盲信号分离算法分析与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盲信号分离是信号处理领域非常重要的研究课题,在无线通讯、语音识别、信号加密、特征提取、信号抗干扰、遥感图像解译以及生物医学信号处理等领域具有广泛的应用前景,因而受到了越来越多学者的关注。尽管盲分离领域的发展很快,不过仍然存在如下问题:怎样分离相关源信号?如何处理大规模或者实时数据集?怎样处理欠定盲分离问题,特别是源信号数目未知的情况下怎样估计源的数目并分离源信号?如何使盲分离技术走向实际应用领域等等。本文从如下几方面继续探讨了盲分离问题:
     首先,系统研究了基于非负矩阵分解(nonnegative matrix factorization,NMF)的盲分离方法。根据观测信号所体现出来的几何特征,在经典的NMF中添加了关于混叠矩阵体积的惩罚项。进而探讨了源信号的可分性条件,并分析了该条件与源信号稀疏特征之间的关系。同时,通过采用基于自然梯度的优化算法,使得传统的交替最小二乘乘法更新规则仍然适用于求解基于体积约束的NMF模型。该约束NMF方法特别适合处理相关信号的盲分离,同时由于采用了体积约束,不仅增强了基于NMF的盲分离方法的可辨识性,而且降低了对源信号的稀疏性要求。
     其次,对大规模数据集或者实时数据集,论文介绍了增量或在线盲分离算法,特别推导了基于增量非负矩阵分解的在线盲分离方法。通过采用充分使用每个样本的“平均遗忘”学习手段,该方法既保障了学习的统计效率,又降低了计算消耗。由于在每次迭代时,消耗非常小,因而适合于处理在线盲分离问题。
     然后,分析了稀疏信号的欠定盲分离问题。介绍了两类分离方法:1)二步法,即先通过具有优越分类性能的支持向量机方法来估计混叠矩阵,然后采用线性规划方法来恢复源信号,其中在估计混叠矩阵时采用定向非循环图方法将传统的二分类支持向量机推广到了多分类;2)同步法,采用基于约束自然梯度的交替更新优化算法,可以同时估计混叠矩阵和源信号。与传统采用近似梯度的方法不同,本文从理论上严格推导了学习混叠矩阵的实际梯度,相应的学习结果明显优于近似梯度方法。
     此外,将盲分离策略用于语音和图像加密领域,提出了新型语音图像密码系统。具体介绍了该类密码系统的结构,包括预处理、加密、解密、重构等,并分析了其在几种常见攻击下的安全性。与传统的密码系统相比,该类系统具有结构简单,安全性更高、密码使用更加方便等特点。
    
     最后,还将盲分离技术用于多光谱/超光谱遥感图像解译或谱解混。论文提出了基于高阶统计量的信号稀疏性新度量,其具有一定的物理含义,且便于优化。根据该度量,介绍了基于盲分离/稀疏非负矩阵分解的谱解混算法,可以同时估计端元和丰度。通过对人工合成数据集以及真实数据集的测试,表明了该方法在收敛性、对噪声的敏感性等方面优于传统的方法,特别适合处理稀疏端元,同时对稀疏度不够高的端元也具有很强的鲁棒性。
Blind source separation (BSS) is a hot topic in signal processing. It attracts more and more attentions because of its widely applications in wireless communication, speech identification, signal encryption, feature extraction, signal anti-interference, remote sensing image interpretation, and biomedical signal processing. The study about BSS develops very fast, but there still exist some problems, such as how to separate the dependent sources? How to solve large-scale or real time dataset? How to solve the underdetermined mixed model, especially when the source number is unknown? How to use BSS technology practically? This thesis exploits BSS problems from the following facts:
     First, study the BSS method based on nonnegative matrix factorization (NMF) systematically. According to the geometrical feature of the observations, a volume constraint is added to the traditional NMF model. The separability conditions are proposed. And the relation between these conditions and the sparseness features are discussed. Also, a natural gradient based algorithm is utilized, such that the traditional alternative least square multiplication updating rule can solve the constrained NMF model. The proposed constrained NMF method is particularly suitable for the separation of dependent sources. Also, due to the volume constraint, the identifiability of NMF based method is enhanced and the requirement of sparseness to sources is reduced.
     Second, online or incremental BSS algorithms are introduced for real-time or large-scale dataset, where the incremental NMF algorithm is mainly derived. Using an amnesic average method which allows full use of every sample, it realizes the statistical efficiency for learning and reduces the computational cost. As the cost is low at each iteration, the proposed method is particularly suitable for solving online BSS problem.
     Then, the underdetermined BSS problem for sparse sources is analyzed. Two kinds of separation methods are introduced: 1) two-stage-method, i.e., estimating the mixing matrix using support vector machine (SVM) which has powerful performance for classification firstly, then recovering the sources by solving the linear program problems. For the estimation of the mixing matrix, the traditional two-classifying SVM is extended to multi-classifying by directed acyclic graph method. 2) one-stage-method, i.e., estimating the mixing matrix and the sources simultaneously using constrained natural gradient based alternative updating method. In stead of traditional method for learning the mixing matrix using approximate gradient, a strict natural gradient is derived in the proposed method. As a result, it has a much better performance.
     Furthermore, the BSS scheme is used for speech and image encryption, and a new type cryptosystem is proposed. The structure is analyzed in detail, including preprocessing, encryption, decryption, reconstruction. The corresponding security under normal attacks is also analyzed. Compared with the state-of-the-art, the proposed cryptosystems have the following advantages: the structure is simpler, the usage of the cipher is more convenient, and the security is higher.
     At last, the BSS scheme is used for remote sensing image interpretation or spectral unmixing. A novel measure of sparseness using higher order statistics of signals is proposed. It features the physical significance and is convenient to be optimized. Based on this measure, a sparse NMF/BSS algorithm is proposed for solving SU, where the endmembers and abundances are simultaneously estimated. Simulations based on synthetic mixtures and real images show that the proposed method outperforms the state-of-the-art methods, including the convergence, sensitivities to the noise, etc. It is particularly suitable for processing sparse endmembers, but also robust to process the endmembers which are not sparse enough.
引文
[1] Jutten C. and Herault J. Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic [J]. Signal Processing, 1991, 24(1): 1-10.
    [2]肖明.欠定的瞬时混叠信号的盲分离研究[D].博士论文,华南理工大学.广州: 2008
    [3]何昭水.瞬时线性混叠与卷积混叠盲分离[D].博士论文,华南理工大学.广州: 2005
    [4] Casanovas A.L., Monaci G., and Vandergheynst P. Blind audiovisual source separation using sparse representations [C]. Presented at IEEE International Conference on Image Processing, 2007.
    [5] Elad M. and Aharon M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Trans. Image Processing, 2006, 15(12): 3736-3745.
    [6] Bobin J., Starck J.L., Fadili J., et al. Sparsity and morphological diversity in blind source separation [J]. IEEE Trans. Image Processing, 2007, 16(11): 2662-2674.
    [7] [EB/OL]: http://jstarck.free.fr/mca_inp.html.
    [8] Makeig S., Jung T.P., Bell A.J., et al. Blind separation of auditory event-related brain responses into independent components [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(20): 10979-10984.
    [9] Mitianoudis N. and Davies M.E. Audio source separation of convolutive mixtures [J]. IEEE Trans. Speech and Audio Processing, 2003, 11(5): 489-497.
    [10] Lin Q.H., Yin F.L., Mei T.M., et al. A blind source separation based method for speech encryption [J]. IEEE Trans. Circuits and System I, 2006, 53(6): 1320-1328.
    [11] Li S., Li C., Lo K.-T., et al. Cryptanalyzing an encryption scheme based on blind source separation [J]. IEEE Trans. Circuits and System I, 2008, 55(4): 1055-1063.
    [12] Talwar S. and Paulraj A. Blind separation of synchronous co-channel digital signals using an antenna array .2. Performance analysis [J]. IEEE Transactions on Signal Processing, 1997, 45(3): 706-718.
    [13] Sahlin H. and Broman H. Separation of real-world signals [J]. Signal Processing, 1998, 64(2): 103-113.
    [14] Ristaniemi T. and Joutsensalo Y. Independent component analysis with code information utilization in DS-CDMA signal separation [C]. Presented at Seamless Interconnection for Universal Services, 1999.
    [15] Cichocki A. and Amari S. Adaptive Blind Signal and Image Processing: LearningAlgorithms and Applications [M]. New York: Wiley, 2003.
    [16] Tong L., Liu R.W., Soon V.C., et al. Indeterminacy and identifiability of blind identification [J]. IEEE Trans on Circuits and systems, 1991, 38(5): 499-506.
    [17] Cao X.R. and Liu R.W. General approach to blind source separation [J]. IEEE Trans. Signal Processing, 1996, 44(3): 562-571.
    [18] Comon P. Independent component analysis, a new concept? [J]. Signal Process., 1994, 36(3): 287-314.
    [19] Zhang J.L., Xie S.L., and He Z.S. Separability theory for blind signal separation [J]. ACTA AUTOMATICA SINICA, 2004, 30(3): 337-344.
    [20] Stone J.V. Blind source separation using temporal predictability [J]. Neural Comput., 2001, 13(7): 1559-1574.
    [21] Xie S.L., He Z.S., and Fu Y.L. A note on Stone's conjecture of blind signal separation [J]. Neural Computation, 2005, 17(2): 321-330.
    [22] Li Y.Q., Wang J., and Zurada J.M. Blind extraction of singularly mixed source signals [J]. IEEE Transactions on Neural Networks, 2000, 11(6): 1413-1422.
    [23] Li Y.Q. and Wang J. Sequential blind extraction of instantaneously mixed sources [J]. IEEE Transactions on Signal Processing, 2002, 50(5): 997-1006.
    [24] Choi S. and Cichocki A. Blind separation of nonstationary sources in noisy mixtures [J]. Electronics Letters, 2000, 36(9): 848-849.
    [25] Anthony J.B. and Terrence J.S. An information-maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995, 7(6): 1129-1159.
    [26] Cardoso J.F. and Laheld B.H. Equivariant adaptive source separation [J]. IEEE Transactions on Signal Processing, 1996, 44(12): 3017-3030.
    [27] Hyv?rinen A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans. Neural Netw., 1999, 10(3): 626-634.
    [28] Cichocki A., Amari S., Siwek K., et al. ICALABA toolboxes [DB/OL]: http://www.bsp.brain.riken.jp/ICALAB
    [29] Molgedey L. and Schuster H.G. Separation of a mixture of independent signals using time delayed correlations [J]. Physical Review Letters, 1994, 72(23): 3634-3637.
    [30] Adel B., Karim A., Cadoso J., et al. A blind source separation technique using second-order statistics [J]. IEEE Trans. Sig. Pro., 1997, 45(2): 434-444.
    [31] Matsuoka K., Ohya M., and Kawamoto M. A neural net for blind separation of nonstationary signals [J]. Neural Networks, 1995, 8(3): 411-419.
    [32] Saab R., Yilmaz O., McKeown M.J., et al. Underdetermined anechoic blind sourceseparation via l(q)-basis-pursuit with q < 1 [J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4004-4017.
    [33] Belouchrani A. and Amin M.G. A new approach for blind source separation using time frequency distributions [C]. Presented at SPIE Conference on Advanced Signal Processing Algorithms, Architectures, and Implementations, 1996.
    [34] Georgiev P., Theis F., and Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures [J]. IEEE Transactions on Neural Networks, 2005, 16(4): 992-996.
    [35] Donoho D.L. Sparse components of images and optimal atomic decompositions [J]. Constructive Approximation, 2001, 17(33): 353-382.
    [36] Lee D.D. and Seung H.S. Learning the parts of objects by nonnegative matrix factorization [J]. Nature, 1999, 401(6756): 788-791.
    [37] Cichocki A., Zdunek R., and Amari S. New algorithm for non-negative matrix factorization in applications to blind source separation [C]. Presented at Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process., 2006.
    [38] Cichocki A., Zdunek R., and Amari S. Nonnegative matrix and tensor factorization [J]. IEEE Sig. Process. Magazine, 2008, 26(1): 142-145.
    [39] Li Q.Y., Bai E.W., and Ding Z. Blind source separation of signals with known alphabets using epsilon-approximation algorithms [J]. IEEE Transactions on Signal Processing, 2003, 51(1): 1-10.
    [40] Li Y.Q., Cichocki A., and Zhang L.Q. Blind separation and extraction of binary sources [J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2003, E86A(3): 580-589.
    [41] Li Y., Amari S.-I., Cichocki A., et al. Underdetermined blind source separation based on sparse representation [J]. IEEE Trans. Sig. Pro., 2006, 54(2): 423-437.
    [42] Bofill P. and Zibulevsky M. Underdetermined blind source separation using sparse representations [J]. Signal Process., 2001, 81(11): 2353-2362.
    [43] Bellini S. Bussgang Techniques for Blind Deconvolution and Blind Equalization [M]. Englewood Cliffs: Prentice-Hall, 1994.
    [44] Nomura T., Eguchi M., Niwamoto H., et al. An extension of the Herault-Jutten network to signals including delays for blind separation [J]. Neural Networks for Signal Processing Vi, 1996: 443-452.
    [45] Yellin D. and Wensten E. Criteria for multichannel signal separation [J]. IEEE Trans. Signal Processsing, 1994, 42(8): 2158-2168.
    [46] Rahbar K., Reilly J.P., and Manton J.H. Blind identification of MIMO FIR systems driven by quasistationary sources using second-order statistics: A frequency domain approach [J]. IEEE Transactions on Signal Processing, 2004, 52(2): 406-417.
    [47] Xu G.H., Liu H., Tong L., et al. A least-squares approach to blind channel identification [J]. IEEE Trans. Signal Processing, 1995, 43(12): 2982-2993.
    [48] Li Y.Q., Wang J., and Cichocki A. Blind source extraction from convolutive mixtures in III-conditioned multi-input multi-output channels [J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2004, 51(9): 1814-1822.
    [49]汪军,何振亚.卷积混叠盲分离[J].电子学报, 1997, 25(7): 7-11.
    [50] Simon C., Loubaton P., Vignat C., et al. Blind source separation of convolutive mixtures by maximization of fourth-order cumulants: The non iid case [C]. Presented at Conference Record of the Thirty-Second Asilomar Conference on Signals, Systems & Computers, Vols 1 and 2, 1998.
    [51]谭丽丽,韦岗.多输入多输出盲解卷问题的最大熵解法[J].电子学报, 2000, 28(1): 114-116.
    [52] Dapena A. and Castedo L. A novel frequency domain approach for separating convolutive mixtures of temporally-white signals [J]. Digital Signal Processing, 2003, 13(2): 301-316.
    [53]楼红伟、胡光锐.基于小波域的非平稳卷积混合语音信号的自适应盲分离[J].控制与决策, 2004, 19(1): 73-76.
    [54] Zhou Y. and Xu B.L. Blind source separation in frequency domain [J]. Signal Processing, 2003, 83(9): 2037-2046.
    [55] Ikram M.Z. and Morgan D.R. Permutation inconsistency in blind speech separation: Investigation and solutions [J]. IEEE Transactions on Speech and Audio Processing, 2005, 13(1): 1-13.
    [56] Sawada H., Araki S., Mukai R., et al. Solving the permutation problem of frequency-domain BSS when spatial aliasing occurs with wide sensor spacing [C]. Presented at 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006.
    [57] Bofill P. Underdetermined blind separation of delayed sound sources in the frequency domain [J]. Neurocomputing, 2003, 55(3-4): 627-641.
    [58] Taleb A. and Jutten C. Source separation in post-nonlinear mixtures [J]. IEEE Transactions on Signal Processing, 1999, 47(10): 2807-2820.
    [59] Pajunen P., Hyvarinen A., and Karhunen J. Nonlinear blind source separation by self-organizing maps [C]. Presented at Proc. Int. Conf. on Neural Information Processing 1996.
    [60] Burel G. Blind separation of sources: A nonlinear neural algorithm [J]. Neural Networks, 1992, 5(6): 937-947.
    [61] Yang H.H., Amari S., and Cichocki A. Information-theoretic approach to blind separation of sources in nonlinear mixture [J]. Signal Processing, 1998, 64(7): 291-300.
    [62] Tan Y., Wang J., and Zurada J.M. Nonlinear blind source separation using a radial basis function network [J]. IEEE Transactions on Neural Networks, 2001, 12(1): 124-134.
    [63] Solazzi M. and Uncini A. Spline neural networks for blind separation of post-nonlinear-linear mixtures [J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2004, 51(4): 817-829.
    [64] Yang Z.Y. and Wan Y.L. Non-linear blind source separation using constrained genetic algorithm [C]. Presented at Intelligent Control and Automation, 2006.
    [65] Moulines E., Cardoso J.F., and Gassiat E. Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models [C]. Presented at IEEE International Conference on Acoustics, Speech, and Signal Processing, Vols I - V, 1997.
    [66] Hyvarinen A. Noisy independent component analysis, maximum likelihood estimation, and competitive learning [C]. Presented at IEEE World Congress on Computational Intelligence, 1998.
    [67] Cichocki A., Douglas S.C., and Amari S. Robust techniques for independent component analysis (ICA) with noisy data [J]. Neurocomputing, 1998, 22(1-3): 113-129.
    [68] Nikias C.L. and Shao M. Signal Processing with Alpha-Stable Distributions and Applications [M]. NewYork: Wiley & Sons, 1995.
    [69] Zha D.F. and Qiu T.S. A new blind source separation method based on fractional lower-order statistics [J]. International Journal of Adaptive Control and Signal Processing, 2006, 20(5): 213-223.
    [70] Sahmoudi M., Abed-Meraim K., and Benidir M. Blind separation of impulsive alpha-stable sources using minimum dispersion criterion [J]. IEEE Sig. Pross. Lett., 2005, 12(4): 281-284.
    [71] Lee T.W., Bell A.J., and Orglmeister R. Blind source separation of real world signals [C]. Presented at IEEE International Conference on Neural Networks, Vols 1-4, 1997.
    [72] Karbunen J. and Hyvarinen A. Application of neural blind separation to signal and image processing [C]. Presented at Proc ICASSP, 1997.
    [73] Barros A.K., Mansour A., and Ohnishi N. Removing artifacts from electrocardiographic signals using independent components analysis [J]. Neurocomputing, 1998, 22(1-3): 173-186.
    [74] Vigario R., Jousmaki V., Hamalainen M., et al. Independent component analysis for identification of artifacts in magnetoencephalographic recordings [J]. Advances in Neural Information Processing Systems 10, 1998, 10(10): 229-235.
    [75]斯华龄,张立明.智能视觉图像处理[M]. 1 ed.上海:上海科技教育出版社, 2002.
    [76]何振亚,刘琚,杨绿溪.盲均衡和信道参数估计的一种ICA和进化计算方法[J].中国科学(E辑), 2000, 30(1): 1-7.
    [77]凌燮亭.近场宽带信号源的盲分离[J].电子学报, 1996, 24(7): 87-92.
    [78]朱孝龙,保铮,张贤达.基于分阶段学习的盲信号分离[J].中国科学(E辑), 2002, 32(5): 693-703.
    [79]冯大政,保铮,张贤达.信号盲分离问题多阶段分解算法[J].自然科学进展, 2002, 12(3): 324-328.
    [80]刘建强,冯大政.脉冲噪声中非平稳源的盲分离算法[J].电子学报, 2003, 31(12): 1921-1923.
    [81]谢胜利,章晋龙.基于旋转变换的最小互信息量盲分离算法[J].电子学报, 2002, 30(5): 628-631.
    [82]何昭水,谢胜利,章晋龙.基于QR分解的盲源分离几何算法[J].控制理论与应用, 2005, 22(1): 17-22.
    [83]章晋龙,何昭水,谢胜利,刘海林.多个源信号混叠的盲分离几何算法[J].计算机学报, 2005, 28(9): 575-581.
    [84]游荣义,徐慎初、陈忠.多通道脑电信号的盲分离[J].生物物理学报, 2004, 20(1): 77-82.
    [85]何培宇,殷斌and Sommen P.C.W.一种有效的语音盲信号分离简化混合模型[J].电子学报, 2002, 30(10): 1438-1440.
    [86]刘盛鹏,方勇.基于TMS320C64x DSPBIOSⅡ的嵌入式语音采集与盲分离系统设计[J].电子技术, 2004, 4(4): 17-20.
    [87]谢胜利,谭北海.基于源信号数目估计的欠定盲分离[J].电子与信息学报, 2008, 30(4): 863-867.
    [88]谭北海.数字信号盲分离与稀疏欠定盲分离研究[D].博士论文,华南理工大学.广州: 2007
    [89] [EB/OL]: http://ida.first.fraunhofer.de/~harmeli/nips_workshop03/.
    [90] Stadlthanner K., Lutter D., Theis F.J., et al. Sparse nonnegative matrix factorization with genetic algorithms for microarray analysis [C]. Presented at Int. Joint Conf. Neural Netw., 2007.
    [91] Pearlmutter B.A. and Potluru V.K. Sparse separation: principles and tricks [C]. Presented at SPIE Int. Conf. ICA, Wavelets and Neural Netw., 2003.
    [92] Li Y.Q., Cichocki A., and Amari S. Analysis of sparse representation and blind source separation [J]. Neural Comput., 2004, 16(6): 1193-1234.
    [93] Donoho D.L. and Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization [J]. PNAS, 2003, 100(5): 2197-2202.
    [94] He Z.S., Xie S.L., and Fu Y.L. Sparse measure of signal [C]. Presented at IEEE Int. Conf. Neural Netw. And Brain., 2005.
    [95] Yang Z.Y., He Z.S., Xie S.L., et al. Adaptive blind separation of underdetermined mixtures based on sparse component analysis [J]. Science in China Series F-Information Sciences, 2008, 51(4): 381-393.
    [96] Lewicki M.S. and Sejnowski T.J. Learning overcomplete representations [J]. Neural Computation, 2000, 12(2): 337-365.
    [97] Sawada H., Araki S., Mukai R., et al. Grouping separated frequency components by estimating propagation model parameters in frequency-domain blind source separation [J]. IEEE Transactions on Audio Speech and Language Processing, 2007, 15(5): 1592-1604.
    [98] Donoho D. and Stodden V. When does non-negative matrix factorization give a correct decomposition into parts? [C]. Presented at Adv. Neural Inf. Process. Syst., 2004.
    [99] Sidiropoulos N.D., Giannakis G.B., and Bro R. Blind PARAFAC receivers for DS-CDMA systems [J]. IEEE Transactions on Signal Processing, 2000, 48(3): 810-823.
    [100]张贤达,保铮.盲信号分离[J].电子学报, 2001, 29(12): 1766-1771.
    [101] Caiafa C.F. and Proto A.N. Separation of statistically dependent sources using an L2 -distance non-Gaussianity measure [J]. Signal Process., 2006, 86(11): 3404-3420.
    [102] Kopriva I. and Ser?i? D. Wavelet packet approach to blind separation of statistically dependent sources [J]. Neurocomputing, 2007, 71(7-9): 1642-1655.
    [103] Lee D.D. and Seung H.S. Algorithms for nonnegative matrix factorization [C]. Presented at Adv. Neural Inf. Process. Syst., 2001.
    [104] Miao L. and Qi H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization [J]. IEEE Trans. Geosci. Remote Sens., 2007, 45(3): 765-777.
    [105] Eggert J. and k?rner E. Sparse coding and NMF [C]. Presented at IEEE Int. Conf. Neural. Netw., 2004.
    [106] Theis F.J., Stadlthanner K., and Tanaka T. First results on uniqueness of sparse non-negative matrix factorization [C]. Presented at European, Sig. Proc. Conf., 2005.
    [107] Laurberg H., Christensen M.G., Plumbley M.D., et al. Theorems on positive data: on the uniqueness of NMF [C]. Presented at Computational Intelligence and Neuroscience, 2008.
    [108] Laurberg H. Uniqueness of non-negative matrix factorization [C]. Presented at IEEE Int. Conf. Stat. and Sig. Process., 2007.
    [109] Laurberg H. and Hansen L.K. On affine non-negative matrix factorization [C]. Presented at IEEE Int. Conf. Acoustice, Speech and Sig. Process., 2007.
    [110] Cichocki A., Phan A.H., Zdunek R., et al. Flexible component analysis for sparse, smooth, nonnegative coding or representation [J]. Lecture notes in Computer Science, 2008, 4984(1): 811-820.
    [111] Craig M.D. Minimum-volume transforms for remotely sensed data [J]. IEEE Trans. Geosci. Remote Sens., 1994, 32(3): 542-552.
    [112] Wang F.Y., Chi C.Y., Chan T.H., et al. Non-negative least-correlated component analysis for separation of dependent sources by volume maximization [J]. IEEE Trans. Patt. Analy. Machine Intel., 2009, Accepted.
    [113] Kim S. and Yoo C.D. Underdetermined blind source separation based on subspace representation [J]. IEEE Trans. Sig. Pro., 2009, 57(7): 2604-2614.
    [114] Willmore B. and Tolhurst D.J. Characterizing the sparseness of neural codes [J]. Network Comput. Neural Syst.,, 2001, 12(12): 255-270.
    [115] Kim H. and Denning H.P. Sparse non-negative matrix factorizations via alternating non-negative-constrained least squares for microarray data analysis [J]. Bioinformatics, 2007, 23(12): 1495-1502.
    [116]Amari S. Natural gradient works efficiently in learning [J]. Neural Comput., 1998, 10(2): 251-276.
    [117] Zdunek R. and Cichocki A. Nonnegative matrix factorization with constrained second-order optimization [J]. Signal Process., 2007, 87(8): 1904-1916.
    [118] Albright R., Cox J., Duling D., et al. Algorithms, initializations, and convergence for thenonnegative matrix factorization [C]. Presented at the 12th ACM SIGKDD Int. Conf. Knowledge Disc. & Data Mining, 2006.
    [119] Boutsidis C. and Gallopoulos E. SVD based initialization: A head start for nonnegative matrix factorization [J]. Pattern Recognition, 2008, 41(4): 1350-1362.
    [120] Lin C.J. On the convergence of multiplicative update algorithms for nonnegative matrix factorization [J]. IEEE Trans. Neural Netw., 2007, 18(6): 1589-1596.
    [121] Zuffi S., Santini S., and Schettini R. From color sensor space to feasible reflectance spectra [J]. IEEE Trans. Signal Process., 2008, 56(2): 518-531.
    [122] Tonazzini A., Bedini L., and Salerno E. A markov model for blind image separation by a mean-field EM algorithm [J]. IEEE Trans. Image Process., 2006, 15(2): 473-482.
    [123] Monga V. and Mihcak M.K. Robust and secure image hashing via non-negative matrix factorization [J]. IEEE Trans. Information Forensics and Security, 2007, 2(3): 376-390.
    [124] Grippo L. and Sciandrone M. On the convergence of the block nonlinear Gauss-Seidel method under convex constraints [J]. Operation Research. Lett., 2000, 26(3): 127-136.
    [125] Cichocki A. and Unbehauen R. Robust neural networks with on-line learning for blind identification and blind separation of sources [J]. IEEE Trans. Circuits and Sys. I, 1996, 43(11): 894-906.
    [126] Yin F., Mei T., and Wang J. Blind-source separation based on decorrelation and nonstationarity [J]. IEEE Trans. Circuits and Sys. I, 2007, 54(5): 1150-1158.
    [127] Manmontri U. and Naylor P.A. A class of Frobenius norm-based algorithms using penalty term and natural gradient for blind signal separation [J]. IEEE Trans. Audio, Speech, and Language Processing, 2008, 16(6): 1181-1193.
    [128] He W.X., Xie J.Y., and Yang Y.P. On-line blind source separation algorithm based on second order statistics [J]. Journal of S ystems Engineering and Elect ronics, 2005, 16(3): 692-696.
    [129] Zhu X.-L., Zhang X.-D., Ding Z.-Z., et al. Adaptive nonlinear PCA algorithms for blind source separation without prewhitening [J]. IEEE Trans. Circuits and Sys. I, 2006, 53(3): 745-753.
    [130] Xie S.L., Yang Z.Y., and Fu Y.L. Nonnegative matrix factorization applied to nonlinear speech and image cryptosystems [J]. IEEE Trans. Circuits and Sys. I, 2008, 55(8): 2356-2367.
    [131] Bucak S.S. and Gunsel B. Incremental subspace learning via non-negative matrix factorization [J]. Pattern Recognition, 2009, 42(5): 788-797.
    [132] Weng J.Y., Zhang Y.L., and Hwang W.S. Candid covariance-free incremental principalcomponent analysis [J]. IEEE Trans. Patt. Analy. Machine Intel., 2003, 25(8): 1034-1040.
    [133] Li Y. On incremental and robust subspace learning [J]. Pattern Recognition, 2004, 37(7): 1509-1518.
    [134] Berry M.W., Browne M., langville A.N., et al. Algorithms and applications for nonnegative matrix factoriazation [J]. Computational Statistics & Data Analysis, 2007, 52(1): 155-173.
    [135] [EB/OL]: http://biometrics.cse.msu.edu/fvc04db/index.html.
    [136] Bobin J., Starck J.L., Moudden Y., et al. Blind Source Separation: The Sparsity Revolution [J]. Advances in Imaging and Electron Physics, 2008, 152(1): 221-302.
    [137] Bronstein A.M., Bronstein M.M., Zibulevsky M., et al. Sparse ICA for blind separation of transmitted and reflected images [J]. International Journal of Imaging Systems and Technology, 2005, 15(1): 84-91.
    [138] Li Y.Q., Amari S.I., Cichocki A., et al. Probability estimation for recoverability analysis of blind source separation based on sparse representation [J]. IEEE Transactions on Information Theory, 2006, 52(7): 3139-3152.
    [139] O'Grady P.D., Pearlmutter B.A., and Rickard S.T. Survey of sparse and non-sparse methods in source separation [J]. International Journal of Imaging Systems and Technology, 2005, 15(1): 18-33.
    [140] Li Y.Q., Cichocki A., Amari S.I., et al. Sparse representation and its applications in blind source separation [J]. Advances in Neural Information Processing Systems 16, 2004, 16(21): 241-248.
    [141] Vielva L., Erdogmus D., Pantaleon C., et al. Underdetermined blind source separation in a time-varying environment [C]. Presented at IEEE International Conference on Acoustics, Speech, and Signal Processing, Vols I-Iv, Proceedings, 2002.
    [142] Peng D.Z. and Xiang Y. Underdetermined blind source separation based on relaxed sparsity condition of sources [J]. IEEE Transactions on Signal Processing, 2009, 57(2): 809-814.
    [143] Theis T.J., Lang E.W., and Puntonet C.G. A geometric algorithm for overcomplete linear ICA [J]. Neurocomputing, 2004, 56(1): 381-398.
    [144] Gribonval R. Sparse decomposition of stereo signals with matching pursuit and application to blind separation of more than two sources from a stereo mixture [C]. Presented at IEEE International Conference on Acoustics, Speech, and Signal Processing, Vols I-Iv, Proceedings, 2002.
    [145] Van Vaerenbergh S. and Santamaria I. A spectral clustering approach to underdetermined postnonlinear blind source separation of sparse sources [J]. IEEE Transactions on Neural Networks, 2006, 17(3): 811-814.
    [146] He Z.S. and Cichocki A. K-EVD clustering and its applications to sparse component analysis [J]. Lecture Notes in Computer Science, 2006, 3889(1): 90-97.
    [147] Comon P. Blind identification and source separation in 2 x 3 under-determined mixtures [J]. IEEE Transactions on Signal Processing, 2004, 52(1): 11-22.
    [148] Girolami M. A variational method for learning sparse and overcomplete representations [J]. Neural Computation, 2001, 13(11): 2517-2532.
    [149] Zibulevsky M. and Pearlmutter B.A. Blind source separation by sparse decomposition in a signal dictionary [J]. Neural Computation, 2001, 13(4): 863-882.
    [150] aaZibulevsky M. and Pearlmutter B.A. Blind source separation by sparse decomposition in a signal dictionary [J]. Neural Computation, 2001, 13(4): 863-882.
    [151] Vapnik V. The Nature of Statistical Learning Theory [M]. New York: Spring Verlag, 1995.
    [152]骆世广.加快SMO算法训练速度的策略研究[D].硕士论文,华南理工大学.广州: 2003
    [153] Burges C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
    [154] Platt J.C. Sequential Minimal Optimization- a Fast Algorithm for Training Support Vector Machines [M]. Cambridge: MIT Press, 1998: 185-208.
    [155] Ana C.L. and Carvalho C.P.L.F. Comparing techniques for multiclass classification using binary SVM predictors [J]. Lecture Notes in Artificial Intelligence, 2004, 2972(272-281.
    [156] Zhang H.Y., Jia P., and Shi X.Z. Determination of the number of source signals in blind source separation by singular value decomposition (in Chinese) [J]. J. Shanghai Jiaotong Univ., 2001, 35(8): 1155-1158.
    [157] Yang Z.Y., Tan B.H., Zhou G.X., et al. Source number estimation and separation algorithms of underdetermined blind separation [J]. Science in China Series F-Information Sciences, 2008, 51(10): 1623-1632.
    [158] Takigawa I., Kudo M., and Toyama J. Performance analysis of minimum l(1)-norm solutions for underdetermined source separation [J]. IEEE Transactions on Signal Processing, 2004, 52(3): 582-591.
    [159] Parra L. and Spence C. Convolutive blind separation of non-stationary sources [J]. IEEETransactions on Speech and Audio Processing, 2000, 8(3): 320-327.
    [160] Denning D.E.R. Cryptograghy and Data Security [M]. Reading, MA: Addison-Wesley, 1982.
    [161] Menezes A., Oorschot P., and Vanstone S. Handbook of Applied Cryptography [M]. Boca Raton, FL: CRC, 1996.
    [162] Ma F.L., Cheng J., and Wang Y.M. Wavelet transform-based analogue speech scrambling scheme [J]. Electron. Lett., 1996, 32(8): 719-721.
    [163] Li K., Soh Y.C., and Li Z.G. Chaotic cryptosystem with high sensitivity to parameter mismatch [J]. IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, 2003, 50(4): 579-583.
    [164] Lee L.S. and Chou G.C. A general theory for asynchronous speech encryption techniques [J]. IEEE J. Sele. Areas in Comm., 1986, 4(2): 280-287.
    [165] Shahram, "Speech encryption based on fast Fourier transform permutation," in in Proc. IEEE Int. Conf. Ele. Cir. and Syst., vol. 1, 2000, 290-293.
    [166] Manjunath G. and Anand G.V. Speech encryption using circulant transformations [C]. Presented at IEEE Int. Conf. Multimedia and Expo, 2002.
    [167] Yang Z.Y., Zhou G.X., Wu Z.Z., et al. New method for signal encryption using blind source separation based on subband decomposition [J]. Progress in Natural Science, 2008, 18(6): 751-755.
    [168] Lin Q.H. and Yin F.L. Blind source separation applied to image cryptosystems with dual encryption [J]. Electronics Letters, 2002, 38(19): 1092-1094.
    [169] Hua L.G. Foundations of Optimum Seeking [M]. Beijing: Science Press, 1981.
    [170] Lorenzo F. and Peter S. Nonnegative matrix factorization and I-divergence alternating minimization [J]. Linear Algebra and its Application, 2006, 416(2-3): 270-287.
    [171] Hoyer P.O. Non-negative matrix factorization with sparseness constraints [J]. J. Machine Learning Research, 2004, 5(1): 1457-1469.
    [172] Martin-Clemente R., Puntonet C.G., and Rojas F. Post-nonlinear blind source separation using methaheuristics [J]. Electronics Letters, 2003, 39(24): 1765-1766.
    [173] [EB/OL]: http://csrc.nist.gov/hash_standards_comments.pdf.
    [174] Keshava N. A survey of spectral unmixing algorithms [J]. Lincoln Lab. J., 2003, 14(1): 55-73.
    [175] Broadwater J. and Chellappa R. Hybrid detectors for subpixel targets [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29(11): 1891-1903.
    [176] Keshava N. and Mustard J.F. Spectral unmixing [J]. IEEE Sig. Pross. Mag., 2002, 19(1):44-57.
    [177] Wang J. and Chang C.-I. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2006, 44(9): 2601-2616.
    [178] Caiafa C.F., Salerno E., Proto A.N., et al. Blind spectral unmixing by local maximization of non-gaussianity [J]. Signal Process., 2008, 88(1): 50-68.
    [179] Freitas R.M.D., Haertel V., and Shimabukuro Y.E. Linear spectral mixture model in moderate spatial resolution image data [J]. Boletim De Ciencias Geodesicas, 2008, 14(1): 55-71.
    [180] Ray T.W. and Murray B.C. Nonlinear spectral mixing in desert vegetation [J]. Remote Sens. Environ., 1996, 55(1): 59-64.
    [181] Miao L., Qi H., and Szu H. A Maximum entropy approach to unsupervised mixed-pixel decomposition [J]. IEEE Trans. Image Process., 2007, 16(4): 1008-1021.
    [182] Healcy G. and Slater D. Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions [J]. IEEE Trans. Geosci. Remote Sens., 1999, 37(6): 2706-2717.
    [183] Filippi A.M. and Archibald R. Support vector machine-based endmember extraction [J]. IEEE Trans. Geosci. Remote Sens., 2009, 47(3): 771-791.
    [184] Plaza A., Benediktsson J.A., Boardman J.W., et al. Recent advances in techniques for hyperspectral image processing [J]. Remote Sens. Environ., 2009, 113(S110-S122.
    [185] Schweizer S.M. and Moura J.M.F. Efficient detection in hyperspectral imagery [J]. IEEE Trans. Image Processing, 2001, 10(4): 584-597.
    [186] Boardman J. Automating spectral unmixing of AVIRIS data using convex geometry concepts [C]. Presented at Summaries 4th Annu. JPL Airborne Geoscience Workshop, 1993.
    [187] Nascimento J.M.P. and Dias J.M.B. Vertex component analysis: A fast algorithm to unmix hyperspectral data [J]. IEEE Trans. Geosci. Remote Sens., 2005, 43(4): 898-910.
    [188] Winter M.E. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data [C]. Presented at SPIE Conf. Imaging Spectrometry, 1999.
    [189] Chang C.-I. and Heinz D.C. Constrained subpixel target detection for remotely sensed imagery [J]. IEEE Trans. Geosci. Remote Sens., 2000, 38(3): 1144-1159.
    [190] Foody G.M. Thematic mapping from remotely sensed data with neural networks: MLP, RBF, and PNN based approaches [J]. J. Geograph. Syst., 2001, 3(3): 217-232.
    [191] Bastin L. Comparision of fuzzy c-mean classification, linear mixture modeling and mlc probabilities as tools for unmixing coarse pixels [J]. Int. J. Remote Sens., 1997, 18(17): 3629-3648.
    [192] Kruse F.A. and Boardman J.W. Characterization and mapping of kimberlites and related diatremes using hyperspectral remote sensing [C]. Presented at AeroSpace Conference, 18–24, Big Sky, Montana, 2000.
    [193] Kruse F.A., Huntington J.H., and Green R.O. Results from the 1995 AVIRIS Geology Group Shoot [J]. in Proceedings, 2nd International Airborne Remote Sensing Conference and Exhibition: Environmental Research Institute of Michigan (ERIM), Ann Arbor, v. I, p. I-211 - I-220, 1996.
    [194] Heinz D.C. and Chang C.-I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(3): 529-545.
    [195] Jia S. and Qian Y. Spectral and spatial complexity-based hyperspectral unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2007, 45(12): 3867-3879.
    [196] Pauca V.P., Piper J., and Plemmons R.J. Nonnegative matrix factorization for spectral data analysis [J]. Lin. Alg. Appl., 2006, 416(1): 29-47.
    [197] Parente M., Zymnis A., Skaf J., et al. Spectral unmixing with nonnegative matrix factorization [C]. Presented at SPIE Conf. Remote Sensing for Env. Monotoring, GIS Appl. and Geology VI, 2006.
    [198] Heslop D., Dobeneck T., and Hocker M. Using non-negative matrix factorization in the "unmixing" of diffuse reflectance spectra [J]. Marine Geology, 2007, 241(1-4): 63-78.
    [199] Chu M., Diele F., Plemmons R., et al. Optimality, computation, and interpretations of nonnegative matrix factorizations [J]. 2004. [Online]. Available: http://www.wfu.edu/plemmons.
    [200] Yu Y., Guo S., and Sun W. Minimum distance constrained nonnegative matrix factorization for the endmember extraction of hyperspectral images [C]. Presented at SPIE Conf. Remote Sensing and GIS Data Process. and Appl., 2007.
    [201] Jia S. and Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2009, 47(1): 161-173.
    [202] Olshausen B.A. and Field D.J. Emergence of simplecell receptive field properties by learning a sparse code for natural images [J]. Nature, 1996, 381(6583): 607-609.
    [203] Karvanen J. and Cichocki A. Measure sparseness of noisy signals [C]. Presented at Int. Sym. ICA and BSS, Nara,Japan, 2003.
    [204] Saito N., Larson B.M., and Benichou B. Sparsity vs. statistical independence from a best-basis viewpoint [C]. Presented at SPIE Conf. Wavelet Appl. in Sig. and Image Process. VIII, 2000.
    [205] Mohimani H., Babaie-Zadeh M., and Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed l(0) norm [J]. IEEE Trans. on Signal Processing, 2009, 57(1): 289-301.
    [206] Clark R.N., Swayze G.A., Gallagher A., et al. The U.S. geological survey digital spectral library: Version 1 : 0.2 to 3.0μm [R]. U.S. Geol. Surv.,Washington, DC, Open File Rep. 93-592, 1993.
    [207] [EB/OL]: http://aviris.jpl.nasa.gov/.
    [208] Swayze G. The hydrothermal and structural history of the cuprite mining district, Southwestern Nevada: An integrated geological and geophysical approach [D]. Ph. D.,Univ. Colorado. Boulder, CO.: 1997
    [209] [EB/OL]: http://cobweb.ecn.purdue.edu/~biehl/MultiSpec/.
    [210] Chang C.-I. and Du Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2004, 42(3): 608-619.
    [211] Ashley R.P. and Abrams M.J. Alteration mapping using multispectral images, Cuprite mining district, Esmerelda County, Nevada [R]. United States Geological Survey Open-File Report 80-367, 1980.
    [212] [EB/OL]: http://www.hgimaging.com/PDF/Kruse_JPL2002_AVIRIS_Hyperion.pdf.
    [213] [EB/OL]: http://www.tec.army.mil/Hypercube/.
    [214] Li Z.Y., Lu Z.C., and Chen H. A convenient judgement method about extreme value of one class multivariate functions and its application [J]. Mathematics in practice and theory, 2003, 33(7): 96-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700