signal Processing and Information Technology,2007,1042-1047.
    [59]Stern, A.; Javidi, B. Random projections imaging with extended space-bandwidth product [J], Journal of Display Technology,2007, 3(3):315-320.
    [60]Velisavljevic, V; Beferull-Lozano, B; Vetterli, M Space-frequency quantization for image compression with directionlets [J], IEEE Transactions on image processing,2007,16(7):1761-1773.
    [61]Murray, JF; Kreutz-Delgado, K, Learning sparse overcomplete codes for images [J], Journal of vlsi signal processing systems for signal image and video technology,2007,46(1):1-13.
    [62]Zhang Yue-fei; Jiang Yu-ting; Wang Jian-ying, et al, Image compression based on sparse decomposition[J], Systems Engineering and Electronics,2006, 28(4):513-537.
    [63]Bruni, V.; Piccoli, B.; Vitulano, D, Time-scale dependencies for image compression [J], Journal of Multimedia,2006,1(1):12-14.
    [64]Vandergheynst, P.; Peotta, L.; Granai, L, Image compression using an edge adapted redundant dictionary and wavelets [J], Signal Processing,2006,86(3): 444-456.
    [65]Le Pennec, E; Mallat, S, Bandelet image approximation and compression [J], Multiscale modeling & simulation,2005,4(3):992-1039
    [66]Moureaux, JM; Guillemot, L, Data hiding in the context of lossy compression:a combined approach [J], Journal of electronic imaging,2005,14(3), paper NO.:033017.
    [67]Monaci, G.; Jost, P.; Vandergheynst, P, Image compression with learnt tree-structured dictionaries [J], Conference Information:2004 IEEE 6th Workshop on Multimedia Signal Processing,2004,35-38.
    [68]Ribeiro, MV; Romano, JMT; Duque, CA, An improved method for signal processing and compression in power quality evaluation [J], IEEE Transactions on power delivery,2004,19(2):464-471.
    [69]Dezhong Yao; Peng Xu, A novel method based on realistic head model for EEG denoising [J], Computer Methods and Programs in Biomedicine,2006,83(2): 104-110.
    [70]Donoho, David L, Elad, Michael; Temlyakov, Vladimir N, Stable recovery of sparse overcomplete representations in the presence of noise [J], IEEE Transactions on Information Theory,2006,52(1):16-18.
    [71]G. Deng, DBH Tay, S.Marusic, A signal denoising algorithm based on overcomplete wavelet representations and Gaussian models [J], Signal processing,2007,87(5):866-876.
    [72]Fletcher, AK; Rangan, S; Goyal, VK, Denoising by sparse approximation:Error bounds based on rate-distortion theory [J], Eurasip journal on applied signal processing,2006, Article Number:26318.
    [73]Fevotte, C; Torresani, B; Daudet, L, Sparse linear regression with structured priors and application to denoising of musical audio [J], IEEE Transactions on audio speech and language processing,2008,16:174-185.
    [74]Federico, A; Kaufmann, GH, Denoising in digital speckle pattern interferometry using wave atoms [J],2007, Optics letters,2007,32(10):1232-1234.
    [75]Uzunov, Vladislav; Egiazarian, Karen; Astola, Jaakko, Face detection by optimal atomic decomposition [J], Mathematical Methods in Pattern and Image Analysis,2005,5916:1-12.
    [76]Karabulut, GZ; Moura, L.; Panario, D.; Yongacoglu, A., Integrating flexible tree searches to orthogonal matching pursuit algorithm [J], IEE Proceedings:Vision, Image and Signal Processing,2006,153(5):538-548.
    [77]Hromadka, T; DeWeese, MR; Zador, AM, Sparse representation of sounds in the unanesthetized auditory cortex [J], PLOS BIOLOGY,2008,6(1):124-137.
    [78]Cathier, Pascal, Iconic feature registration with sparse wavelet coefficients [J], Med Image Comput Comput Assist Interv,2006,9(2):694-701.
    [79]Pique-Regi, R; Monso-Varona, J; Ortega, A, et al, Sparse representation and Bayesian detection of genome copy number alterations from microarray data [J], Bioinformatics,2008,24(3):309-318.
    [80]Bao, Lijun; Zhu, Yuemin; Liu, Wanyu, et al, Analysis of cardiac diffusion tensor magnetic resonance images using sparse representation [J], Conf Proc IEEE Eng Med Biol Soc,2007,4516-4519.
    [81]Xu, P; Yao, D, Development and evaluation of the sparse decomposition method with mixed over-complete dictionary for evoked potential estimation [J], Computers in biology and medicine,2007,37:1731-1740.
    [82]Sun Meng; Wang Zheng-ming, Overcomplete and sparse representation of two kinds of signals with mixed features, Acta Electronica Sinica,2007, 1327-1332.
    [83]Skretting, K.; Husoy, J.H, Texture classification using sparse frame-based representations, EURASIP Journal on Applied Signal Processing,2006, 2006(7):9-15.
    [84]Wang, JY; Chen, L; Yin, ZK, Array signal MP decomposition and its preliminary applications to DOA estimation, Intelligent control and automation, 2006,344:54-59.
    [85]Bofill P, Zibulevsky M, Underdetermined blind source separation using sparse representations, Signal Processing,2001,81:2353-2362.
    [86]Dssadtchi A, Kadambe S, Direr-complete blind source separation by applying sparse decomposition and information theoretic based probabilistic approach, Acoustics, speech,and signal processing, IEEE international conference on, 2001,5:2801-2804.
    [87]Zibulevsky M, Pearlmutter B.A, Blind Source Separation by Sparse Decomposition in a Signal Dictionary, Neural Computation,2001,13: 863-882.
    [88]Fu Ting, Cheng Huafu, Yao Dezhong, Noise Reduction by a New Iterative Weighted SparseDecomposition Algorithm, ICCCAS & WeSino ExPo'02,2002, 2:909-913.
    [89]Bronstein M, Bronstein AM, Zibulevsky M, Blind deconvolution of images using optimal sparse representations, IEEE transactions on image processing, 2005,14(6):726-736.
    [90]Yang, ZY; Zhou, GX; Wu, ZZ, et al, New method for signal encryption using blind source separation based on subband decomposition, Progress in natural science,2008,18(6):751-755.
    [91]Li, YQ; Cichocki, A; Amari, S, et al, Analysis of source sparsity and recoverability for SCA based blind source separation, Independent component analysis and blind signal separation, proceedings,2006,3889:831-837.
    [92]He, ZS; Xie, SL; Fu, YL, Sparse representation and blind source separation of ill-posed mixtures, Science in china series f-information sciences,2006,49(5): 639-652.
    [93]Guang-Ming Zhang; Harvey, D.M.; Braden, D.R, Effect of sparse basis selection on ultrasonic signal representation, Ultrasonics,2006,45(4):82-91.
    [94]Guang-Ming Zhang; Harvey, D.M.; Braden, D.R, Adaptive sparse representations of ultrasonic signals for acoustic microimaging, Journal of the Acoustical Society of America,2006,120(2):862-869.
    [95]Guang-Ming Zhang; Harvey, D.M.; Braden, D.R, Advanced acoustic microimaging using sparse signal representation for the evaluation of microelectronic packages, IEEE Transactions on Advanced Packaging,2006, 29(2):271-83
    [96]Guang-Ming Zhang; Harvey, D.M.; Braden, D.R, An improved acoustic microimaging technique with learning overcomplete representation, Journal of the Acoustical Society of America,2005,118(6):3706-3720.
    [97]Michailovich, O; Adam, D, A high-resolution technique for ultrasound harmonic imaging using sparse representations in Gabor frames, IEEE Transactions on medical imaging,2002,21(12):1490-1503.
    [98]Ruiz-Reyes, N; Vera-Candeas, P; Curpian-Alonso, J, et al, Matching pursuit-based approach for ultrasonic flaw detection, Signal processing,2007, 87(5):1172-1172.
    [99]Ruiz-Reyes, N; Vera-Candeas, P; Curpian-Alonso, J, et al, High-resolution pursuit for detecting flaw echoes close to the material surface in ultrasonic NDT [J], NDT & E International,2006,39(6):487-492.
    [100]Ruiz-Reyes, N; Vera-Candeas, P; Curpian-Alonso, J, et al, New matching pursuit-based algorithm for SNR improvement in ultrasonic NDT, NDT & E International,2005,38(6):453-458.
    [101]Jedrzejczak, WW; Blinowska, KJ; Konopka, W, et al, Identification of otoacoustic emissions components by means of adaptive approximations, Journal of the Acoustical Society of America,2004,115(5):2148-2158.
    [102]Davis G, Mallat S, Avellaneda M, Adaptive greedy approximation, Constr Approx,1997,13(1):57-98
    [103]张春梅,尹忠科,肖明,基于冗余字典的信号超完备表示与稀疏分解.科学通报,2006,51(6),628-633.
    [104]杜小勇,稀疏成份分析及在雷达成像处理中的应用.国防科学技术大学博士学位论文,2006,16-17
    [105]Donoho DL, Elad M, On the stability of the basis pursuit in the presence of noise, Signal Processing,2006,86:511-53.
    [106]Donoho DL, Elad M. Optimally sparse in general (non-orthogonal) dictionaries via l1 minimization, Proc.Natl.Acad.Sci.,2002.100:2197-2202.
    [107]徐鹏,信号的稀疏分解及其在脑电信号处理中的应用研究.电子科技大学博士学位论文,2006.
    [108]D. Bertsekas, Non-Linear Programming,2nd ed. Belmont,1995, MA:Athena Scientific.
    [109]A. Shrijver, Theory of Linear and Integer Programming, John Wiley,1998.
    [110]Friedman J H, Stuetzle W. Projection pursuit regression. J Am Stat Assoc, 1981,76(376):817-823.
    [111]Temlyakov V, Weak greedy algorithms. Adv Comput Math,2000,12(3): 213-227.
    [112]C.F.Cotter, et al, Forward sequential algorithm for best basis selection. PIEE, Vision, Image and Signal Processing,1999,146(5),235-244.
    [113]Ventura, Rosa M, Vandergheynst, Pierre, Frossard, Pascal, Evolutionary multiresolution matching pursuit and its relations with the human visual system. rosa.figueras@epfl.ch.
    [114]Adler, R, Rao, B. D, Kreutx-Delgado, K. Comparison of basis selection methods, In the 30th Asilomar Conference on Signals, Systems and Computers. 1996.
    [115]Natarajan, B, K. Sparse approximate solutions to linear systems [J].SUM Journal on Computing,1995,24(2),227-34.
    [116]S. Singhal, Atal, B. S, Amplitude optimization and pitch prediction in multi-pulse coders [J], IEEE Transactions on Audio, Speech and Signal Processing,1989,37(3),317-327.
    [117]Cotter, S. F.,Kreutz-elgado, K.,Rao, B. D. Backward sequential elimination for sparse vector subset selection.Signal Processing,2001,81(9),1849-1864.
    [118]Cotter, S. F.,Kreutz-Delgado, K., Rao, B.D, Efficient backward elimination algorithm for sparse signal representation using overconplete dictionaries, IEEE Transactions on Signal Processing Letters,2002,9(5),145-147.
    [119]Mao, K. Z, Fast orthogonal forward selection algorithm for feature subset selection, IEEE Transactions on Neural Networks,2002,13(5),1218-1224.
    [120]Mao, K. Z. Feature subset selection for support vector machines through discriminative function pruning analysis, IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2003,1-8.
    [121]Mao, K. Z. Orthogonal forward selection and backward elimination algorithms for feature subset selection [J].IEEE Trans. on Systems, and Cybernetics-Part B:Cyhernetics,2003,1-6.
    [122]Gorodnistsky, I. F., Rao, B. D. Sparse Signal Reconstruction from Data Using FOCUS S:a Re-weighted Minimum Norm Algorithm. IEEE Transactions on Signal Processing,1997,45(3),600-616.
    [123]Gorodnitsky, I., George, J, S., Rao, B.D. Neuromagnetic source imaging with FUCUSS:a recursive weighted minimum norm algorithm, J. Electroenceph. Clinical Neuronhrrsiol,1995,95(4),231-251.
    [124]I.Gorodnitsky, A novel class of recursively constrained algorithms for localized energy solutions:theory and application to magnetoence phalography and signal processing [D]. San Diego, La Jolla:Univ. California 1995.
    [125]Cabrera, S. D., Parks, T. W. Extrapolation and Spectral Estimation with Iterative Weighted Norm Modification, IEEE Transactions on Signal Processing,1991,39(4),842-851.
    [126]Rao,B.D, Kreutz-Delgado, K, An affine scaling methodology for best basis selection [J]. IEEE Transactions on Signal Processing,1999,47(1),187-199.
    [127]Rao,B.D., Engan, K.,F Cotter, S Subset selection in noise based on diversity measure minimization, IEEE Transactions on Signal Processing,2003,51(3), 760-770.
    [128]Kreutz-Delgado, K, Rao,B.D. A general approach to sparse basis selection: majorization, concavity, and affine scaling, UCSD-CIE-97-7-1,1997.
    [129]I.F. Gorodnitsky. A Recursive weighted minimum norm algorithm:Analysis and applications. Proceedings-ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing,1993,3(111),456-459.
    [130]杨福生,洪波.独立分量分析的原理与应用.清华大学出版社,2006.
    [131]I.F. Gorodnitsky, et al. Sparse signal reconstruction from limited data using FOCUS S:A Re-weighted minimum norm algorithm, IEEE Transactions on signal processing,1997,45(3),600-616.
    [132]M. Elad and A. M. Bruckstein, A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Transactions on Information Theory, 2002,48,2558-2567.
    [133]D.L.Donoho, M. Elad, Maximal sparsity representation via minimization, Proc. Natl. Acad. Sci,2003,100:197-2202.
    [134]R. Gribonval and M. Nielsen, Sparse representations in unions of bases. IEEE Transactions on Information Theory,2003,49,3320-3325.
    [135]A. C. Gilbert, M. Muthukrishnan, M. J. Strauss, Approximation of functions over redundant dictionaries using coherence. in Proc.14th Annu. ACM-SIAM Symp. Discrete Algorithms, Baltimore, MD,2003,243-252.
    [136]E. Kreyszig, Introductory Functional Analysis with Applications. New York: Wiley,1989.
    [137]Tropp J. Greed is good:Algorithmic results for sparse approximation. IEEE Transactions on Information Theory,2004,50(10):2231-2242.
    [138]L. K. Jones, On a conjecture of Huber concerning the convergence of PP-regression, Ann. Statist.,1987,15,880-882.
    [139]R. A. DeVore and V. N. Temlyakov, Some remarks on greedy algorithms, Adv. Comput. Math.,1996,5(3),173-187.
    [140]L. Villemoes, Nonlinear approximation with walsh atoms, in Proc. Surface Fitting and Multiresolution Methods Chamonix 1996, A. LeMehaute, C. Rabut, and L. L. Schumaker, Eds. Nashville, TN:Vanderbilt Univ. Press, 1997,329-336.
    [141]V. N. Temlyakov, Greedy algorithms and m-term approximation with regard to redundant dictionaries, J. Approx. Theory,1999,98:117-145.
    [142]Gribonval R and Vandergheynst P, On the exponential convergence of matching pursuits in quasi-incoherent dictionaries. IEEE Transactions on Inform.Theory,2006,52(1):255-261.
    [143]Kreutz Delgado, Rao K, Measures and algorithms for best basis selection in Proc.ICASSP,1998,3,1881-1884.
    [144]T. Olofsson and T. Stepinski, Minimum Entropy Deconvolution of Attenuated Pulse-echo Signals. J. Acoust. Society of America,2001,109 (6):2831-2839.
    [145]T. Olofsson and and T. Stepinski, Maximum a posteriori Deconvolution of Ultrasonic Signals using Multiple Transducers, J. Acoust Society of America, 2000,107(6):3276-88.
    [146]郭建中,林书玉,超声检测中维纳逆滤波解卷积方法的改进研究,应用声学,2005,2:97-102.
    [147]R. Demirli and J. Saniie, Parameter estimation of multiple interfering echoes using the SAGE algorithm, in Proc.IEEE Ultrason.Symp.1998,661-664.
    [148]R. Demirli and J. Saniie, Model-based estimation of ultrasonic echoes part II: Nondestructive evaluation applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2001,48(3):803-811.
    [149]Arthur P L, Philipos C L, Voiced/unvoiced speech discrimination in noise using gabor atomic decomposition, IEEE ICASSP, Hang Kong,2003, 820-828.
    [150]王建英,尹忠科,张春梅,信号与图像的稀疏分解及初步应用,西南交通大学出版社,2006,72-73.
    [151]A.T. Umberto Morbiducci, Mauro Grigioni, Genetic algorithms for parameter estimation in mathematical modeling of glucose metabolism, Computers in Biology and Medicine,2005,35:862-874.
    [152]Demirli, R., Saniie, J., Model-based estimation of ultrasonic echoes. Part Ⅰ: Analysis and algorithms, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2001,48(3):787-802
    [153]刘利雄,贾云得,廖斌,张敏.一种改进的最佳时频原子搜索策略.中国图像图形学报,2004,9(7):873-877.
    [154]张文耀,基于匹配跟踪的低位率语音编码研究,博士学位论文,北京:中国科学院研究生院(软件研究所),2002
    [155]Mallat S, Zhang Z. Matching Pursuits with lime-Frequency Dictionaries, IEEE Trans. Signal Processing,1993,41:3397-3415.
    [156]廖振鹏,工程波动理论导论,科学出版社,2002,39-40.
    [157]A. T. Walden, Non-Gaussian reflectivity, entropy and deconvolution, Geophys, 1985,50(12):2862-2888.
    [158]R. A. Wiggins, Minimum entropy deconvolution, Geophys. Exploration,1978, 16:21-35.
    [159]王宏禹,信号处理相关理论综合与统一法,国防工业出版社,2005,155-161.
    [160]吴乐南,数据压缩(第二版),电子工业出版社,2005,116-118.
    [161]P. Goupillaud, A. Grossmann, and J. Morlet, Cycle-octave and related transforms in seismic signal analysis, Amer. Geoexploration,1984,23, 85-102.
    [162]M. A. Malik, Unified time-frequency analysis of ultrasonic signals, Ph.D. dissertation, Illinois Institute of Technology, Chicago, IL, July 1995.
    [163]A. Abbate, J. Koay, J. Frankel, S. C. Schroeder, and P. Das, Signal detection and noise suppression using a wavelet transform signal processor:Application to ultrasonic flaw detection, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,1997,44:14-26.
    [164]G. Cardoso and J. Saniie, Optimal wavelet estimation for data compression and noise suppression of ultrasonic NDE signals, in Proc. IEEE Ultrason. Symp, Oct.2001,675-678.
    [165]G. C. a. J. Saniie, Data compression and noise suppression of ultrasonic NDE signals using wavelets, in Proc. IEEE Ultrason. Sym.,2003,250-253.
    [166]G. Cardoso, J. Sanlle, Ultrasoni data ompression via parameter estimation, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2005,52(2):313-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700