雷达信号层融合成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达信号层融合成像是一种新兴的雷达成像处理技术,它是多传感器信号层融合与雷达成像技术相结合的产物。它旨在通过对来自不同时间、空间或频率上的雷达观测信息进行相干融合,以提高目标散射中心参数估计精度并获得更高的雷达成像分辨率,从而有利于目标识别与图像理解等后期处理。传统的单雷达成像系统受单传感器信号带宽与观测相干积累时间的约束,雷达成像分辨率有限。随着雷达技术和信息处理技术的不断发展,利用多雷达观测信息进行信号层融合成像成为克服单雷达成像系统局限的一种有效方式。基于多雷达观测信息的有效融合,可以明显改善雷达成像分辨率,提高目标散射中心参数的估计精度。
     本文针对逆合成孔径雷达成像的应用背景,研究了多雷达信号层融合成像处理中的一些基础问题以及不同融合方式下的多雷达信号层融合成像算法,包括多频带雷达信号层融合成像的理论框架、信号幅相补偿、多频带多雷达信号层融合的高分辨距离成像算法、稀疏多子带雷达信号层融合的超分辨距离成像算法、二维信号融合超分辨ISAR成像算法等。
     首先,提出了多频带多雷达信号层融合成像的理论框架,在研究多频带多雷达信号融合回波模型的基础上,建立了实际信号处理中统一的幅相误差模型;详细分析了残余相位误差与雷达间隔距离、目标尺寸、观测几何等因素的相互关系以及残余相位误差对一维距离成像的影响,给出了三种降低残余相位误差的雷达布站方式;研究了多频带雷达信号层融合成像的基本原理,分析了实际信号处理中非均匀采样对幅相补偿和信号融合一维距离成像的影响,并提出了基于插值的均匀重采样处理方法。
     其次,根据信号幅相误差补偿模型,利用信号模型的子空间特性,对于可重叠的频带观测数据分别提出了基于快速Root-MUSIC和基于ESPRIT-LS的幅相误差补偿参数估计算法;为了减少频域数据长距离外推预测引入的预测误差对幅相补偿的影响,提出了基于熵最小准则的幅相补偿方法,该方法无需重叠频带数据,有效地减少了频域数据外推预测的距离。
     再次,从已有电磁模型的分析出发,根据雷达回波信号的非平稳特性,提出了基于非平稳时间序列处理的雷达信号融合高分辨距离成像算法,比较了基于Prony模型、ARIMA模型、TVAR模型的多频带雷达信号融合高分辨一维距离成像方法,结果表明基于TVAR模型的融合成像算法具有更好的融合成像效果;为了更好地表示回波信号中的不同成分,在分析距离像多分辨率性质的基础上,将多分辨分析与非平稳建模相结合,提出了DT CWT+TVAR的信号融合高分辨距离成像算法,在不同的尺度空间上对信号进行非平稳建模,较好地刻画了信号中的局部特征
     然后,针对稀疏多子带观测下雷达信号带宽间隔过大,已有信号融合高分辨距离成像方法不再适用的情况,建立了幅相补偿和散射中心参数估计的统一模型,研究了如何通过空间谱估计技术来进行参数估计,详细分析了空间平滑处理对参数估计的影响,并提出了两种特殊的空间平滑处理方式来简化参数估计;从简化计算的角度考虑,通过构造特殊的空间导向矢量矩阵,将线性相位误差和固定相位误差的估计解耦,利用信号的旋转不变特性,进一步提出了一维搜索的ESPRIT超分辨成像算法;针对超分辨成像算法,分别从Rayleigh准则和Cramér-Rao限的角度出发,定性、定量分析了雷达信号融合对成像分辨率的改善作用,推导了单雷达超分辨成像和雷达信号层融合超分辨成像中散射中心参数估计的Cramér-Rao限,并分析比较了各种因素对距离成像分辨率的影响。
     最后,分析了单雷达成像与双雷达信号融合ISAR成像在波数空间上的差异,针对共面成像情况,研究了双雷达信号层融合ISAR成像的预处理技术,提出了消除线性相位误差、简化初始时刻雷达视线夹角估计的参考距离匹配技术,并提出了双雷达融合下的目标转动参数估计方法;基于双雷达信号层融合成像模型,提出了一种半解耦的双雷达观测融合超分辨ISAR成像算法;为了更充分地利用多频带信息,更好地改善纵向分辨率,进一步提出了双雷达观测融合的联合超分辨ISAR成像算法。仿真结果表明所提出的两种算法对目标散射中心参数的估计精度均高于单雷达成像估计结果,并具有较好的稳健性。
Radar signal level fusion imaging (RSLFI) is an emerging radar imaging technology. It is a combination of multi-sensor signal level fusion and radar imaging technology. It aims at improving the estimation precision of scattering center parameters and the resolution of radar imaging through the coherent fusion of the radar observations information from the different time, space and frequency. It is also in favor of target recognition and image comprehension. It is known that the resolution of traditional monostatic radar imaging system is restricted by the signal band width and observations coherent accumulate time. With the development of radar and information processing technology, the signal level fusion imaging based on the multi-radar observations becomes an effective method of overcoming the limitations of the monostatic radar imaging system. The information fusion based on the multi-radar observations can obviously improve the radar imaging resolution and the scattering center parameters estimation precision.
     Aiming at the background of inverse synthetic aperture radar (ISAR) imaging, this dissertation studied some basic problems and imaging algorithms in multi-radar signal level fusion imaging processing, including the theoretic frame, amplitude-phase compensation, high resolution range profile (HRRP) formation based on the multiple frequency band radar observations, supper-resolution range profile formation based on the sparse multiple subband radar observations and two-dimensional signal fusion supper-resolution ISAR imaging.
     The theoretic frame of multiple frequency band and multi-radar signal fusion imaging was presented firstly in the dissertation. Based on the research on the returned signal model of multi-radar fusion, a uniform amplitude-phase error (APE) model was founded. The relationship between residual phase error and the baseline of the two radars, the target size and the observation geometry were analyzed. The effects of residual phase error on the range profile formation were discussed and three modes of radar distribution were presented in order to reduce the residual phase error. The essential theory of multiple frequency band and multi-radar signal fusion imaging was also studied. After analyzing of the effects of the non-uniform sampling on amplitude-phase compensation and range profile formation based on the signal fusion, the uniform resample processing method was proposed.
     Based on the amplitude-phase error compensation (APEC) model of returned signal, two algorithms were presented. The parameters estimation of the algorithms utilizes the subspace characteristic of signal model and requires the overlap frequency observations of the two radars. Because the longer the signal extrapolated length is, the bigger the signal errors aroused will be. In order to reduce the effect of the signal extrapolated error on the APEC, an APEC algorithm based on the entropy-minimization principle was proposed. The algorithm needn't the overlap frequency observations and can effectively decrease the signal extrapolated length.
     With the analysis for the known scattering models and the non-stationary characteristic of radar signal, a HRRP formation method of multiple frequency band radar signal fusion was proposed based on the non-stationary time sequence processing. Compared with the HRRP formation algorithm based on the Prony model and autoregressive integrated moving average (ARIMA) model, the time-variant autoregressive (TVAR) model based algorithm has better fusion imaging result than others. In order to express the different components of the radar returned signal, the multi-resolution characteristic of range profile was analyzed and a HRRP formation algorithm based on the dual tree complex wavelet transform (DT CWT) and TVAR was presented. The algorithm builds the different non-stationary time sequence model for different scale signal based on the multi-resolution analysis and non-stationary modeling. It can better express the local characteristic of the returned signal.
     Under the sparse multiple subband observations condition, the known HRRP formation algorithms based on the signal fusion can not be applied because the blank between the two radar frequency bands is great. So a uniform parameter model for APEC and scattering center parameters estimation was presented. The estimation method of the model parameters based on the space spectrum estimation was studied. The effect of the spatial smoothing on the parameters estimation was analyzed and two spatial smoothing methods were proposed to reduce the complexity of parameters estimation. For the convenience of parameters estimation, a supper-resolution imaging algorithm based on the one dimension search and the estimation of signal parameters via rotational invariance technique was presented. The estimation of linear phase error and constant phase error were decoupled through constructing the special spatial steer vector matrix in the algorithm. The improvement function of radar signal level fusion on the resolution of radar imaging was analyzed with Rayleigh criterion and Cramer-Rao bound (CRB) for supper-resolution imaging algorithm. The CRB of scattering center parameters estimation were derived in monostatic radar imaging and multi-radar signal level fusion imaging. The effects of various factors on the resolution were analyzed and compared.
     Finally, the diversity of monostatic radar imaging and dual radar signal level fusion imaging was analyzed in wavenumber space. With the coplanarity imaging condition, the preprocessing technology of dual radar signal fusion imaging was studied. A reference distance matching method was proposed to remove the linear phase error and simplify the estimation of the angle between the two radars' line-of-sight. A new target rotation parameter estimation method was also put forward for the dual radar signal fusion. Based on the signal level fusion imaging model of the dual radar, a half-decoupled supper-resolution ISAR imaging algorithm with dual radar observations fusion was presented. Subsequently, a unite supper-resolution ISAR imaging algorithm with dual radar observations fusion was proposed in order to take full advantage of multiple frequency band to improve range resolution. The simulation results show that the two algorithms have much better estimation precision and robustness than monostatic radar imaging algorithm for the target scattering center parameters.
引文
[1]Lucien Wald.Some terms of reference in data fusion[J].IEEE Transactions on Geoscience and Sensing,1999,37(3):1190-1193.
    [2]Lucien Wald.Definitions and terms of reference in data fusion[C].International Archives of Photogrammetry and Remote Sensing,Valladolid,Spain,3-4 June,1999,Vol.32,Part 7-4-3 W6.
    [3]David L.Hall.An introduction to multisensor data fusion[J],in Proceedings of the IEEE,1997,85(1):6-23.
    [4]David L.Hall,James Llinas.Handbook of multisensor data fusion[M].New York:CRC Press LLC,2001.
    [5]R.C.Luo,M.G.Kay.Data fusion and sensor integration:state of the art 1990's[A].Data Fusion in Robotice and Machina Intelligence[C].Academic Press,1992.7-135.
    [6]Bing Ma.Parametric and non-parametric approaches for multisensor data fusion[D].Michigan:the University of Michigan,Electrical Engineering &System,2001.
    [7]K.M.Cuomo.A bandwidth extrapolation technique for improved range resolution of coherent radar data[R].MIT Lincoln Laboratory,Lexington,Mass,Project Rep.CJP-60 Rev.1,DTIC ADA-258462,1992.
    [8]Kevin M.Cuomo,Jean E.Piou,Joseph T.Mayhan.Ultrawide-band coherent processing[J].IEEE Transactions on Antennas and Propagation,1999,47(6):1094-1107.
    [9]Kevin M.Cuomo;Jean E.Piou,Joseph T.Mayhan.Ultra-wideband sensor fusion for BMD discrimination[C].IEEE 2000 International radar conference,Alexandria,VA,USA,7-12 May,2000,31-34.
    [10]徐华平,周荫清,李春生.基于频谱偏移估计的分布式星载SAR提高距离向分辨率的数据处理方法[J].电子学报,2003,31(12):1790-1794.
    [11]肖志河,戴朝明,巢增明等.旋转目标干涉逆合成孔径三维成像技术[J].电子学报,1999,27(12):19-22.
    [12]Xiaojin Xu,Ram M.Narayanan.Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling[J].IEEE Transactions on Image Processing,2001,10(7):1094-1102.
    [13]王成,胡卫东,杜小勇等.基于互累积量的多雷达信号层融合检测[J].信号处理,2006(录用待刊).
    [14]王成,胡卫东,杜小勇等.信号层融合在慢动小目标检测中的应用[J].现代雷达,2006(录用待刊).
    [15]Eran Fishier,Alex Haimovich,Rich Blum,et al.MIMO radar:an idea whose times base come[C].IEEE 2004 International Radar Conference,Philadelphia,Pennsylvania,USA,26-29 April,2004,71-78.
    [16]Eran Fishler,Alex Haimovich,Rick Blum 等.Performance of MIMO radar systems:advantages of angular diversity[C].The 38th Asilomar Conference on Signals,Systems and Computers,Pacilc Grove,California,USA,7-10 November,2004,1:305-309.
    [17]Eran Fishler,Alex Haimovich,Rick Blum,et al.Spatial diversity in radars-models and detection performance[J].IEEE Transactions on Signal Processing,2006,54(3):823-838.
    [18]D.W.Bliss,K.W.Forsythe.Multiple-Input Multiple-Output(MIMO)radar and imaging degrees of freedom and resolution[C].The 37th Asilomar Conference on Signals,Systems and Computers,Pacilc Grove,California,9-12 November,2003,1:54-59.
    [19]Frank C.Robey,Scott Coutts,Dennis Weikle,et al.MIMO radar theory and experimental results[C].The 38th Asilomar Conference on Signals,Systems and Computers,Pacilc Grove,California,USA,7-10 November,2004,1:300-304.
    [20]K.W.Forsythe,D.W.Bliss,G.S.Fawcett.Multiple-Input Multiple-Output(MIMO)radar:performance issues[C].The 38th Asilomar Conference on Signals,Systems and Computers,Pacilc Grove,California,USA,7-10 November,2004,1:310-315.
    [21]Daniel R.Fuhrmann,Geoffrey San Antonio.Transmit beamforming for MIMO radar systems using partial signal correlation[C].The 38th Asilomar Conference on Signals,Systems and Computers,Pacific Grove,California,7-10 November,2004,1:295-299.
    [22]Langford B White,Pinaki S Ray.Signal design for MIMO diversity systems[C].The Thirty-Eighth Asilomar Conference on Signals,Systems and Computers,Pacific Grove,California,7-10 November,2004,1:973-977.
    [23]L.B.White,R S.Ray.Receiver design for MIMO tracking radars[C].The 1st International Waveform Diversity & Design Conference,Edinburgh,UK,9-11 November,2004.
    [24]A.S.Fletcher,F.C.Robey.Performance bounds for adaptive coherence of sparse array radar[C].The 11th conference on Adaptive Sensors Array Processing,MIT Lincoln Laboratory,Lexington,MA,March,2003.
    [25]D.Rabideau.Ubiquitous MIMO digital array radar[C].The 37th Asilomar Conference on Signals,Systems and Computers,Pacilc Grove,California,9-12 November,2003,1:1057-1064.
    [26]Donald R.Wehner.High resolution radar[M].Artech House,1987.
    [27]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [28]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [29]G.Zweig.Super-resolution Fourier transforms by optimisation,and ISAR imaging[J].IEE Proceedings Radar,Sonar and Navigation,2003,150(4):247-252.
    [30]I.Erer,M.Kartal,A.H.Kayran.Superresolution ISAR imaging by 2-D complex asymmetric half-plane lattice predictors[C].IEEE 2001 International Geoscience and Remote Sensing Symposium(IGARSS'01),Sydney,Australia,9-3 July,2001,5:2268-2270.
    [31]Tuo Fu,Meiguo Gao,Yueqiu Hart.Superresolution ISAR imaging of maneuvering targets via subspace tracking[C].Proceedings of the 2003 International Conference on Neural Networks and Signal Processing,14-7 December,2003,2:986-989.
    [32]Xu Xiaojian,Huang Peikang.Super-resolution techniques with applications to microwave imaging[C].IEEE 1992 International Radar Conference,Brighton,London,12-13 October,1992,485-488.
    [33]Kyung-Tae Kim,Hyo-Tae Kim.Two-dimensional scattering center extraction based on multiple elastic modules network[J].IEEE Transactions on Antennas and Propagation,2003,51(4):848-861.
    [34]Wang Yang,Chen Jianwen,Liu Zhong.Two-dimensional scattering center extraction using super-resolution techniques[C].IEEE Antennas and Propagation Society International Symposium,Monterey,California,20-25 June,2004,2:2091-2094.
    [35]J.W.Odendaal,E.Bar-nard,C.W.I.Pistorius.Two-dimensional superresolution radar imaging using the MUSIC algorithm[J].IEEE Transactions on Antennas and Propagation,1994,42(10):1386-1391.
    [36]孙长印,保铮.雷达成像近似二维模型及其超分辨算法[J].电子学报,1999,27(12):84-87.
    [37]Sun Yiping,Lin Pingping.An improved method oflSAR image processing[C].Proceedings of the 35th Midwest Symposium on Circuits and Systems,9-12 Aug.,1992,2:983-986.
    [38]Weng Zuyin,Sun Yiping,Cui Dongzhe,et al.Imaging processing and motion compensation of C-band ISAR system[C].CIE International Conference on Radar,Beijing,China,8-10 October,1996,711-714.
    [39]J.Tsao,B.D.Steinberg.Reduction of sidelobe and speckle artifacts in microwave imaging:the CLEAN technique[J].IEEE Transactions on Antennas and Propagation,1988,36(4):543-556.
    [40]R.Bose,A.Freedman,B.D.Steinberg.Sequence CLEAN:a modified deconvolution technique for microwave images of contiguous targets[J].IEEE Transactions on Aerospace and Electronic Systems,2002,38(1):89-97.
    [41]S.L.Borison,S.B.Bowling,K.M.Cuomo.Super-resolution method for wideband radar[J].Lincoln Lab.J.,1992,5:441-461.
    [42]J.E.Piou,K.M.Cuomo,J.T.Mayhan.A state-space technique for ultrawide bandwidth coherent processing[R].Lincoln Lab.,Massachusetts Inst.Technol,Lexington,MA,Technical report 1054,1999.
    [43]L.D.Vann,K.M.Cuomo,J.E.Piou,et al.Multisensor fusion processing for enhanced radar imaging[R].Lincoln Lab.,Massachusetts Inst.Technol,Lexington,MA,Technical report 1056,2000.
    [44]付耀文.雷达目标融合识别研究[D].长沙:国防科技大学,电子科学与技术学院,2003.
    [45]杜小勇.稀疏成分分析及在雷达成像处理中的应用[D].长沙:国防科学技术大学,电子科学与工程学院,2005.
    [46]J.B.Keller.Geometrical theory of diffraction[J].J.Opt.Soc.Amer,1962,52(2):116-130.
    [47]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.
    [48]Lee C.Poter,Da-Ming Chiang,Rob Carriere,et al.A GTD-based parametric model for radar scattering[J].IEEE Transactions on Antennas and Propagation,1995,43(10):1058-1067.
    [49]Rob Carriere,Lee C.Poter,Randolph L.Moses,et al.Radar target modeling:a GTD-based approach[C].SPIE Automatic Object Recognition IV Conference,Orlando,FL,4-8 April,1994,2234:67-78.
    [50]M.E Hurst,R.Mittra.Scattering center analysis via Prony's method[J].IEEE Transactions on Antennas and Propagation,1987,35(8):986-988.
    [51]M.P.Hurst,R.Mittra,S.W.Lee.An approach to radar target identification[C].International Symposium on Antenna Applying,Univ.Illinois,Urbana-Champaign,September,1982,
    [52]Rob Carriere,Randolph L.Mose.High resolution radar target modeling using a modified prony estimator[J].IEEE Transactions on Antennas and Propagation,1992,40(1):13-18.
    [53]Ta-Hsin Li,Benjamin Kedem.Improving prony's estimator for multiple frequency estimation by a general method of parametric filtering[C].IEEE International Conference on Acoustics,Speech,and Signal Processing,Minneapolis,Minnesota,USA,27-30 April,1993,4:256-259.
    [54]Joseph J.Sacchini,William M.Steedly,Randolph L.Moses.Two-dimensional Prony modeling and parameter estimation[J].IEEE Transactions on Signal Processing,1993,41(11):3127-3137.
    [55]William M.Steedly,Ching-Hui J.Ying,Randolph L.Moses.Statistical analysis of SVD-based Prony techniques[C].The 25th Asilomar Conference on Signals,Systems and Computers,Pacific Grove,California,USA,4-6 November,1991,1:232-256.
    [56]William M.Steedly,Randolph L.Moses.High resolution exponential modeling of fully polarized radar returns[J].IEEE Transactions on Aerospace and Electronic Systems,1990,27(3):495-498.
    [57]Michael J.Gerry,Lee C.Potter,Inder J.Gupta.A parametric model for synthetic aperture radar measurements[J].IEEE Transactions on Antennas and Propagation,1999,47(7):1179-1188.
    [58]Inder J.Gupta.Hihg-resolution radar imaging using 2-D linear prediction[J].IEEE Transactions on Antennas and Propagation,1994,42(1):31-37.
    [59]Inder J.Gupta,Mark J.Beals,Ali Moghaddar.Data extrapolation for high resolution radar imaging[J].IEEE Transactions on Antennas and Propagation,1994,42(11):1540-1545.
    [60]Eric K.Walton,A.Moghaddar.High resolution imaging of radar targets using narrow band data[C].Antennas and Propagation Society International Symposium,Ontario,24-28 June,1991,2:1020-1023.
    [61]徐振海,王雪松,肖顺平等.基于(TAVR)时变自回归模型的HRR回波建模及目标识别[J].信号处理,2001,17(4):313-317.
    [62]张贤达.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [63]Kie B.Eom.Time-varying autoregressive modeling of HRR radar signatures[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):974-988.
    [64]J.Terry Ginn.Time varying autoregressive signal models,with an application to chirped signals[C].IEEE International Conference on Acoustics,Speech,and Signal Processing,Palais des Congres,Paris,France,3-5 May,1982,7:335-338.
    [65]Alois Schloegl.Dynamic spectral analysis based on an autoregressive model with time-varying coefficients[C].IEEE 17th Annual Conference on Engineering in Medicine and Biology Society,Montréal,Canada,20-23 September,1997,2:881-882.
    [66]Xiang-Gen Xia,C.-C.Jay Kuo,Zhen Zhang.Signal extrapolation based on wavelet transform[C].IEEE International Symposium on Circuits and Systems,Chicago,Illinois,USA,3-6,May.,1993,1:507-510.
    [67]K.Daoudi,A.B.Frakt,A.S.Willsky.Multiscale autoregressive models and wavelets[J].IEEE Transactions on Information Theory,1999,45(3):828-845.
    [68]C.Chambers,S.R.Cloude,P.D.Smith.Wavelet processing of ultra wideband radar signals[J].IEE Colloquium on Antenna and Propagation Problems of Ultrawideband Radar,1993:1-4.
    [69]Q.Renaud,J.-L.Starck,F.Murtagh.Prediction Based on a Multiscale Decomposition[J].International Journal of Wavelets,Multiresolution and Information Processing,2003,1:217-232.
    [70]S.Qian,Dapang Chen.Signal representation using adaptive normalized Gaussian functions[J].Signal Processing,1994,36(1):1-11.
    [71]S.G.Mallat,Zhifeng Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [72]S.Chen,D.L.Donoho,M.A.Saunders.Atomic decomposition by basis pursuit[J].SIAM,2001,43(1):129-159.
    [73]杜小勇,胡卫东,郁文贤.基于稀疏成份分析的几何绕射模型参数估计[J].电子与信息学报,2006,28(2):362-366.
    [74]杜小勇,胡卫东,郁文贤.高分辨雷达一维距离像稀疏表示技术[J].系统工程与电子技术,2005,27(6):968-970.
    [75]王岩,梁甸农,郭汉伟.基于改进正则化方法的SAR图像增强技术[J].2003,31(9):1307-1309.
    [76]李荷秾.非线性不适定问题的正则化方法[J].应用数学与计算数学学报,1998,12(1):37-43.
    [77]许建华,张学工,李衍达.最小平方误差算法的正则化核形式[J].自动化学报,2004,30(1):27-36.
    [78]S.G.Mallat,Z.F.Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [79]I.F.Gorodnistsky,B.D.Rao.Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm[J].IEEE Transactions on Signal Processing,1997,45(3):600-616.
    [80]S.S.Chen.Basis pursuit[D].Standford University,Department of Statistics,1995.
    [81]S.S.Chen,D.L.Donoho,M.Saunders.Atomic decomposition by basis pursuit[J].SIAM J.Scient.Comput.,1998,20(1):33-61.
    [82]Junfei Li,Hao Ling.Use of genetic algorithms in ISAR imaging of targets with higher order motions[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(1):343-351.
    [83]董涛,徐晓文.遗传算法在低副瓣天线阵综合中的应用[J].北京理工大学学报,2001,21(6):770-773.
    [84]张子敬,赵永波,焦李成.阵列天线的遗传优化[J].电子科学学报,2000,22(1):174-176.
    [85]李晋文,毛均杰,柴舜连等.遗传算法在天线阵自适应算法中的应用[J].电子科学学刊,2000,22(2):336-340.
    [86]彭祥龙,张杨.基于模拟退化算法的SAR图像复原[J].宇航学报,2004,25(1):24-27.
    [87]燕英,周荫清,陈杰.模拟退化法在SAR单视图像斑点噪声抑制中的应用研究[J].电子学报,2003,31(12):1903-1906.
    [88]耿平,刘静,曾梅光.多变元非线性复杂系统的优化与模拟退化算法[J].东北大学学报,2002,23(3):270-272.
    [89]Jacob Robinson,Yahya Rahmat-Samii.Particle swarm optimization in electromagnetics[J].IEEE Transactions on Antennas and Propagation,2004,52(2):397-407.
    [90]Daniel W.Boeringer,Douglas H.Werner.Particle Swarm optimization versus genetic algorithms for phased array synthesis[J].IEEE Transactions on Antennas and Propagation,2004,52(3):771-779.
    [91]盛景泉,付梦印,张长江.一种基于混沌优化的图像增强算法[J].计算机工程与应用,2003,39(12):4-6.
    [92]徐宁,周尚波,张红民.一种混合混沌优化方法及其应用[J].系统工程与电子技术,2003,25(2):226-227.
    [93]修春波,刘向东,张宇河等.一种用于求解TSP问题的混沌优化算法[J].计算机工程与应用,2004,40(10):20-21,39.
    [94]杨迪雄,李刚.非线性函数全局最优化的一种混沌优化混合算法[J].工程力学,2004,21(3):106-110.
    [95]Yiming Zheng,Zheng Bao.Autofoeusing of SAR images based on Relax[C].IEEE 2000 International Radar Conference,2000,533-538.
    [96]Jian Li,Peter Stoica.Efficient mixed-spectrum estimation with applications to target feature extraction[C].1996,428-432.
    [97]Peter T.Gough.A fast spectral estimation algorithm based on the FFT[J].IEEE Transactions on Signal Processing,1994,42(6):1317-1322.
    [98]王成,胡卫东,郁文贤.多带雷达信号融合中的幅相补偿参数估计[J].电子与信息学报,2004,26(增刊):475-480.
    [99]王成,胡卫东,郁文贤.基于ESPRIT-LS的多带雷达信号融合幅相补偿参数估计[J].系统工程与电子技术,28(3):350-354.
    [100]D.A.Ausherman.Developments in radar imaging[J].IEEE Transactions on Aerospace and Electronic Systems,Ocean Wave Detection Capablities,Science,1979:
    [101]D.L.Mensa.High resolution radar cross-section imaging[M].MA:Artech House,1990.
    [102]H.J.Li,T.Y.Liu,S.H.Yang.Super high image resolution for microwave imaging[J].Int.J.Imaging Syst.and Technol,1990,2:37-46.
    [103]Eric K.Walton,A.Moghaddar.Imaging of the compact range using super-resolution techniques[C].Antennas and Propagation Society International Symposium,Dallas,TX,7-11 May,1990,1:228-231.
    [104]Eric K.Walton,A.Moghaddar.Imaging of a compact range using autoregressive spectral estimation[J].IEEE Aerospace and Electronic Systems Magazine,1991,6(7):15-20.
    [105]A.J.den Dekker,A.van den Bos.Resolution:a survey[J].J.Opt.Soc.Am.A,1997,14(3):547-557.
    [106]Benjamin C.Flores,Hector A.Ochoa,Gabriel Thomas.Resolution issues in the analysis of radar signals via fourier approaches[C].Proceedings of SPIE Radar Sensor Technology Ⅷ and Passive Millimeter-Wave Imaging Technology Ⅶ,Bellingham,WA,SPIE,2004,53-63.
    [107]王成,胡卫东,杜小勇等.稀疏子带的多频带雷达信号融合成像[J].电子学报,2006(录用待刊).
    [108]孙长印,保铮,张林让.一种快速有效的雷达成像超分辨算法[J].西安电子科技大学学报,1999,26(6):737-742.
    [109]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [110]Jian Li,Petre Stoica.Efficient mixed-spectrum estimation with applications to target feature extraction[J].IEEE Transactions on Signal Processing,1996,44(2):428-432.
    [111]Anthony J.Weiss,Benjamin Friedlander.Effects of modeling errors on the resolution threshold of the music algorithm[J].IEEE Transactions on Signal Processing,1994,42(6):1519-1526.
    [112]Bhaskar D.Rao,K.V.S.Haft.Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,37(12):1990-1995.
    [113]Bhaskar D.Rao,K.V.S.Had.Preformance analysis of Root-MUSIC[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,37(12):1939-1948.
    [114]Bjom Ottersten,Mats Viberg,Kailath Thomas.Performance analysis of the total least squares ESPRIT algorithm[J].IEEE Transactions on Signal Processing,1991,39(5): 1122-1134.
    [115]S.T.Smith.Statistical Resolution Limits and the Complexified Cramér-Rao Bound[J].IEEE Transactions on Signal Processing,2005,53(5):1597-1609.
    [116]O.T.Keith Zhang.Probability of resolution of the MUSIC algorithm[J].IEEE Transactions on Signal Processing,1995,43(4):978-986.
    [117]D.L.Fried.Resolution,signal-to-noise-ratio,and measurement precision[J].J.Opt.Soc.Am.,1979,60:399-406.
    [118]D.L.Fried.Resolution,signal-to-noise-ratio,and measurement precision:addendum[J].J.Opt.Soc.Am.,1980,70:748-749.
    [119]V.Nagesha,S.Kay.Spectral analysis based on the canonical autoregressive decomposition[J].IEEE Transactions on Signal Processing,1996,44(7):1719-1733.
    [120]C.M.Cho,R M.Djuric.Bayesian detection and estimation of cisoids in colored noise[J].IEEE Transactions on Signal Processing,1995,43(12):2943-2951.
    [121]C.Chatterjee.Estimation of close sinusoids in colored noise and model discrimination[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1987,35(3):328-337.
    [122]李玺,顾红卫,刘国岁.ISAR成像中转角估计的新方法[J].电子学报,2000,28(6):44-47.
    [123]Minsheng Marshall Wang,Andrew K.Chan,Charles K.Chni.Linear frequency modulated signal detection using wavelet packet,ambiguity function and radon transform[J].Antennas and Propagation Society International Symposium,1995,1:308-311.
    [124]Yingxiang Li,Min Yi,Xianci Xiao.Recursive filtering radon-ambiguity transform algorithm for multi-LFM signals detection[C].IEEE 2002 International Conference on Communications,Circuits and Systems and West Sino Expositions,Chengdu,China,29 June-1 July,2002,2:1050-1053.
    [125]Wang Ling,Chen TianQi.Frequency and DOA estimation of LFM in fractional fourier domain[C].IEEE 2002 International Conference on Communications,Circuits and Systems and West Sino Expositions,Chengdu,China,29 June-1 July,2002,2:1029-1033.
    [126]刘爱芳,朱晓华,刘中.基于离散匹配傅立叶变换的多分量LFM信号检测和参数估计[J].信号处理,2002,18(6):539-542.
    [127]刘爱芳,朱晓华,刘中.基于Radon-Gabor变换的多分量LFM信号检测与参数估计[J].电子与信息学报,2004,26(2):220-224.
    [128]Barbarossa S.Analysis of multicomponent LFM signals by a combined Wigner-Hough transform[J].IEEE Transactions on Signal Processing,1995,43:1511-1515.
    [129]盛蔚,毛士艺.基于keystone变换的地面运动目标检测研究[J].系统工程与电子技术,2002,24(11):1-4.
    [130]陈文驰,保铮,邢孟道.基于Keystone变换的低信噪比ISAR成像[J].西安电子科技大学学报,2003,30(2):155-159.
    [131]郭汉伟,王岩,杨风风等.基于小波Radon变换检测线性调频信号[J].国防科技大学 学报,2003,25(1):92-94.
    [132]Minsheng Marshall Wang,Andrew K.Chan,Charles K.Chui.Linear frequency modulated signal detection using wavelet packed,ambiguity function and radon transform[J].IEEE Transactions on Signal Processing,1998,46(3):571-586.
    [133]Xiang-Gen Xia.Discrete chirp-fourier transform and its application to chirp rate estimation[J].IEEE Transactions on Signal Processing,2000,48(11):3084-3091.
    [134]刘峥,张守宏.跳频脉冲ISAR成像运动补偿的最小波形熵方法[J].西安电子科技大学学报,2000,27(6):691-695.
    [135]雷文,龙腾,韩月秋.调频步进雷达运动目标信号处理的信方法[J].电子学报,2000,28(12):34-37.
    [136]范玉芳,梁甸农.子脉冲线性调频步进雷达信号分析[J].信号处理,2001,17(4):318-321.
    [137]郑学合,阮文杰,袁起.Chirp子脉冲频率步进雷达信号的探讨[J].系统工程与电子技术,1998,(12):1-4.
    [138]李海英,杨汝良.腔内调频子脉冲信号照射下的宽带回波重建[J].电子与信息学报,2004,26(增刊):126-131.
    [139]Wang Cheng,Hu Wei-dong,Du Xiao-yong,et al.A new method of HRR profile formation based on multiple radars LFM signal fusion[C].The 5th IEEE International Symposium on Signal Processing and Information Technology,Athens,Greece,18-21 December,New York:IEEE Press,2005,131-135.
    [140]Wang Cheng,Hu Weidong,Du Xiaoyong,et al.High Resolution Range Profile Formation Based on LFM Signal Fusion of Multiple Radars[J].Journal of Electronics and Information Technology,2006(录用待刊).
    [141]Margolis E.,Eldar Y.C.Interpolation with nonuniform B-splines[C].Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP'04),Montreal,Quebec,Canada,17-21 May,2004,2:577-580.
    [142]王成,胡卫东,郁文贤.基于非平稳时间序列处理的雷达信号融合[J].信号处理,2005,21(4):338-343.
    [143]Mark R.McClure,Lawrence Carin.Matching pursuits with a wave-based dictionary[J].IEEE Transactions on Signal Processing,1997,45(12):2912-2927.
    [144]T Abatzoglou.A fast maximum likelihood algorithm for frequency estimation of a sinusoid based on Newton's method[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1985,33(1):77-89.
    [145]Jeng-Kuang Hwang,Jiurm-Horng Denq.Maximum likelihood estimation of multiple damped sinusoids by using Newton's iterations and improved initialization[C].IEEE Seventh SP Workshop on Statistical Signal and Array Processing,Chateau,Frontenac Québec,Canada,26-29 Jun,1994,23-26.
    [146]J.Augeby.Estimating signal parameters using the nonlinear instantaneous least squares approach[J].IEEE Transactions on Signal Processing,2000,48(10):2721-2732.
    [147]Leehter Yao,W.A Sethares.Nonlinear parameter estimation via the genetic algorithm[J].IEEETransactions on Signal Processing,1994,42(4):927-935.
    [148]G.H.戈卢布,C.F.范洛恩.矩阵计算[M].北京:科学出版社,2001.
    [149]Q.S.Ren,A.J.Willis.Fast root MUSIC algorithm[J].IEEE Electronics Letters,1997,33(6):450-451.
    [150]Q.S.Ren,A.J.Willis.Extending MUSIC to single snapshot and on line direction finding applications[C].IEE Proceedings of Radar Systems,Edinburgh,UK,14-16 Oct.,1997,783-787.
    [151]C.E.Shannon.A mathematical theory of communication[J].The Bell System Technical Journal,1948,27:379-423,623-656.
    [152]Li XI,Liu Guosui,Ni Jinlin.Autofocusing of ISAR images based on entropy minimization[J].IEEE Transactions on Aerospace and electronic systems,1999,35(4):1240-1252.
    [153]X Sun,Z Bao.Improving ISAR imaging quality based on minimum entropy method[C].The IEE 1997 Radar Conference,Edinburgh,UK,14-16 October,1997,240-243.
    [154]X.H.Qiu,Y.Zhao,S.Udpa.Phase Compensation for ISAR Imaging Combined with Entropy Principle[C].The Antennas and Propagation Society International Symposium of the IEEE,Columbus,OH,USA,22-27 June,2003,3:195-198.
    [155]Junfeng Wang,D.Kasilingam,Xingzhao Liu,et al.ISAR minimum-entropy phase adjustment[C].The IEEE 2004 Radar Conference,Wyndham Philadelphia,Philadelphia,Pennsylvania,26-29 April,2004,197-200.
    [156]Peter J.Brockwell.Non-Stationary and Seasonal Time Series(Chap 6)[DB/OL].http://www.stat.colostate.edu/~pjbrock/st525/chap6.pdf,2003-10-15/2004-1-18.
    [157]Chukiet Sodsri.Time-varying autoregressive modeling for nonstationary acoustic signal and its frequency[D].Pennsylvania:the Pennsylvania state university,graduate program in acoustics,2003.
    [158]D.M.Wilkes,G.Liang,J.A.Cadzow.ARMA model order determination and MDL:a new perspective[C].Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing(ICASSP),San Francisco,March,1992,5:525-528.
    [159]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [160]Q.Renaud,J.L.Starck,F.Murtagh.Prediction Based on a Multiscale Decomposition[J].International Journal of Wavelets,Multiresolution and Information Processing,2003,1:217-232.
    [161]J.M.Lina.Complex Daubechies wavelets:filters design and applications[DB/OL],http://citeseer.nj.nec.com/lina97complex.html.,2004-11-18.
    [162]N.G.Kingsbury.Complex wavelets and shift invariance[C].Proceedings of the IEE Colloquium on Time-Scale and Time-Frequency Analysis and Applications,London,29 February,2000,1-10.
    [163]N.G.Kingsbury.A Dual-Tree Complex Wavelet Transform with improved orthogonality and symmetry properties[C].The IEEE 2000 International Conference on Image Processing,Vancouver,BC,Canada,10-13 September,2000,2:375-378.
    [164]Ramesh A.Gopinath.The phaselet transform:an integral redundancy nearly shift-invariant wavelet transform[J].IEEE Transactions on Signal Processing,2000,51(7):1792-1805.
    [165]A.Lee Swindlehurst,Bjom Ottersten,Richard Roy,et al.Multiple invariance ESPRIT[J].IEEE Transactions on Signal Processing,1992,40(4):867-881.
    [166]Aweke N.Lemma,Alle-Jan van der Veen,Ed F.Deprettere.Joint angle-frequency estimation using multi-resolution ESPRIT[C].The IEEE 1998 International Conference on Acoustics,Speech,and Signal Processing,Seattle,Washington,USA,12-15 May,1998,4:1957-1960.
    [167]Aweke N.Lemma,Alle-Jan van der Veen,Ed F.Deprettere.Multiresolution ESPRIT algorithm[J].IEEE Transactions on Signal Processing,1998,47(6):1722-1726.
    [168]A.Schuster.Theory of Optics[M].London,1924.p.158.
    [169]W.V.Houston.A compound interferometer for fine structure work[J].Phys.Rev.,1927,29:478-484.
    [170]A.Buxton.Note on optical resolution[J].Philos.Mag.,1916,23:440-442.
    [171]I.J.Cox,C.J.R.Sheppard.Information capacity and resolution in an optical system[J].J.Opt.Soc.Am.AS,1986,3(8):1152-1158.
    [172]P.C.Sun,E.N.Leith.Superresolution by spatialtemporal encoding methods[J].Appl.Opt.,1992,31(23):4857-4862.
    [173]W.Lukosz.Optical system with resolving powers exceeding the classical limit[J].J.Opt.Soc.Am.,1966,56:1463-1472.
    [174]W.Lukosz.Optical system with resolving powers exceeding the classical limit II[J].J.Opt.Soc.Am.,1967,57(7):932-941.
    [175]S.A.Basinger,E.Michielssen,D.J.Brady.Degrees of freedom of polychromatic images[J].J.Opt.Soc.Am.A,1995,12(4):704-714.
    [176]J.L.Harrs.Resolving power and decision theory[J].J.Opt.Soc.Am.,1964,54(5):606-611.
    [177]C.W.Helstrom.The detection and resolution of optical signals[J].IEEE Transactions on Information Theory,1964,10(4):275-287.
    [178]D.R.Cunningham,R.D.Laramore.Detection in image dependent noise[J].IEEE Transactions on Information Theory,1976,22(5):603-610.
    [179]D.L.Fried.Resolution,signal-to-noise-ratio,and measurement precision[J].J.Opt.Soc.Am.,1979,69:399-406.
    [180]P.S.Idell,A.Webster.Resolution limits for coherent optical imaging:signal-to-noise analysis in the spatia-frequency domain[j].J.Opt.Soc.Am.A,1992,9:43-55.
    [181]O.Falconi.Maximum sensitivities of optical ditection and twise measuring instruments[J].J.Opt.Soc.Am.,1964,54:1315-1320.
    [182]E.J.Farrell.Information content of photoelectric star images[J].J.Opt.Soc.Am.,1966,56:578-587.
    [183]C.W.Helstrom.Resolvability of object from the standpoint of statistical parameter estimation[J].J.Opt.Soc.Am.,1970,60:659-666.
    [184]T.Orhaug.On the resolution of imaging systems[J].Opt.Acta,1969,16(1):75-84.
    [185]W.Y.Cathey,B.R.Frieden,W.Y.Rhodes,et al.Image gathering and processing for enhanced resolution[J].J.Opt.Soc.Am.A,1984,1:241-250.
    [186]S.F.Yau,Y.Bresler.A compact Cramér-Rao bound expression for parametric estimation of superimposed signals[J].IEEE Transactions on Signal Processing,1992,40(5):1226-1230.
    [187]Steven M.Kay.统计信号处理基础-估计与检测理论[M].北京:电子工业出版社,2004.
    [188]Jian Li,Renbiao Wu,Victor C.Chen.Robust autofocus algorithm for ISAR imaging of moving targets[J].IEEE Transactions on Aerospace and Electronic System,37(3):1056-1069.
    [189]F.Berizzi,M.Martorella,B.Haywood,et al.A survey on ISAR autofocusing techniques[C].The 2004 International Conference on Image Processing(ICIP),Singapore,Republic of Singapore,24-27 October,2004,1:9-12.
    [190]邢孟道,保铮,郑义明等.适合于大型平稳和机动目标的成像算法[J].信号处理,2001,17(1):47-55.
    [191]邹红星,周小波,李衍达.基于Radon-STFT变换的含噪LFM信号子空间分解[J].电子学报,1999,27(12):4-8.
    [192]Ramon Brcich,Abdelhak M.Zoubir.Parameter estimation of linear frequency modulated signals with missing observations[C].Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing(ICASSP'03),6-10 April,2003,6:569-572.
    [193]Xiang-Gen Xia,Genyuan Wang.Adaptive Chirp-Fourier Transform for Chirp Estiamtion with Applications in ISAR Imaging of Maneuvering Targets[C].The SPIE:Wavelet Applications Ⅷ,New York,18-20 April,2001,4391:389-398.
    [194]孙鸿波,郭欣,顾红等.修正离散Chirp-Fourier变换及其在SAR运动目标检测中的应用[J].电子学报,2003,31(1):25-28.
    [195]A.-J.van der Veen.Joint angle and delay estimation using shift-invariance techniques[J].IEEE Transactions on Signal Processing,1998,46(2):405-418.
    [196]Yingba Hua.Estimating two-dimensional frequencies by matrix enhancement and matrix pencil[J].IEEE Transactions on Signal Processing,1992,40(9):2267-2280.
    [197]Stephanie Rouquette,Mohamed Najim.Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods[J].IEEE Transactions on Signal Processing,2001,49(1):237-245.
    [198]A.N.Lemma,A.-J.van der Veen,E.F.Deprettere.Analysis of joint angle-frequency estimation using ESPRIT[J].IEEE Transactions on Signal Processing,2003,51(5):1264-1283.
    [199]Fei Wang,Shuxun Wang,Hujing Dou.Estimating two-dimensional frequency paris by extended ESPRIT-type method[C].Proceedings of International Conference on Communication Technology(ICCT 2003),9-11 April,2003,2:1464-1467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700