基于视觉层次感知机制的图像理解方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像理解研究利用计算机系统解释图像,实现类似人类或其他高等生物视觉系统理解外部世界的行为,是当前计算机领域的研究热点和难点。图像理解与计算机视觉都在于研究并体现具有与人类视觉认知水平相当的能力,因此从人类视觉感知系统出发研究图像理解过程具有重要的理论意义和应用前景。事实证明图像理解所具有的显著层次分析结构与视觉系统的层次化感知机制是高度一致的,对视觉感知系统的结构和功能的理解及其数学模型的建立是扩充和发展现有图像理解方法的一种重要手段和根本出发点。
     本文从图像理解与计算机视觉以及认知学之间的关系入手,以视觉认知的生理学和心理学研究成果为依据,以视觉信息的表示、学习和理解为研究主线,重点分析了视觉层次感知机制及其计算模型,结合相关视皮层的重要结构和功能机理,研究并构建了基于视觉层次感知机制的图像理解框架,完成了视觉分割、轮廓检测、广义目标识别以及场景分类等不同层次的图像理解任务。
     本文的主要工作如下:
     (1)概述了图像理解的发展历史、研究现状及其层次结构特点,介绍了视觉层次感知系统的生理学构造、功能特点及相关研究成果,总结了基于视觉层次感知机制的计算模型,指出了视觉感知系统中存在的若干重要结构和功能机理,分析了图像理解与视觉感知系统之间的关系,提出了基于视觉层次感知机制的图像理解研究框架。
     (2)研究了图像理解的低层特征描述方法,针对彩色图像的分割问题,通过构造分层特征描述了具有视觉感知一致性的图像区域,利用Fuzzy-ART内部的bottom-up和top-down交互作用形成了不同特征层次的像素类别划分,结合一定的区域合并策略,构建了层次化的视觉感知分割模型。
     (3)以视皮层的拓扑连接为依据,进一步研究了图像理解的低层视觉描述,通过分析神经元之间的侧抑制与拓扑连接关系及其视觉形成机理,在原始自适应共振模型中引入了拓扑结构及其自组织学习策略,建立了具有拓扑保持特性的自适应共振模型,形成了拓扑保持结构下的低层视觉属性描述,实现了视觉目标的轮廓检测以及区域分割。
     (4)以图像理解的中层结构信息表示方法为基础,分析了相关视皮层目标识别计算模型,有效利用初级视觉系统的信息抽象方法和稀疏编码机制,形成了视皮层目标识别计算模型中目标原型的稀疏化表示,提出了复杂背景下基于稀疏编码机制的层次化广义目标识别算法。
     (5)以图像理解的高层视觉认知过程为背景,在理解场景的全局快速感知效应的基础上,分析了场景感知Gist表示的快速形成机理,研究了视皮层的层内快速反馈动力学特性及其与场景整体感知之间的关系,构建了基于视皮层组织的场景全局感知计算模型,实现了有效地场景分类算法。
Image understanding is the current hotspot and difficulty in computer area, which is to interpret the image scene and its contents by using computer systems and realize the behavior of understanding the outside world as the vision systems of human and other higher organisms. Image understanding and computer vision both have the aim of studying and embodying the visual cognitive ability of human, thus the researches on image understanding from the perspective of human visual perception system has important theoretical significance and application prospect. It has been proved that the distinct level property of image understanding is highly consistent with the hierarchical perception mechanisms of human visual system, therefore, the understanding of structure and function of visual perception system and the construction of corresponding mathematical models are important means and fundamental starting point, which can extend and develop the existing image understanding methods.
     Considering the relationship between image understanding and computer vison, image understanding and cognitive science, this thesis focuses on the representation, learning and understanding of visual information based on the research findings of visual physiology and psychology. We mainly analyze the hierarchical visual perception mechanisms and their corresponding computational models. Combined with the dominant mechanisms of structure and function in visual cortex, a novel image understanding framework based on hierarchical visual perception mechanisms is built, which can implement a series of visual task such as image segmentation, object contour detection, generic object recognition and scene classification in different levels.
     The main work of this thesis includes:
     (1) The development history, research status and level property of image understanding are summarized. The physiology structure, functional characteristics, and related research results are also introduced. Furtherly, we discuss the computational models based on hierarchical visual perception mechanisms, and point out several related structural and functional mechanisms in visual cortex. Finally, the relationship between image understanding and human visual perception system is analyzed and then the research framework of image understanding based on hierarchical visual perception mechanisms is proposed.
     (2) The description of low-level feature in image understanding is studied. Aiming at the key issues of color image segmentation, we first construct a group of hierarchical visual feature that describes the visual consistent image regions, and then the categories of pixels are classified by utilizing the interaction between bottom-up and top-down module inside the Fuzzy-ART model. Combined with the specific strategy of image region merging, a hierarchial visual segmentation model is constructed.
     (3) Based on the topological connection in visual cortex, we furtherly research low-level visual description in image understanding. Through analyzing the lateral inhibition and topological connection between neurons and their vision formation mechanism, topological structure and self-organizing learning strategies are introduced into the original ART model, and thereby a topology preserving ART model is constructed. Under the constraint of topology preserving, the new ART model can describe low-level visual properties and perform object contour detection and region segmentation better.
     (4) According to the representation of middle-level structural information in image understanding, we analyze the existing models of object recognition in visual cortex. By virtue of the abstract information model in primary visual cortex and the mechanism of sparse coding, a kind of sparse representation of object ptototype can be formed, based on which we present a hierarchical feature extraction method for generic object recognition.
     (5) Taking the high-level visual cognition as the background, we analyze the fast formation of perceptual Gist representation of scenes based on the effect of global and quick perception of scenes. Dynamic characteristics of visual cortex and its relation to holistic scene perception are researched, and we propose a computational model for scene classification based on Gist features derived from global perception in human visual cortex.
引文
[1]王润生.图像理解.北京:国防科技大学出版社,1995.
    [2]Ungerleider L G,Mishkin M.Two cortical visual system.In Ingle D J,Goodale M A,Mansfield R J W(Eds.),Analysis of Visual Behavior.Cambridge,MA:MIT Press,1982,549-586.
    [3]D.Hubel,T.Wiesel.Receptive fields,binocular interaction,and functional architecture in cat's visual cortex.Journal of Physiology,1962,160(1):106-154.
    [4]章毓晋.图像理解与计算机视觉.北京:清华大学出版社,2000.
    [5]T.Kadir and M.Brady.Scale saliency operator,http://www.robots.ox.ac.uk/~timork/salscal,2003.
    [6]T.K.Leung,M.C.Burl and P.Peroma.Finding faces in cluttered scenes using random labeled graph matching.In:Proceedings of the 5th International Conference on Computer Vision,1995,637-644.
    [7]D.Lowe.Local feature view clustering for 3D object recognition.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2001,682-688.
    [8]K.Mikolajczyk and C.Schmid.Indexing based on scale invariant interest points.In:Proceedings of the 8th International Conference on Computer Vision,2001,525-531.
    [9]C.J.Harris and M.Stephens.A combined comer and edge detector.In:Proceedings of the 4th Alvey Vision Conference,1988,147-151.
    [10]D.Lowe.Object recognition from local scale-invariant features.In:Proceedings of 7th International Conference on Computer Vision,1999,2:1150-1157.
    [11]Y.Amit,D.Geman.A computational model for visual selection.Neural Computation,1998,11(7):1691-1715.
    [12]Y.Amit,D.Geman and K.Wilder.Joint induction of shape features and tree classifiers.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(11):1300-1305.
    [13]M.Turk and A.Pentland.Eigenfaces for recognition.Journal of Cognitive Neuroscience,1991,3(1):71-86.
    [14]P.Belhumeur,J.Hespanha and D.Kriegman.Eigenfaces vs.fisherfaces:Recognition using class specific linear projection.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
    [15]H.Rowley,S.Baluja and T.Kanade.Neural network-based face detection.IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):23-38.
    [16]G.Csurka,C.Bray,C.Dance and L.Fan.Visual categorization with bags of keypoints.In Workshop on Statistical Learning in Computer Vision,2004,1-22.
    [17]M.Burl and P.Perona.Recognition of planar object class.In:Proceedings of Computer Vision and Pattern Recognition,1996,223-230.
    [18]M.Weber,W.Einhauser,M.Welling and P.Perona.Viewpoint-invariant learning and detection of human heads.In:Proceedings 4th IEEE International Conference Automatic Face and Gesture Recognition,2000,20-27.
    [19]R.Forgus.Visual Object Category Recognition.PhD thesis,Oxford University,2005.
    [20]P.Felzenszwalb and D.Huttenlocher.Pictorial structures for object recognition.In:Proceedings of the IEEE Conference on Computer Vision and Pattem Recognition,2000,2066-2073.
    [21]L.Fei-Fei,R.Forgus and P.Perona.A Baysian approach to unsupervised one-shot leaming of object categories.In:Proceedings of the 9th International Conference on Computer Vision,2003,1134-1141.
    [22]A.Vailaya,A.Figueiredo,A.Jain,H.Zhang.Image classification for content-based indexing.IEEE Transactions on Image Processing,2001,10:117-129.
    [23]M.Szummer,R.W.Picard.Indoor-outdoor image classification.In:IEEE International Workshop on Content-based Access of Image and Video Databases,in conjunction with ICCV'98,Bombay,India,1998,42-50.
    [24]J.Vogel,B.Schiele.Natural scene retrieval based on a semantic modeling step.In:International Conference on Image and Video Retrieval,LNCS,Dublin,Ireland,2004,3115:207-215.
    [25]A.Bosch,A.Zisserman,X.Mu(?)oz.Scene classification via plsa.In:European Conference on Computer Vision,Graz,Austria,2004,4:517-530.
    [26]L.Fei-Fei,P.Perona.A Bayesian hierarchical model for leaming natural scene categories.In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattem Recognition,Washington,DC,USA,2005,524-531.
    [27]S.Lazebnik,C.Schmid,J.Ponce.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories.In:IEEE Computer Society Conference on Computer Vision and Pattern Recognition,New York,2006
    [28]A.Oliva,A.Torralba.Modeling the shape of the scene:a holistic representation of the spatial envelope.International Journal of Computer Vision,2001,42(3):145-175.
    [29]谢昭.图像理解关键问题和方法研究.合肥工业大学博士学位论文,2007.
    [30]高隽,谢昭著.图像理解理论与方法.北京:科学出版社,2009.
    [31]邵静.协同视觉选择注意计算模型研究.合肥工业大学博士学位论文,2008.
    [1]Anjen Chenn and Christopher A.Wash.Cranking it up a notch.Science,1999,286(5440):689-690.
    [2]杨雄里.视觉的神经机制.上海:上海科学技术出版社,1996.
    [3]罗四维.视觉感知系统信息处理理论.北京:电子工业出版社,2006.
    [4]C.G.Gross.Brain Vision and Memory:Tales in the History of Neuroscience.MIT Press,1998.
    [5]Ungerleider L G,Mishkin M.Two cortical visual system.In Ingle D J,Goodale M A,Mansfield R J W(Eds.),Analysis of Visual Behavior.Cambridge,MA:MIT Press,1982,549-586.
    [6]D.J.Felleman and D.C.Van Essen.Distributed hierarchical processing in the primate cerebral cortex.Cerebral Cortex,1991,1(1):1-47.
    [7]Grossberg,S.How does the cerebral cortex work? Learning,attention and grouping by the laminar circuits of visual cortex.Spatial Vision,1999,12(2):163-185.
    [8]D.Hubel,T.Wiesel.Receptive fields,binocular interaction,and functional architecture in cat's visual cortex.Journal of Physiology,1962,160(1):106-154.
    [9]D.Hubel,T.Wiesel.Receptive fields and functional architecture in two nonstriate visual areas (18 and 19)of the cat.Journal ofNeurophysiology,1965,28(2):229-289.
    [10]Crick,F.,& Koch,C.Constraints on cortical and thalamic projections:the no-strong-loops hypothesis.Nature,1998,391(6664):245-250.
    [11]Fahle M.Perceptual learning:gain without pain? Nature Neuroscience,2002,5(10):923-924.
    [12]Gilbert C D,Sigman M,and Crist R E.The neural basis of perceptual learning.Neuron,2001,31 (5):681-697.
    [13]李新.面向神经计算的视觉信息处理研究.西北工业大学博士学位论文,2002.
    [14]章毓晋.图像理解与计算机视觉.北京:清华大学出版社,2000.
    [15]Fukushima,K.Neocognitron:A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.Biological Cybernetics,1980,36(4):193-202.
    [16]杨谦,齐翔林,汪云九.简单细胞方位选择性感受野组织形成的神经网络模型.中国科学(C辑),2000,30(4):412-420.
    [17]Perrett,D.and Oram,M..Neurophysiology of shape processing.Image and Vision Computation,1993,11(6):317-333.
    [18]Gupta Madan M.,Knopf George K..(editors).Neural-vision systems:principles and applications,IEEE Press,1994.
    [19]Wallis,G.and Rolls,E.T..A model of invariant object recognition in the visual system.Progress in Neurobiology,1997,51:167-194.
    [20]F(o|¨)ldi(?)k,P.Learning invariance from transformation sequences.Neural Computation,1991,3(2):194-200.
    [21]S.Behnke and R.Rojas.Neural abstraction pyramid:A hierarchical image understanding architecture,In:Proceedings of IJCNN'98,1998,2:820-825.
    [22]S.Behnke.Hebbian learning and competition in the neural abstraction pyramid,In:Proceedings of IJCNN'99,Washington,DC,USA,1999,2:1356-1361.
    [23]LeCun,Y.,Bottou,L.,Bengio,Y.,and Haffner,P..Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
    [24]Mel,B.SEEMORE:combining color,shape,and texture histogramming in a neurally inspired approach to visual object recognition.Neural Computation,1997,9(4):777-804.
    [25]K(o|¨)rner,E.etc.A model of computation in neocortical architecture,Neural Networks,1999,12(7-8):989-1005.
    [26]Rodermann,T.& K(o|¨)mer,E..Two separate processing streams in a cortical-type architecture. Neurocomputing,2001,38-40,1541-1547.
    [27]Wersing,H.& K(o|¨)rner,E..Learning optimized features for hierarchical models of invariant object recognition,Neural Computation,2003,15(7):1559-1588.
    [28]Poggio,T.& Edelman,S.A network that learns to recognize 3D objects.Nature,1990,343(6255):263-266.
    [29]Riesenhuber,M.and T.Poggio.Hierarchical models of object recognition in cortex.Nature neuroscience,1999,2(11):1019-1025.
    [30]Riesenhuber,M.and T.Poggio.Neural mechanisms of object recognition.Current Opinion in Neurobiology,2002,12(2):162-168.
    [31]Thomas Serre,Lior Wolf,Stanley Bileschi,Maximilian and Tomaso Poggio.Robust Object Recognition with Cortex-Like Mechanisms.IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(3):411-426
    [32]Jim Mutch and David G.Lowe.Multiclass Object Recognition with Sparse,Localized Features.In Proceedings of the 2006 IEEE conference on CVPR,2006,1:11-18.
    [33]S.M.Bileschi and L.Wolf.A unified system for object detection,texture recognition,and context analysis based on the standard model feature set.In British Machine Vision Conference (BMVC),2005.
    [34]S.Bileschi.StreetScenes:Towards Scene Understanding in Still Images.PhD thesis,MIT,2006.
    [35]Rao,P.N.and Ballard,D.H..Dynamic model of visual recognition predicts neural response properties in the visual cortex,Neural Computation,1997,9(4):721-763.
    [36]Bridgeman,B.Metacontrast and lateral inhibition.Psychological Review,1971,78(6):528-539.
    [37]Grossberg,S.How does the cerebral cortex work? Learning,attention and grouping by the laminar circuits of visual cortex.Spatial Vision,1999,12(2):163-185.
    [38]Ross,W.,Grossberg,S.,& Mingolla,E.Visual cortical mechanisms of perceptual grouping:interacting layers,networks,columns and maps.Neural Networks,2000,13(6):571-588.
    [39]Grossberg,S.,Mingolla,E.,& Ross,W.Visual brain and visual perception:how does the cortex do perceptual grouping? Trends in Neurosciences,1997,20(3):106-111.
    [40]Deco,G.& Schürmann,B..A hierarchical neural sytem with attentional top-down enhancement of the spatial resolution for object recognition.Vision Research,2000,40:2845-2859.
    [41]Amit,Y..A neural network architecture for visual selection.Neural Computation,2000,12(5):1141-1164.
    [42]Amit,Y.& Mascaro,M..An integrated network for invariant visual detection and recognition.Vision Research,2003,43:2073-2088.
    [43]Lee,T.S.& Mumford,D..Hierarchical Bayesian inference in the visual cortex,Journal of the Optical Society of American A,2003,20(7):1434-1448.
    [44]危辉.一个关于视知觉不变性的层次网络表示与计算模型.小型微型计算机系统,2003,24(7):1280-1284.
    [45]危辉,栾尚敏.基于连通结构与动力学过程的知觉记忆层次模型.软件学报,2004,15(11):1616-1628.
    [46]Ullman,S.& Sali,E..Object Classification Using a Fragment-Based Representation.In:Seong-Whan Lee,Heinrich H.Bulthoff,Tomaso Poggio (eds.):Biologically Motivated Computer Vision, First IEEE International Workshop, BMVC 2000, Seoul, Korea, May 15-17,2000, Proc. Lecture Notes in Computer Science 1811 Springer, 73-87.
    [47] Epshtein, B. and Ullman, S.. Feature hierarchies for object classification. In: Proceedings of 2005 IEEE International Conference on Computer Vision, 2005,1: 220-227.
    [48] Dileep George, Jeff Hawkins. A Hierarchical Bayesian Model of Invariant Pattern Recognition in the Visual Cortex. In: Proceedings of 2005 IEEE International Joint Conference on Neural Networks, 2005, 3: 1812-1817.
    [49] Roelfsema, P. R.. Cortical algorithms for perceptual grouping. Annual Review of Neuroscience, 2006, 29: 203-227.
    [50] Barlow, H. B.. Single units and cognition: A neuron doctrine for perceptual psychology. Perception, 1985, 1:371-394.
    [51] Olshausen, B. A. & Field, D. J.. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 1997,37: 3311-3325.
    [52] Bell, A. J. & Sejnowski, T. J.. The "independent components" of natural scenes are edge filters,. Vision Research, 1997, 37: 3327-3338.
    [53] Hoyer, P. O. & Hyv(?)rinen, A.. A multi-plyer sparse coding network learns contour coding from natural images. Vision Research, 2002,42(12): 1593-1605.
    [54] Hoyer, P. O. & Hyv(?)rinen, A.. Independent component analysis applied to feature extraction from color and stereo images, Network, 2000,11(3): 191-210.
    [55] Wiskott, L. & Sejnowski, T.. Slow feature analysis: Unsupervised learning of invariances, Neural Computation, 2002,14(4): 715-770.
    [56] Lee, D. L. & Seung, S.. Learning the parts of objects by non-negative matrix factorization, Nature, 1999,401:788-791.
    [57] Victor AF Lamme, Hans Sup(?)r and Henk Spekreijse. Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 1998, 8(4): 529-535.
    [58] E.M. Callaway. Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Networks, 2004,17(5-6): 625-632.
    [59] D. J. Willshaw and C. Von Der Malsburg. How Patterned Neural Connections Can Be Set Up by Self-Organization. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1976,194(1117): 431-445.
    [60] Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982,43(1): 203-243.
    [61] Kohonen T. Self-organizing maps. 2nd edition. Berlin: Springer, 1997.
    [62] Grossberg, S. 3D vision and figure-ground separation by visual cortex. Perception and Psychophysics, 1994, 55(1): 48-120.
    [63] Grossberg, S., McLough lin N P. Cortical dynamics of three-dimensional surface perception: binocular and half-occluded scenic images. Neural Networks, 1997, 10(9): 1583-1605.
    [64] Grossberg, S. and Swaminathan, G A laminar cortical model for 3D perception of slanted and curved surfaces and of 2D images: development, attention, and bistability. Vision Research, 2004,44(11): 1147-1187.
    [65] T. Lee and D. Mumford. Hierarchical Bayesian Inference in the Visual Cortex. J. Opt. Soc. Am. A, 2003,20(7): 1434-1448.
    [66] Barlow H B. Possible principles underlying the transformation of sensory messages. In Rosenblith W A,ed.Sensory Communication.Cambridge,MA:MIT Press,1961,217-234.
    [67]Bruno A.Olshausen and David J.Field.Emergence of simple-cell receptive field properties by learning a sparse code for natural images.Nature,1996,381:607-609.
    [68]Bruno A.Olshausen and David J.Field,Sparse Coding with an Overcomplete Basis Set:A Strategy Employed by Vl? Vision Research,1997,37(23):3311-3325.
    [69]Carpenter G.A.,Grossberg S.The ART of adaptive pattern recognition by self-organization neural network.IEEE transactions on Computer,1988,21(3):77-88.
    [70]Grossberg,S.Adaptive pattern classification and universal recoding,Ⅰ:Parallel development and coding of neural feature detectors & Ⅱ:Feedback,expectation,olfaction,and illusions.Biological Cybernetics,1976,23(3):121-134 & 23(4):187-202.
    [71]Carpenter G.A.,& Grossberg S.A massively parallel architecture for a self-organizing neural pattern recognition machine.Computer Vision,Graphics,and Image Processing,1987a,37(2):54-115.
    [72]Edward M.Callaway.Local circuits in primary visual cortex of the macaque monkey.Annual Review of Neuroscience,1998,21 (1):47-74.
    [73]高隽.人工神经网络原理及仿真实例.北京:机械工业出版社,2003.
    [74]高隽.智能信息处理方法导论.北京:机械工业出版社,2004.
    [75]寿天德.视觉信息处理的脑机制.上海:上海科技教育出版社,1997.
    [76]汪云九.神经信息学-神经系统的理论和模型.北京:高等教育出版社,2007
    [77]M.C.Potter.Short-term conceptual memory for pictures,Joumal of Experimental Psychology:Human Learning and Memory,1976,2:509-522.
    [78]A.Oliva.Gist of the scene,In:Itti,L.Rees,G.and Tsotsos,J.K.(Eds),Neurobiology of Attention,Elsevier,2005,251-256.
    [1]S.K.Pal et al.A Review on Image Segmentation Techniques.Pattern Recognition,1993,26(9):1277-1294.
    [2]W.Skarbek and A.Koschan.Colour Image Segmentation-A Survey.Technical report,10587,Berlin,Germany,Tech.Univ.of Berlin,Oct,1994.
    [3]H.D.Cheng,X.H.Jiang,Y.Sun and Jing Li Wang.Color Image Segmentation:Advances & Propects.Pattern Recognition,2001,34(12):2259-2281.
    [4]G.A.Carpenter,S.Grossberg,and David B.Rosen.Fuzzy ART:Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System.Neural Networks,1991,4(6):759-771.
    [5]M.Chapron.A New Chromatic Edge Detector Used for Color Image Segmentation.In:Proceedings of IEEE International Conference on Image Processing,Hague,Netherlands,1992,3:311-314.
    [6]章毓晋.图像工程上册—图像处理和分析.北京:清华大学出版社,1999.
    [7]Zhang Y J,Yao Y R,He Y.Color image segmentation based on HIS model.High Technology Letters,1998b,4(1):28-31.
    [8]D.C.Tseng and C.H.Chang.Color Segmentation Using Perceptual Attributes.In:Proceedings of IEEE International Conference on Image Processing,Hague,Netherlands,1992,3:228-331.
    [9]林开颜,徐立鸿,吴军辉.快速模糊C均值聚类彩色图像分割方法.中国图象图形学报,2004,9(2):159-163.
    [10]C.W.Tao.Unsupervised fuzzy clustering with multi-center clusters.Fuzzy Sets and Systems,2002,128(3):305-322.
    [11]M.Borsotti,P.Campadelli,R.Schettini.Quantitative evaluation of color image segmentation results.Pattern Recognition Letters,1998,19(8):741-747.
    [12]Bezdek J C.Pattern Recognition with Fuzzy Objective Function Algorithms.New York:Plenum Press,1981.
    [13]Pham,TD.Image Segmentation using Probabilistic Fuzzy C-means Clustering.In:Proceedings of International Conference on Image processing,Thessaloniki,Greece,2001,1:722-725.
    [14]S.H.Park,I.D.Yun,and S.U.Lee.Color Image Segmentation Based on 3-D Clustering:Morphological Approach.Pattern Recognition,1998,31(8):1061-1076.
    [15]A.R.Weeks and G.E.Hague.Color Segmentation in the HIS Color Space Using the K-means Algorithm,Proc.of the SPIE-Nonlinear Image Processing,San Jose,CA,10-11 Feb.1997,pp.143-154.
    [16]Carevic D.,Caelli T..Region-based coding of color images using Karhunen-Loeve transform.Graphics Models and Image Processing,1997,59(1):27-38.
    [17]J.Wu,H.Yan,and A.N.Chalmers.Color Image Segmentation Using Fuzzy Clustering and Supervised Learning.Journal of Electronic Imaging,1994,pp.397-403.
    [18]Y.Kamei-Harada,M.Miyakoshi,and M.Shimbo.A Fuzzy Clustering Method for Automatic Segmentation of Color Scenes.Japanese Journal of Fuzzy Theory and Systems,1994,6(5): 651-672.
    [19] Y. Rui, A. C. She, and T. S. Huang. Automated Region Segmentation Using Attraction-based Grouping in Spatial color-texture Space. In: Proc. of 1996 Int'l Conf. on Image Processing (ICIP'96), Lausanne, Switzerland, 16-19 Sept. 1996,Ⅰ: 53-56.
    [20] P. Schmid. Segmentation of Digitized Dermatoscopic Images by Two-dimensional Color Clustering. IEEE Trans. on Medical Imaging, 1999, MI-18(2): 164-171.
    [21] K. B. Eum, J. Lee, and A. N. Venetsanopoulos. Color Image Segmentation Using a Possibilistic Approach. In: Proc. of IEEE Int'l Conf. on Systems, Man, and Cybernetics, Beijing, China, 14-17 Oct. 1996,2: 1150-1155.
    [22] Chen T. Q., Lu Y. Color image segmentation-An innovative approach. Pattern Recognition, 2002, 35(2): 395-405.
    [23] K. Takahashi, H. Nakatani, and K. Abe. Color Image Segmentation Using ISODATA Clustering Method. In: Proc. of the 2nd Asian Conf. on Computer Vision (ACCV'95), Singapore, 5-8 Dec.1995,Ⅰ: 523-527.
    [24] K. Takahashi and K. Abe. Color Image Segmentation Using ISODATA Clustering Algorithm. Trans. of the Institute of Electronics, Information and Communication Engineers D-Ⅱ,1999, J82D-Ⅱ(4):751-762.
    [25] D. Comaniciu and P. Meer. Robust Analysis of Feature Spaces: Color Image Segmentation. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 17-19 June 1997, pp. 750-755.
    [26] T. Uchiyama and M. A. Arbib. Color Image Segmentation Using Competitive Learning. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1994, PAMI-16(12): 1197-1206.
    [27] A. Verikas and K. Malmqvist. Increasing Color Image Segmentation Accuracy by Means of Fuzzy Post-processing. In: Proc. of Int'l conf. on Neural Networks, Perth, WA, Australia, 27 Nov. -1 Dec. 1995,4: 1713-1718.
    [28] W. Wang, C. Sun, and H. Chao. Color Image Segmentation and Understanding through Connected Components. In: Proc. of IEEE Int'l Conf. on Systems, Man, and Cybernetics, Orlando, FL, 12-15 Oct. 1997,2: 1089-1093.
    [29] H. C. Yung, and H. S. Lai. Segmentation of Color Images Based on the Gravitational Clustering Concept. Optical Engineering, 1998, 37(3): 989-1000.
    [30] K. Uchimura. Color Images Segmentation Using Tree Representation. Trans. of the Institute of Electrical Engineers of Japan, Part C, 1994, 114-C(12): 1320-1321.
    [31] N. Kehtarnavaz, J. Monaco, J. Nimtschek, and A. Weeks. Color Image Segmentation Using Multi-scale Clustering. In: Proc. of 1998 IEEE Southwest Symp. on Image Analysis and Interpretation, Tucson, AZ, 5-7 Apr. 1998, pp. 142-147.
    [32] J. Shi and J. Malik. Normalized Cuts and Image Segmentation. In: Proc. of IEEE Int'l Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 17-19, June 1997, pp. 731-737.
    [33] J. Shi, S. Belongie, T. Leung, and J. Malik. Image and Video Segmentation: The Normalized Cut Framework. In: Proc. of 1998 Int'l Conf. on Image Processing (ICIP'98), Chicago, IL, 4-7 Oct. 1998,Ⅰ: 943-947.
    [34] Z. and R. Lehay. An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993,PAMI-15(11): 1101-1113.
    [35] L. Lucchese and S.K. Mitra. Unsupervised Segmentation of Color Images Based on k-Means Clustering in the Chromaticity Plane. In: Proc. of IEEE Workshop on Content-Based Access of Images and Video Libraries(CBAIVL'99), Fort Collins, CO, 22 June 1999, pp. 74-78.
    [36] T.N. Pappas. An Adaptive Clustering Algorithm for Image Segmentation. IEEE Trans. on Signal Processing, 1992, SP-40(4): 901-914.
    [37] E. Saber, A.M. Tekalp, and G. Bozdagi. Fusion of Color and Edge Information for Improved Segmentation and Edge Linking. In: Proc of 1996 IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing (ICASSP'96), Atlanta, GA, 7-10 May 1996,4: 2176-2179.
    [38] J. Luo, R.T. Gray, and H. C. Lee. Towards Physics-Based Segmentation of Photographic Color Image. In: Proc. of 1997 Int'l Conf. on Image Processing (ICIP'97), Santa Barbara, CA, 26-29 Oct. 1997,Ⅲ:58-61.
    [39] M. Celenk and M. Uijt de Haag. Optimal Thresholding for Color Images. In: Proc. of the SPIE - The Int'l Soc. for Optical Eng., nonlinear Image Processing Ⅸ, San Cose, CA, 26-27 Jan.1998, pp. 250-259.
    [40] L. Shafarenko, M. Petrou, and J. Kittler. Histogram Based Segmentation in a Perceptually Uniform Color Space. IEEE Trans. on Image Processing, 1998, IP-7(9): 1354-1358.
    [41] D. C. Tseng, Y. F. Li, and C. T. Tung. Circular Histogram Thresholding for Color Image Segmentation. In: Proc. of the 3rd Int'l Conf. on Document Analysis and Recognition, Montreal,Que., Canada, 14-16 Aug. 1995, 2: 673-676.
    [42] D. C. Tseng and C. H. Chang. Color Segmentation Using UCS Perceptual Attributes. In: Proc. of the National Science Council, Republic of China, 1994, Part A, 18(3): 305-313.
    [43] P. Pujas and M. J. Aldon. Segmentation of Color Images: A Perceptual Method. In: Proc. of the 3rd Int'l Conf. Interface to Real and Virtual Worlds, Montpellier, France, 7-11 Feb. 1994, pp.285-295.
    [44] N. Herodotou, K. N. Plataniotis, and A. N. Venetsanopoulos. A Color Segmentation Scheme for Object-based Video Coding. In: Proc. of 1998 IEEE Symposium on Advances in Digital Filtering and Signal Processing, Victoria, BC, Canada, 5-6 June 1998, pp. 25-29.
    [45] D. Androutsos, K. N. Plataniotis, and A. N. Venetsanopoulos. Distance Measures for Color Image Retrieval. In: Proc. of 1998 Int'l Conf. on Image Processing (ICIP'98), Chicago, IL, 4-7 Oct. 1998, Ⅱ: 770-774.
    [46] C. Scheering and A. Knoll. Fast Color Image Segmentation Using a Pre-clustered Chromaticity-plane. In: Proc. of 1997 IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing (ICASSP'97), Munich, Germany, 21-24 April 1997,4: 3145-3147.
    [47] K. Sobottka and I. Pitas. Segmentation and Tracking of Faces in Color Images. In: Proc. of the 2nd Int'l Conf. on Automatic Face and Gesture Recognition, Killington, VT, 14-16 Oct. 1996,pp. 236-241.
    [48] D. Chai and K. N. Ngan. Face Segmentation Using Skin Color Map in Videophone Applications. IEEE Trans. on Circuits and Systems for Video Technology, 1999, CASVT-9(4): 551-564.
    [49] G. Guo, S. Yu, and S. Ma. Unsupervised Segmentation of Color Images. In: Proc. of 1998 Int'l Conf. on Image Processing (ICIP'98), Chicago, IL, 4-7 Oct. 1998,Ⅲ: 299-302.
    [50] Kurugollu F, Sankur B, Harmanci A. E. Color image segmentation using histogram multithresholding and fusion. Image and Vision Computing, 2001, 19(13): 915-928.
    [51] E. Saber, A. M. Tekalp, R. Eschbach, and K. Knox. Annotation of Natural Scenes Using Adaptive Color Segmentation. In: Proc. of the SPIE - The Int'l Soc. for Optical Eng., Image and Video Proc. Ⅲ, San Jose, CA, 9-10 Feb. 1995, pp. 72-80.
    [52] L. J. Liu, J. F. Lu, J. Y. Yang, K. Liu, Y. G. Wu, and S. J. Li. Efficient Segmentation of Nuclei in Different Color Spaces. In: Proc. of the SPIE - The Int'l Soc. for Optical Eng., Appl. of Digital Image Proc. XVⅡ, San Diego, CA, 26-29 July 1994, pp. 773-778.
    [53] L. Lucchese and S. K. Mitra. An Algorithm for Unsupervised Color Image Segmentation. In: Proc. of 1998 IEEE 2nd Workshop on Multimedia Signal Processing, Redondo Beach, CA, 7-9 Dec. 1998, pp. 33-38.
    [54] L. Lucchese and S.K. Mitra. Unsupervised Low-Frequency Driven Segmentation of Color Images. In: Proc. of 1999 Int'l Conf. on Image Processing(ICIP'99), Kobe, Japan, 25-28 Oct.1999, 3: 240-244.
    [55] D. K. Panjwani and G. Healey. Markov Random Field Models for Unsupervised Segmentation of Textured Color Images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995, PAMI-17(10): 939-954.
    [56] J. Liu and Y. H. Yang. Multiresolution Color Image Segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1994, PAMI-16(7): 689-700.
    [57] M. Celenk. Hierarchical Color Clustering for Segmentation of Textured Images. In: Proc. of the 29th Southeastern Symposium on System Theory, Cookeville, TN, 9-11 Mar. 1997, pp.483-487. [58] V. A. Christopoulos, P. De Muynck, and J. Cornelis. Color Image Segmentation for Low Bit Rate Segmented Image Coding. In: Proc. of the 13th Int'l Conf. on Digital Signal Processing, Santorini, Greece, 2-4 July 1997,2: 861-864.
    [59] S. Ji and H.W. Park. Image Segmentation of Color Image Based on Region Coherency. In: Proc. of 1998 Int'l Conf. on Image Processing (ICIP'98), Chicago, IL, 4-7 Oct. 1998,Ⅰ: 80-83.
    [60] L. Shafarenko, M. Petrou, and J. Kittler. Automatic Watershed Segmentation of Randomly Textured Color Images. IEEE Trans. on Image Processing, 1997, IP-6(11): 1530-1544.
    [61] K. Saarinen. Color Image Segmentation by a Watershed Algorithm and Region Adjacency Graph Processing. In: Proc. of 1994 Int'l Conf. on Image Processing (ICIP'94), Austin, TX,13-16 Nov. 1994,Ⅲ: 1021-1025.
    [62] T. Gevers and A. W. M. Smeulders. Combining Region Splitting and Edge Detection through Guided Delaunay Image Subdivision. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 17-19 June 1997, pp. 1021-1026.
    [63] R. Schettini and M. Suardi. A Low-level Segmentation Procedure for Color Images. In: Proc. of the 7th European Signal Processing Conference (EUSIPCO-94), Lausanne, Switzerland, 13-16 Sept. 1994,Ⅰ: 26-29.
    [64] S. Itoh and I. Matsuda. Segmentation of Color Still Images Using Voronoi Diagrams. In: Proc. of the 8th European Signal Processing Conference (EUSIPCO-96), Trieste, Italy, 10-13 Sept.1996,Ⅲ:1869-1872.
    [65] I. Pollak, H. Krim, and A. S. Willsky. Stabilized Inverse Diffusion Equations and Segmentation of Vector-Valued Images. In: Proc. of 1998 Int'l Conf. on Image Processing(ICIP'98), Chicago,IL, 4-7 Oct. 1998,Ⅲ: 246-248.
    [66] J. Gao, J. Zhang, M. G. Fleming, I. Pollak, and A. B. Cognetta. Segmentation of Dermatoscopic Images by Stabilized Inverse Diffusion Equations. In: Proc. of 1998 Int'l Conf. on Image Processing (ICIP'98), Chicago, IL, 4-7 Oct. 1998,Ⅲ: 823-827.
    [67] V. Lozano and B. Laget. Fractional Pyramids for Color Image Segmentation. In: Proc. of Southwest Symposium on Image Analysis and Interpretation, San Antonio, TX, 8-9 April 1996,pp. 13-17.
    [68] F. Ziliani and B. Jensen. Unsupervised Image Segmentation Using the Modi_ed Pyramidal Linking Approach. In: Proc. of 1998 Int'l Conf. on Image Processing (ICIP'98), Chicago, IL,4-7 Oct. 1998,Ⅲ:303-307.
    [69] A. Tremeau and N. Borel. A Region Growing and Merging Algorithm to Color Segmentation. Pattern Recognition, 1997,30(7): 1191-1204.
    [70] Y. Kanai. Image Segmentation Using Intensity and Color Information. In: Proc. of the SPIE the International Society for Optical Engineering, Proc. SPIE Visual Communications and Image Processing '98, San Jose, CA, 28-30 Jan. 1998, pp. 709-720.
    [71] B. Cramariuc, M. Gabbouj, and J. Astola. Clustering Based Region Growing Algorithm for Color Image Segmentation. In: Proc. of the 13th Int'l Conf. on Digital Signal Processing, Santorini, Greece, 2-4 July 1997,2: 857-860.
    [72] Y. Deng, B.S. Manjunath, and H. Shin. Color Image Segmentation. In: Proc. of 1999 Int'l Conf. on Computer Vision and Pattern Recognition (CVPR'99), Fort Collins, CO, June, 1999, 2: 23-25.
    [73] V. Rehrmann and L. Priese. Fast and Robust Segmentation of Natural Color Scenes. In: Proc. of the 3rd Asian Conf. on Computer Vision (ACCV'98), Hong Kong, 8-10 Jan. 1998, 1:598-606.
    [74] A. Moghaddamzadeh and N. Bourbakis. A Fuzzy Region Growing Approach for Segmentation of Color Images. Pattern Recognition, 1997,30(6): 867-881.
    [75] T. Carron and P. Lambert. Integration of Linguistic Knowledge for Color Image Segmentation. In: Proc. of the 8th European Signal Processing Conference (EUSIPCO-96), Trieste, Italy, 10-13 Sept. 1996,3: 1729-1732.
    [76] P. Colantoni and B. Laget. Color Image Segmentation Using Region Adjacency Graphs.In: Proc. of the 6th Int'l Conf. on Image Processing and Its Applications, Dublin, Ireland, 14-17 July 1997, 2: 698-702.
    [77] H. Tao and T. S. Huang. Color Image Edge Detection Using Cluster Analysis. In: Proc. of 1997 Int'l Conf. on Image Processing(ICIP'97), Santa Barbara, CA, 26-29, Oct., 1997,Ⅰ: 834-836.
    [78] W. Y. Ma and B. S. Manjunath. Edge Flow: A Framework of Boundary Detection and Image Segmentation. In: Proc. of IEEE Int'l Conf. on Computer Vision and Pattern Recognition(CVPR'97), Puerto Rico, June 1997, 744-749.
    [79] F. Perez and C. Koch. Toward Color Image Segmentation in Analog VLSI: Algorithm and Hardware. Int'l Journal of Computer Vision, 1994,12(1): 17-42.
    [80] G. Sapiro. Color Snakes. Computer Vision and Image Understanding, 1997,68(2): 247-253.
    [81] T. Gevers, S. Ghebreab, and A. Smeulders. Color Invariant Snakes. In: Proc. of the 9th British Machine Vision Conf., Southampton, UK, 14-17 Sept. 1998,2: 578-588.
    [82] J. Shah. Curve Evolution and Segmentation Functionals: Application to Color Images. In: Proc. of 1996 Int'l Conf. on Image Processing(ICIP'96), Lausane, Switzerland, 16-19 Sept. 1996, Ⅰ: 461-464.
    [83] D. Mumford and J. Shah. Boundary Detection by Minimizing Functions. In: Proc. of IEEE Int'l Conf. on Computer Vision and Pattern Recognition(CVPR'85), San Francisco, CA, USA, 19-23 June 1985, 22-26.
    [84] J. M. Morel and S. Solimini. Variational Methods in Image Segmentation. Birkhauser, Boston, 1995.
    [85] P. Campadelli, D. Medici, and R. Schettini. Color Image Segmentation Using Hopfield Networks. Image and Vision Computing, 1997,15(3): 161-166.
    [86] S. Rachid, N. Niki, H. Nishitani, S. Nakamura, and S. Mori. Segmentation of Sputum Color Image for Lung Cancer Diagnosis. In: Proc. of 1997 Int'l Conf. on Image Processing(ICIP'97),Santa Barbara, CA, 26-29 Oct. 1997,Ⅰ: 243-246.
    [87] H. Okii, N. Kaneki, H. Hara, and K. Ono. Automatic Color Segmentation Method Using a Neural Network Model for Stained Images. IEICE Trans. on Information and Systems(Japan),1994,E77-D(3):343-350.
    [88] N. Funakubo. Feature Extraction of Color Texture Using Neural Networks for Region Segmentation. In: Proc. of the 20th Annual Conf. of IEEE Industrial Electronics(IECON'94), Bologna, Italy, 5-9 Sept. 1994, 2:852-856.
    [89] A. Verikas, K. Malmqvist, and L. Bergman. Colour Image Segmentation by Modular Neural Networks. Pattern Recognition Letters, 1997,18(2): 173-185.
    [90] Ong S. H., Yeo N. C, Lee. K. H. et al. Segmentation of color images using a two-stage self-organizing network. Image and Vision Computing, 2002, 20(4): 279-289.
    [91] Papamarkos N., Strouthopoulous C. et al. Multithresholding of color and gray-level images through a neural network technique. Image and Vision Computing, 2000,18(3): 213-222.
    [92] C. K. Ong and T. Matsuyama. Robust Color Segmentation Using the Dichromatic Reflection Model. In: Proc. of the 14th Int'l Conf. on Pattern Recognition, Brisbane, Qld., Australia, 16-20 Aug 1998,1:780-784.
    [93] R. Bajcsy, S. W. Lee, and A. Leonardis. Detection of Diffuse and Specular Interface Reflections and Inter-reflections by Color Image Segmentation. Int'l Journal of Computer Vision, 1996, 17(3): 241-272.
    [1]Carpenter G.A.,Grossberg S..A massively parallel architecture for a self-organizing neural pattern recognition machine.Computer Vision,Graphics,and Image Processing,1987a,37:54-115.
    [2]Carpenter G.A.,Grossberg S..ART2:Stable self-organization of pattern recognition codes for analog input patterns.Applied Optics,1987b,26:4919-4930.
    [3]Carpenter G.A.,Grossberg S..ART3:Hierarchical Search Using Chemical Transmitters in Self-Organizing Pattern Recognition Architectures.Neural Networks,1990,3:129-152.
    [4]Carpenter G.A.,Grossberg S.,and Rosen D.B..ART-2A:An adaptive resonance algorithm for rapid category learning and recognition.Neural Networks,1991,4:493-504.
    [5]Carpenter G.A.,Grossberg S.,Markuzon N.,Reynolds J.H.,and Rosen D.B.Fuzzy ARTMAP:a neural network architecture for incremental supervised learning of analog multidimensional maps.IEEE Transactions on Neural Networks,1992,3:698-713.
    [6]Carpenter,G.A.,Marten,S.,Mingolla,E.et al.Biologically inspired approaches to automated feature extraction and target recognition.In:Proceedings of 33rd Applied Imagery Pattern Recognition Workshop,13-15,Oct,2004,61-66.
    [7]Carpenter,G.A.,Marten,S.and Ogas,O.J..Self-organizing information fusion and hierarchical knowledge discovery:a new framework using ARTMAP neural networks.Neural Networks,2005,18(3):287-295.
    [8]Carpenter,G.A.,Ravindran,A..Unifying multiple knowledge domains using the ARTMAP information fusion system.In:Proceedings of 11th International Conference on Information Fusion,30,June-3,July,2008,1-8.
    [9]Carpenter G.A.,Boriana L.Milenova,Benjamin W.Noeske.Distributed ARTMAP:a neural network for fast distributed supervised learning.Neural Networks,1998,11:793-813.
    [10]Williamson J.R.Gaussian ARTMAP:a neural network for fast incremental learning of noisy multidimensional maps.Neural Networks,1996,9:881-897.
    [11]Baraldi,A.and Palma,B.A survey of Fuzzy Clustering Algorithms for pattern recognition.IEEE Transactions on Neural Networks,1999,29(6):786-801.
    [12]G.C.Anagnostopoulos and M.Georgiopoulos.Ellipsoid ART and ARTMAP for Incremental Unsupervised and Supervised Learning.International Joint Conference on Neural Networks, Washington D.C., 2001,2: 1221-1226.
    [13] Rui Xu, Donald Wunsch. Survey of Clustering Algorithms. IEEE Transactions on Neural Networks, 2005, 16(3): 645-678.
    [14] Tenmoto, H., Kudo, M. MDL-based selection of the number of components in mixture models for pattern classification. Lecture Notes in Computer Science, 1998,1451, 831-836.
    [15] Jianjun Huang, Rongchun Zhao. Image segmentation based on Fuzzy-ART neural network. Chinese Journal of Electronics, 2001,29(5): 718-721.
    [16] E.M. Callaway. Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Networks, 2004,17(5-6): 625-632.
    [17] Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 203-243.
    [18] Kohonen T. Self-Organizing Maps, 3rd edition. New York: Springer-Verlag, 2001.
    [19] Fritzke, B.. A growing neural gas network learns topologies. In Gerald Tesauro, David S.Touretzky, and Todd K. Leen, editors, Advances in Neural Information Processing Systems, Denver, Colorado, 1995, 7, MIT Press.
    [20] Fritzke, B.. A self-organizing network that can follow non-stationary distributions. In:Proceedings of ICANN-97, International Conference on Artificial Neural Networks, 1997,613-618, Springer.
    [21] Carpenter G. A., Grossberg S., and John H. Reynolds. ARTMAP: Supervised Real-Time Learning and Classification of Nonstationary Data by a Self-Organizing Neural Network.Neural Networks, 1991,4: 565-588.
    [22] Carpenter, G. A. and William D. Ross. ART-EMAP: A Neural Network Architecture for Object Recognition by Evidence Accumulation. IEEE Transactions on Neural Networks, 1995, 6(4):805-818. [23] Carpenter, G. A. and N. Markuzon. ARTMAP-IC and medical diagnosis: Instance counting and inconsistent cases. Neural Networks, 1998,11: 323-336.
    [24] M. Borsotti, P. Campadelli, R. Schettini. Quantitative evaluation of color image segmentation results. Pattern Recognition Letters, 1998,19(8): 741-747.
    [1]I.Biederman.An Invitation to Cognitive Science.MIT Press,2(2):121-165,1995.
    [2]D.Hubel,T.Wiesel.Receptive fields and functional architecture in two nonstriate visual areas (18 and 19)of the cat.Journal of Neurophysiology,1965,28(2):229-289.
    [3]Fukushima,K..Neocognitron:A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.Biological Cybernetics,1980,36(4):193-202.
    [4]Perrett,D.and Oram,M..Neurophysiology of shape processing.Image and Vision Computation,1993,11(6):317-333.
    [5]Poggio,T.and Edelman,S..A network that learns to recognize 3D objects.Nature,1990,343(6255):263-266.
    [6]Riesenhuber,M.and Poggio,T..Are cortical models really bound by the “binding problem”? Neuron,1999a,24(1):87-93.
    [7]LeCun,Y.,Bottou,L.,Bengio,Y.,and Haffner,P..Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
    [8]Wallis,G.and Rolls,E.T..A model of invariant object recognition in the visual system.Progress in Neurobiology,1996,51,167-194.
    [9]Thomas Serre,Lior Wolf,Stanley Bileschi,Maximilian and Tomaso Poggio.Robust Object Recognition with Cortex-Like Mechanisms.IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(3):411-426.
    [10]Bruno A.Olshausen,David J.Field.Emergence of simple-cell receptive field properties by learning a sparse code for natural images.Nature,1996,381:607-609.
    [11]Joshua B.Tenenbaum and William T.Freeman.Separating style and content with bilinear models.Neural Computation,2000,12(6):1247-1283.
    [12]E.P.Simoncelli.Vision and the statistics of the visual environment.Current Opinion in Neurobiology, 2003, 13(2): 144-149.
    [13] A. Hyv(? )rinen, E. Oja, P. Hoyer and J. Horri. Image feature extraction by sparse coding and independent component analysis. Proceedings of the 14th International Conference on Pattern Recognition, Brisbane, Australia, 1998,(2): 1268-1273.
    [14] P. O. Hoyer. Modeling receptive fields with non-negative sparse coding. Neurocomputing, 2003, (52-54): 547-552.
    [15] P. O. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research, 2004, 5, 1457-1469.
    [16] K. Mikolajczyk, C. Schmid. A Performance Evaluation of Local Descriptors. IEEE transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
    [17] A. Hyv(?)rinen and P. O. Hoyer. A Two-Layer Sparse Coding Model Learns Simple and Complex Cell Receptive Fields and Topography from Natural Images. Vision Research, 2001, 41(18): 2413-2423.
    [18] Maximilian Riesenhuber and Tomaso Poggio. Models of object recognition. Nature Neuroscience, 2000,3: 1199-1204.
    [19] K. Tanaka. Inferotemporal cortex and object vision. Ann. Rev. Neurosci., 1996, 19: 109-139. [20] D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 1968, 195: 215-243.
    [21] G. M. Boynton and J. Hegd(?). Visual cortex: The continuing puzzle of area V2. Current Biology, 2004, 14(13): 523-524.
    [22] E. Kobatake, G. Wang, and K. Tanaka. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. Journal of Neurophysiology, 1998, 80(1):324-330.
    [23] N. K. Logothetis, J. Pauls, and T. Poggio. Shape representation in the inferior temporal cortex of monkeys. Current Biology, 1995, 5(5): 552-563.
    [24] C. G. Gross, C. E. Rocha-Miranda, and D. B. Bender. Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology, 1972, 35: 96-111.
    [25] D. J. Freedman, M. Riesenhuber, T. Poggio, and E. K. Miller. Comparison of primate prefrontal and inferior temporal cortices during visual categorization. Journal of Neuroscience, 2003, 23(12): 5235-5246.
    [26] G. Rainer and E. K. Miller. Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron, 2000, 27(1): 179-189.
    [27] D. L. Sheinberg and N. K. Logothetis. Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision. Journal of Neuroscience, 2001, 21(4):1340-1350.
    [28] N. Sigala and N. Logothetis. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 2002, 415: 318-320.
    [29] M. C. Booth and E. T. Rolls. View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cerebral Cortex, 1998, 8: 510-523.
    [30] D. J. Freedman, M. Riesenhuber, T. Poggio, and E. K. Miller. Experience dependent sharpening of visual shape selectivity in inferior temporal cortex. Cerebral Cortex, 2006, 16(11):1631-1644. [31] I. Gauthier, M. J. Tarr, A. W. Anderson et al. Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects.Nature Neuroscience,1999,2(6):568-573.
    [32]T.Yang and J.H.R.Maunsell.The effect of perceptual learning on neuronal responses in monkey visual area V4.Journal of.Neuroscience,2004,24:1617-1626.
    [33]H.Yao and Y.Dan.Stimulus timing-dependent plasticity in cortical processing of orientation.Neuron,2001,32:315-323.
    [34]M.C.Potter.Short-term conceptual memory for pictures,Journal of Experimental Psychology:Human Learning and Memory,1976,2:509-522.
    [35]S.J.Thorpe,D.Fize,and C.Marlot.Speed of processing in the human visual system.Nature,1996,381:520-522.
    [36]S.J.Thorpe,A.Delorme,and R.VanRullen.Spike-based strategies for rapid processing.Neural Networks,2001 a,14(6-7):715-725.
    [37]M.J.Tovee,E.T.Rolls,A.Treves,and R.P.Bellis.Information encoding and the response of single neurons in the primate temporal visual cortex.Journal of Neurophysiology,1993,70(2):640-654.
    [38]C.Keysers,D.K.Xiao,P.F(o|¨)ldi(?)k,and D.I.Perrett.The speed of sight.Journal of Cognitive Neuroscience,2001,13(1):90-101.
    [39]C.Hung,G.Kreiman,T.Poggio,and J.DiCarlo.Fast read-out of object identity from macaque inferior temporal cortex.Science,2005,310:863-866.
    [40]S.J.Thorpe and J.Gautrais.Rapid visual processing using spike asynchrony.Neural Information Processing Systems,1997,901-907.
    [41]J.Mutch,D.G.Lowe.Multiclass Object Recognition with Sparse,Localized Features.In:Proceedings of the 2006 IEEE Conference on CVPR,2006,1:11-18.
    [42]A.Hyv(a|¨)rinen,E.Oja,P.Hoyer and J.Horri.Image feature extraction by sparse coding and independent component analysis.Proceedings of the 14th International Conference on Pattern Recognition,Brisbane,Australia,1998,(2):1268-1273.
    [43]D.L.Donoho and Michael Elad.Optimally sparse representation in general dictionaries via l~1 minimization.In:Proceedings of the National Academy of Sciences,2003,100(5):2197-2202.
    [44]杨谦,齐翔林,汪云九.视皮层V1区简单细胞的稀疏编码策略.计算物理,2001,18(2):143-146.
    [1]M.Boutell,J.Luo.Review of the state of the art in semantic scene classification,Technical Report,the University of Rochester,2002.
    [2]A.Oliva.Gist of the scene,In:Itti,L.Rees,G.and Tsotsos,J.K.(Eds),Neurobiology of Attention,Elsevier,2005,251-256.
    [3]Rosch,E.and Mervis,C.B.Family resemblances:Studies in the internal structure of categories.Cognitive Psychology,1975,7:573-605.
    [4]Carson,C.,Thomas,M.,Belongie,S.,Hellerstein,J.M.,and Malik,J.Blobworld:A system for region-based image indexing and retrieval.In Third International Conference on Visual Information Systems,June 1999,Springer-Verlag.
    [5]De Bonet,J.S.and Viola,P.Structure driven image database retrieval.Advances in Neural Information Processing,1997,10:866-872.
    [6]Lipson,P.,Grimson,E.,and Sinha,P.Configuration based scene classification and image indexing.In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Puerto Rico,1997,1007-1013.
    [7]Gorkani,M.M.and Picard,R.W.Texture orientation for sorting photos “at a glance”.In Proc.Int.Conf.Pat.Rec.,Jerusalem,1994,I:459-464.
    [8]M.Szummer,R.W.Picard.Indoor-outdoor image classification,IEEE International Workshop on Content-based Access of Image and Video Databases, in conjunction with ICCV'98, 1998:42-51. [9] A. Vailaya, A. Figueiredo, A. Jain, H. Zhang. Image classification for content-based indexing,IEEE Transactions on Image Processing, 2001,10(1): 117-130.
    [10] Michelle R. Greene, Aude Oliva. Recognition of natural scenes from global properties: Seeing the forest without representing the trees, Cognitive Psychology, 2009, 58(2): 137-176.
    [11] A. Vailaya, M. Figueiredo, A. Jain, H. Zhang. Content-based hierarchical classification of vacation images, In IEEE international Conference on Multimedia Computing and Systems, Florence, Italy, 1999,1: 518-523.
    [12] E. Chang, K. Goh, G. Sychay, G. Wu. Cbsa: Content-based soft annotation for multimodal image retrieval using bayes point machines, IEEE Transactions on Circuits and Systems for Video Technology Special Issue on Conceptual and Dynamical Aspects of Multimedia Content Description, 2006,13(1): 26-38.
    [13] J. Shen, J. Shepherd, A.H.H. Ngu. Semantic-sensitive classification for large image libraries, In International Multimedia Modelling Conference, Melbourne, Australia, 2005, 340-345.
    [14] S. Paek, S. F. Chang. A knowledge engineering approach for image classification based on probabilistic reasoning systems, IEEE International Conference on Multimedia and Expo, 2000,(2): 1133-1136.
    [15] N. Serrano, A. Savakis, J. Luo. Improved scene classification using efficient low-level features and semantic cues, Pattern Recognition, 2004, 37(9): 1773-1784.
    [16] J. Fan, Y. Gao, H. Luo, G. Xu. Statistical modeling and conceptualization of natural images, Pattern Recognition, 2005, 38(6): 865-885.
    [17] J. Luo, A.E. Savakis, A. Singhal. A Bayesian network-based framework for semantic image understanding, Pattern Recognition, 2005, 38(6): 919-934.
    [18] S. Aksoy, K. Koperski, C. Tusk, G. Marchisio, J.C. Tilton. Learning Bayesian classifiers for scene classification with a visual grammar, IEEE Transactions on Geoscience and Remote Sensing, 2004, 43(3): 581-589.
    [19] C. Fredembach, M. Schr(?)der, S. S(?)sstrunk. Eigenregions for image classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(12): 1645-1649.
    [20] A. Mojsiovic, J. Gomes, B. Rogowitz. Isee: Perceptual features for image library navigation, In Proc. SPIE Human vision and electronic imaging, San Jose, California, 2002, 4662: 266-277. [21] J. Vogel, B. Schiele. Semantic Modeling of Natural Scenes for Content-Based Image Retrieval, International Journal of Computer Vision, 2007, 72(2): 133-157.
    [22] G. Csurka, C. Bray, C. Dance and L. Fan. Visual categorization with bags of keypoints. In Workshop on Statistical Learning in Computer Vision, ECCV, 2004.
    [23] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis, Machine Learning, 2001, 41(2): 177-196.
    [24] D. Blei, A. Ng, M. Jordan. Latent dirichlet allocation, Journal of Machine Learning Research, 2003, 3: 993-1022.
    [25] L. W. Renninger, J. Malik. When is scene identification just texture recognition? Vision Research, 2004, 44(19): 2301-2311.
    [26] A. Bosch, A. Zisserman, X. Mu(?)oz. Scene classification via plsa, In European Conference on Computer Vision, Graz, Austria, 2006,4: 517-530.
    [27] P. Quelhas, F. Monay, J. Odobez, D. Gatica-Perez, T. Tuytelaars, L. Van Gool. Modeling scenes with local descriptors and latent aspects, In International Conference on Computer Vision, Beijing, China, 2005, 883-890.
    [28] L. Fei-Fei, P. Perona. A Bayesian Hierarchical Model for Learning Natural Scene Categories, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, (2):20-25.
    [29] F. Perronin, C. Dance, G. Csurka, M. Bressan. Adapted vocabularies for generic visual categorization, In European Conference on Computer Vision, Graz, Austria, 2006,4: 464-475.
    [30] S. Lazebnik, C. Schmid, J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006,2: 2169-2178.
    [31] R. Fergus, L. Fei-Fei, P. Perona, A. Zisserman. Learning object categories from google's image search, In International Conference on Computer Vision, Beijing, China, 2005,2: 1816-1823.
    [32] A. Oliva. Gist of the scene, In: Itti, L. Rees, G and Tsotsos, J. K. (Eds), Neurobiology of Attention, Elsevier, 2005, 251-256.
    [33] Gregory R. L. Visual Psychology [M]. Beijing. Beijing Normal University Press, 1986.(Gregory R. L.著.视觉心理学 [M].彭聃龄,杨 译.北京:北京师范大学出版社,1986.)
    [34] M. C. Potter. Short-term conceptual memory for pictures, Journal of Experimental Psychology:Human Learning and Memory, 1976,2: 509-522.
    [35] L. Fei-Fei, R. VanRullen, C. Koch, P. Perona. Rapid natural scene categorization in the near absence of attention, Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(14): 9596-9601.
    [36] A. Oliva, A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope, International Journal of Computer Vision, 2001,42(3): 145-175.
    [37] C. Siagian, L. Itti. Rapid Biologically-Inspired Scene Classification Using Features Shared with Visual Attention, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(2): 300-312.
    [38] M. S. Castelhano, J. M. Henderson. The Influence of Color on the Perception of Scene Gist, Journal of Experimental Psychology: Human Perception and Performance, 2008, 34(3):660-675.
    [39] D. Hubel, T. Wiesel. Receptive fields, binocular interaction, and functional architecture in cat's visual cortex. Journal of Physiology, 1962,160(1): 106-154.
    [40] S. Grossberg, N. P. Mcloughlin. Cortical Dynamics of Three-Dimensional Surface Perception: Binocular and Half-Occluded Scenic Images, Neural Networks, 1997,10(9): 1583-1605.
    [41] Jun Yang, Yu-Gang Jiang, Alexander G Hauptmann, Chong-Wah Ngo. Evaluating bag-of-visual-words representations in scene classification, Proceedings of the international workshop on Workshop on multimedia information retrieval, 2007,197-206.
    [42] A. Bosch, X. Mufioz, and R. Marti. Which is the best way to organize/classify images by content? Image and Vision Computing, 2007, 25(6): 778-791.
    [43] A. Oliva and A. Torralba. Building the gist of a scene: the role of global image features in recognition. Progress in Brain Research, 2006,155: 23-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700