欠定混合信号的盲分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盲信号分离是指在源信号及其混合传输信道未知情况下,仅仅利用观测到的混合信号来估计源信号。由于盲信号分离具有非常广泛的应用领域,如生物医学工程、语音增强、数字通信系统、图像处理、遥感、雷达和声纳等领域,从而成为现代信号处理领域研究的热点问题。以往的研究大多是基于观测信号个数必须大于源信号个数,而且一般假设源信号个数已知。然而,在实际应用中这些条件往往不能满足。本文围绕这些问题展开研究,重点研究源信号数目未知时欠定混合信号的盲分离问题,也就是观测信号个数少于源信号个数的盲信号分离问题。论文的主要工作概括如下:
     1、在信号为稀疏信号的前提下,利用稀疏混合信号聚类特点,针对欠定稀疏混合信号盲分离问题,提出了拉普拉斯势函数法。在源信号个数未知条件下,对于充分稀疏混合信号,采用拉普拉斯势函数法来估计源信号个数和混合矩阵,再用线性规划法来估计源信号。对于不充分稀疏混合信号,则利用聚类平面势函数法先估计聚类平面的法线向量,再利用势函数法来估计聚类平面的交线,得到源数和混合矩阵的估计;然后,利用其混合信号子空间聚类特点,采用部分信号分离法来恢复源信号。为了减小噪声和异常值对势函数值估计的影响,与以往直接计算势函数值的方法不同,而是采用聚类算法来估计聚类中心势函数的大小,并对算法的鲁棒特性进行了分析。
     2、在有噪声和源数未知条件下,针对欠定稀疏混合信号盲分离问题,提出了基于鲁棒竞争聚类学习算法来实现欠定混合信号盲分离。在源信号个数未知的条件下,对于充分稀疏混合信号,利用竞争聚类学习算法来估计聚类中心势的相对大小,利用聚类中心势的相对大小来估计源信号的个数以及混合矩阵,最后利用基追踪法来估计源信号。将鲁棒竞争聚类算法扩展用于不充分稀疏信号混合条件下的欠定盲分离问题,先利用鲁棒平面竞争聚类算法估计聚类平面的法线向量,再利用估计出的聚类平面,采用势函数法来估计聚类平面的交线向量及其个数,得到源信号个数和混合矩阵的估计。
     3、在非负信号约束下,针对适定或过定线性瞬时混合模型,提出了基于最小相关约束的NMF方法来实现盲信号分离。该方法通过使分离信号的每行之间的相关最小来提高信号分离的效果。同时将最小相关约束的NMF方法扩展用于卷积混合信号盲分离。
     4、在假定源信号为非负稀疏信号的基础上,提出一种tri-NMF算法来实现欠定混合信号盲分离,而一般情况下,常用的NMF算法不能用于欠定混合信号盲分离。该算法利用压缩采样技术原理,将一般非负矩阵分解转换为tri-NMF问题,并在目标函数中引入稀疏约束,提出一种新的乘法更新算法来实现欠定混合信号盲分离。
The goal of Blind Sources Separation (BSS) is to recover the original sources given only sensor observations that are unknown linear mixtures of the unobserved source signals. There are many potential exciting applications of blind sources separation in science and technology, especially in biomedical signal processing, wireless communication, audio and acoustics, image enhancement, sonar and radar systems; it has been one of the most active research areas in the modem signal processing. In the earlier research of the BSS, generally, most of the methods to BSS assume that the number of sources is known and the number of observed signals is not less than that of source signals. In practice, however, the number of the sources does not often hold and the number of mixing signals usually is less than that of sources. In this dissertation, we investigate the problem of underdetermined blind sources separation (UBSS) with an unknown source number, i.e. the number of observed signals is less than that of source signals. The primary contributions of the dissertation are summarized blow:
     1. Based on the sparse mixture models, a potential function method based on the Lapulacial potential function is proposed for UBSS. When the source signals are assumed to be sparse sufficiently, the number of sources and mixing matrix can be obtained by estimating the local maximum of the Lapulacial potential function. When the source signals are sparse insufficiently, the normal vectors of the concentration hyperplanes can be obtained by estimating the local maximum of the potential function, and then the number of sources and mixing matrix can be estimated by finding the intersection of the concentration hyperplanes. In order to increase the robustness to the noise and the outlier, the clustering algorithm is exploited to estimate the local maximum of the potential function instead of directly estimating the local maximum of the potential function.
     2. With unknown the number of sources, the Robust Competitive Agglomeration (RCA) algorithm is proposed to UBSS in the presence of noise. When the source signals are assumed to be sparse sufficiently, we can select the prototype parameters of clusters with larger cardinality as the estimation of mixing matrix’s column vectors and then we can restructure the mixing matrix. The number of column of the estimated mixing matrix can be regarded as the estimated number of the source signals. When the source signals are sparse insufficiently, the RCA algorithm can be extended to estimate the normal vectors of the concentration hyperplanes, and then the number of sources and mixing matrix can be also estimated by finding the intersection of the concentration hyperplanes.
     3. When the sources are nonnegative, a novel algorithm is proposed for over or well determined BSS based on the Nonnegative Matrix Factorization (NMF) methods with the least correlated component constraints. The algorithm relaxes the source independence assumption and has low-complexity algebraic computations, and thus is computationally efficient. The algorithm can be also used to blind separation of convolutive mixed sources.
     4. In generally, the problem of UBSS can not be solved by using the standard NMF methods. With the assumption of that the source signals are nonnegative and sparse; a tri-NMF algorithm is proposed to recover the source signals for UBSS. Based on the theory of Compressive Sampling (CS), the problem of NMF can be converted to a tri-NMF model. By incorporating the regularization and sparse penalty into the cost function, a novel multiplicative update rules is proposed to solve the problem of UBSS based on tri-NMF.
引文
[1] A. Hyv?rinen, J. Karhunen, E. Oja. Independent Component Analysis [M]. Wiley, 2001
    [2] A. Cichocki, S. Amari. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications [M]. Wiley, 2003
    [3] J. Herault, C. Jutten. Space or time adaptive signal processing by neural network models [C]. AIP Conference Proceedings, 1986, 151: 206-211
    [4] P. Comon. Independent component analysis, A new concept? [J]. Signal Processing, 1994, 36(3): 287-314
    [5] C. Jutten, J. Herault. Blind separation of sources, Part 1: an adaptive algorithm based on neuromimetic architecture [J]. Signal Process., 1991, 24(1):1-10
    [6] P. Comon, C. Jutten, J. Herault. Blind separation of sources, Part II: problems statement [J]. Signal Process., 1991, 24(1): 11-20
    [7] J. F. Cardoso and P. Comon. Independent component analysis, a survey of some algebraic methods [C]. In EEE International Symposium on Circuits and Systems, 1996, 12: 93-96
    [8] P. D. O'Grady, B. A. Pearlmutter. Hard-LOST: Modified k-Means for Oriented Lines [C]. In Proceedings of the Irish Signals and Systems Conference, 2003 247-252
    [9] Y. Q. Li, A. Cichocki, and S. Amari. Analysis of sparse representation and blind source separation [J]. Neural Computation, 2004, 16(6): 1193-1234
    [10] M. Zibulevsky, Y. Y. Zeevi, P. Kisilev, B. Pearlmutter. Blind Source Separation via Multinode Sparse Representation [C]. In Advances in Neural Information Processing Systems, 2001, 1049-1056
    [11] Y. Fang, Y. Zhang. A robust clustering algorithm for underdetermined blind separation of sparse sources, Journal of Shanghai University (English Edition) [J]. 2008, 12(3): 228-234
    [12] P. Bofill, M. Zibulevsky. Underdetermined blind source separation using sparse representations [J]. Signal Processing, 2001, 81(11): 2353-2362
    [13] Z. Wei, L. Ju, S. Jiande, B. Shuzhong. A New Two-Stage Approach to Underdetermined Blind Source Separation using Sparse Representation [C]. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, 953-956.
    [14]谭北海,谢胜利.基于源信号数目估计的欠定盲分离[J].电子与信息学报, 2008, 30(4): 863-867
    [15]邱天爽,毕晓辉.稀疏分量分析在欠定盲源分离问题中的研究进展及应用[J].信号处理, 2008, 24(6): 966-970
    [16] D. D. Lee, H. S. Seung. Learning the parts of objects by non-negative matrix factorization [J]. Nature, 1999, 401(6755): 788-791
    [17] P. O. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints [J]. J. Mach. Learn. Res., 2004, 5: 1457-1469
    [18] A. Cichocki, R. Zdunek, S. Amari. New Algorithms for Non-Negative Matrix Factorization in Applications to Blind Source Separation [C]. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2006, 621-624
    [19] A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann, R. D. Pascual-Marqui. Nonsmooth nonnegative matrix factorization (nsNMF) [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3): 403-415
    [20] W. Wenwu. Squared Euclidean Distance Based Convolutive Non-Negative Matrix Factorization with Multiplicative Learning Rules For Audio Pattern Separation [C]. In IEEE International Symposium on Signal Processing and Information Technology, 2007, 347-352
    [21] A. Cichocki, A. H. Phan, C. Caiafa. Flexible HALS algorithms for sparse non-negative matrix/tensor factorization [C]. In IEEE Workshop on Machine Learning for Signal Processing, 2008, 73-78
    [22] A. Ozerov, C. Fevotte. Multichannel nonnegative matrix factorization in convolutive mixtures. With application to blind audio source separation [C]. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, 3137-3140
    [23] K. Stadlthanner, F. Theis, C. Puntonet, e.t., Hybridizing Sparse Component Analysis with Genetic Algorithms for Blind Source Separation [C]. In Biological and Medical Data Analysis, 2005, 137 -148
    [24] J. Karhunen, J. Joutsensalo. Representation and separation of signals using nonlinear PCA type learning [J]. Neural Networks, 1994, 7(1):113-127
    [25] J. Karhunen, P. Pajunen, E. Oja, The nonlinear pca criterion in blind source separation: Relations with other approaches[J]. Neurocomputing, 1998, 22(1-3): 5-20
    [26] S. Haykin. Neural Networks: A Comprehensive Found [M]. Prentice Hall, 2nd edition, 1998
    [27] J.-F. Cardoso, A. Souloumiac. Blind beamforming for non Gaussian signals [C]. IEE Proceedings-F, 1993, 140, 362--370
    [28] A. J. Bell, T. J. Sejnowski. An Information-Maximization Approach to Blind Separation and Blind Deconvolution [J]. Neural Computation, 1995, 7(6): 1129-1159
    [29] S. I. Amari, A. Cichocki. Adaptive blind signal processing - Neural networkapproaches [C]. In proceedings of the IEEE, 1998, 86, 2026-2048
    [30] J.-F. Cardoso, B. H. Laheld. Equivariant adaptive source separation [J]. IEEE Transactions on Signal Processing, 1996, 44(12): 3017-3030
    [31] A. Hyvarinen. Fast and robust fixed-point algorithms for independent componentanalysis [J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634
    [32] P. BA, P. LC. A context-sensitive generalization of ICA [C]. International Conference on Neural Information Processing, Hong Kong, September 1996, 613-619
    [33] E. Oja. The nonlinear PCA learning rule in independent component analysis [J]. Neurocomputing, 1997, 17(1): 25-45
    [34] J. Karhunen, J. Joutsensalo. Representation and separation of signals using nonlinear PCA type learning [J]. Neural Netw., 1994, 7(1): 113-127
    [35] A. Taleb, C. Jutten. On underdetermined source separation [C]. In IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999, 3: 1445-1448
    [36] X.-R. Cao, R.-W. Liu. General approach to blind source separation [J]. IEEE Transactions on Signal Processing, 1996, 44(3): 562-571
    [37] Y. Deville, S. Savoldelli. A second-order differential approach for underdetermined convolutive source separation [C]. In proceedings of the Acoustics, Speech, and Signal Processing, on IEEE International Conference, 2001, 5: 2741-2744.
    [38] P. Bofill. Underdetermined blind separation of delayed sound sources in the frequency domain [J]. Neurocomputing, 2003, 55(3-4): 627-641
    [39] A. Ferreol, L. Albera, P. Chevalier. Fourth order blind identification of underdetermined mixtures of sources (FOBIUM) [C]. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2003, 41-44
    [40] L. Albera, A. Ferr, P. Comon, P. Chevalier. Blind Identification of Overcomplete MixturEs of sources (BIOME) [J]. Linear Algebra and its Applications, 2004, 391: 3-30
    [41] S. Araki, S. Makino, H. Sawada, R. Mukai. Underdetermined blind separation of convolutive mixtures of speech with directivity pattern based mask and ICA [C]. Granada, SPAIN, 2004, 898-905
    [42] A. Blin, S. Araki, S. Makino. A sparseness-mixing matrix estimation (SMME) solving the underdetermined BSS for convolutive mixtures [C]. In IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 4: 85-88
    [43] Z. He, S. Xie, Y. Fu. Sparse representation and blind source separation of ill-posed mixtures [J]. Science in China Series F: Information Sciences, 2006, 49(5): 639 -652
    [44] Y. Q. Li, S. I. Amari, A. Cichocki, D. W. C. Ho, S. L. Xie. Underdetermined blind source separation based on sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(2): 423-437
    [45] Y. H. Luo, W. W. Wang, J. A. Chambers, S. Lambotharan, I. Proudler. Exploitation of source nonstationarity in underdetermined blind source separation with advanced clustering techniques [J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2198-2212
    [46] L. De Lathauwer, J. Castaing, J. F. Cardoso. Fourth-order cumulant-based blind identification of underdetermined mixtures [J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2965-2973
    [47] P. Georgiev, F. Theis, A. Ralescu. Identifiability conditions and subspace clustering in sparse BSS [C]. Lecture Notes in Computer Science, 2007, 357-364.
    [48] Z. S. He, S. L. Xie, S. X. Ding, A. Cichocki. Convolutive blind source separation in the frequency domain based on sparse representation [J]. IEEE Transactions on Audio Speech and Language Processing, 2007, 15(7): 1551-1563
    [49] B. Mozaffari, M. A. Tinati. Blind source separation of speech sources in wavelet packet domains using Laplacian mixture model expectation maximization estimation in overcomplete cases [J]. Journal of Statistical Mechanics-Theory and Experiment, 2007, 2-40
    [50] S. Xie, B. Tan, Y. Fu. Blind signal separation of underdetermined mixtures based on clustering algorithms on planes [J]. Progress in Natural Science, 2007, 17(6): 670-674
    [51] B. V. Gowreesunker, A. H. Tewfik. Blind source separation using monochannel overcomplete dictionaries [C]. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, 33-36.
    [52] Z. Y. Yang, B. H. Tan, G. X. Zhou, J. L. Zhang. Source number estimation and separation algorithms of underdetermined blind separation [J]. Science in China Series F-Information Sciences, 2008, 51(10): 1623-1632
    [53] J. F. Cardoso. Super-symmetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sensors [C]. In International Conference on Acoustics, Speech, and Signal Processing, 1991, 5: 3109-3112
    [54] P. Georgiev, F. Theis, A. Cichocki. Sparse component analysis and blind source separation of underdetermined mixtures [J]. IEEE Transactions on Neural Networks, 2005, 16(4): 992-996
    [55] P. Kisilev, M. Zibulevsky, Y. Y. Zeevi. Blind source separation using multinode sparse representation [C]. In Image Processing, International Conference on, 2001, 3: 202-205
    [56] F. J. Theis, E. W. Lang, C. G. Puntonet. A geometric algorithm for overcompletelinear ICA [J]. Neurocomputing, 2004, 56(1): 381-398
    [57] M. S. Lewicki, T. J. Sejnowski, Learning Overcomplete Representations [J]. Neural Comput., 2000, 12(2): 337-365
    [58] L. Te-Won, M. S. Lewicki, M. Girolami, T. J. Sejnowski. Blind source separation of more sources than mixtures using overcomplete representations [J]. IEEE Signal Processing Letters, 1999, 6(4): 87-90
    [59]谢胜利,谭北海,傅予力.基于平面聚类算法的欠定混叠盲信号分离[J].自然科学进展, 2007, 17(6): 795-800
    [60] Y. Washizawa, A. Cichocki. Sparse blind identification and separation by using adaptive K-orthodrome clustering [J]. Neurocomputing, 2008, 71(10-12): 2321-2329
    [61] F. M. Naini, G. H. Mohimani, M. Babaie-Zadeh, C. Jutten. Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-dimensional subspace clustering [J]. Neurocomputing, 2008, 71(10-12): 2330-2343
    [62] Pentti Paatero, Unto Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126
    [63] P. O. Hoyer. Non-negative sparse coding [C]. In IEEE Workshop on Neural Networks for Signal Processing, 2002, 557-565
    [64] J. Eggert, E. Korner. Sparse coding and NMF [C]. In IEEE International Joint Conference on Neural Networks, 2004, 4: 2529-2533
    [65] P. Smaragdis. Non-Negative Matrix Factor Deconvolution; Extraction of Multiple Sound Sources from Monophonic Inputs [C]. In 5th International Conference on Independent Component Analysis and Blind Signal Separation, Grenada, Spain, September 2004, 494-499
    [66] D. FitzGerald, M. Cranitch, E. Coyle. Sound Source Separation Using Shifted Non-Negative Tensor Factorisation [C]. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2006, 653-656
    [67] V. Tuomas, Monaural Sound Source Separation by Nonnegative Matrix Factorization With Temporal Continuity and Sparseness Criteria [C]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15: 1066-1074
    [68] Y. Zhijian, E. Oja. A family of modified projective Nonnegative Matrix Factorization algorithms [C]. In International Symposium on Signal Processing and Its Applications, 2007, 1-4
    [69] M. A. Keyder, B. Gunsel. Blind audio source separation by NTF and its perceptual quality evaluation [C]. In Signal Processing, Communication and Applications Conference, IEEE 16th, 2008, 1-4.
    [70] J. F. Cardoso. Blind signal separation: statistical principles [C]. In proceedings of the IEEE, 1998, 86: 2009-2025
    [71] A. Cichocki, R. Zdunek, S. Amari. New Algorithms for Non-Negative Matrix Factorization in Applications to Blind Source Separation[C]. In IEEE International Conference on Acoustics, Speech and Signal Processing 2006, 621-624
    [72] K. Yong-Deok, C. Seungjin. Weighted nonnegative matrix factorization [C]. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, 1541-1544
    [73] S. Yildirim, M. Saraclar. Single channel music and speech separation using non-negative matrix factorization [C]. In Signal Processing and Communications Applications Conference, IEEE 17th, 2009, 301-304
    [74] S. Kirbiz, B. Gunsel. Perceptual single-channel audio source separation by non-negative matrix factorization [C]. In Signal Processing and Communications Applications Conference, IEEE 17th, 2009, 416-419
    [75]尚丽.稀疏编码算法及其应用研究[D].中国科学技术大学, 2006
    [76]史振威.独立成分分析的若干算法及其应用研究[D].大连理工大学, 2005
    [77] Z. Wei, L. Ju, S. Jiande, B. Shuzhong.A New Two-Stage Approach to Underdetermined Blind Source Separation using Sparse Representation [C]. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, III-953-III-956.
    [78] L. Parra, C. Spence. Convolutive blind separation of non-stationary sources [J]. IEEE Transactions on Speech and Audio Processing, 2000, 8(5): 320-327
    [79] H.-L. N. Thi, C. Jutten. Blind source separation for convolutive mixtures [J]. Signal Processing, 1995, 45(2): 209-229
    [80] S. Araki, S. Makino, T. Nishikawa, H. Saruwatari. Fundamental limitation of frequency domain blind source separation for convolutive mixture of speech [C]. In IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, 5: 2737-2740
    [81] S. Araki, R. Mukai, S. Makino, T. Nishikawa, H. Saruwatari. The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech [J]. IEEE Transactions on Speech and Audio Processing, 2003, 11(2): 109-116
    [82] P. Comon, L. Rota. Blind separation of independent sources from convolutive mixtures [J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2003, 86(4): 542-549
    [83] K. Rahbar, J. P. Reilly. A Frequency Domain Method for Blind Source Separation of Convolutive Audio Mixtures [J]. IEEE Transactions on Speech and Audio Processing, 2005, 13(5): 832-844
    [84] P. Smaragdis. Blind separation of convolved mixtures in the frequency domain [J]. Neurocomputing, 1998, 22(7): 21-34
    [85]张贤达,保铮.通信信号处理[M].北京,国防工业出版社, 2003.
    [86]杨行峻,郑君里.人工神经网络与盲信号处理,北京:清华大学出版社, 2003.
    [87] T. W. Lee, M. Girolami, A. J. Bell, T. J. Sejnowski. A unifying information-theoretic framework for independent component analysis[J]. Computers & Mathematics with Applications, 2000, 39(6): 1-21
    [88] C. S., C. A., A. S.. Flexible independent component analysis [J]. Neural Networks for Signal Processing, 1998, 8: 83-93
    [89] S. Cruces, L. Castedo, A. Cichocki. Novel blind source separation algorithms using cumulants [C]. In IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000, 5: 3152-3155
    [90] A. Hyvarinen, E. Oja. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000, 13(4-5): 411-430
    [91] A. Hyv?rinen. New approximations of differential entropy for independent component analysis and projection pursuit [C]. In Proceedings of the 1997 conference on Advances in neural information processing systems, 1998, 273-279
    [92] A. Hyv?rinen, E. Oja. A fast fixed-point algorithm for independent component analysis [J]. Neural Comput., 1997, 9(7): 1483-1492
    [93] A. Hyv?rinen. Survey on Independent Component Analysis [J]. Neural Computing Surveys, 1999, 2: 94-128
    [94] J.-F. Cardoso, A. Souloumiac. Jacobi angles for simultaneous diagonalization [J]. SIAM Journal of Matrix Analysis and Applications, 1996, 17(1): 161-164
    [95] B. Laheld, J.-F. Cardoso. Adaptive Source Separation With Uniform Performance [C]. In Proc. EUSIPCO, Edinburgh, September, 1994, 768-771
    [96] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, E. Moulines. A blind source separation technique using second-order statistics [J]. IEEE Transactions on Signal Processing, 1997, 45(2): 434-444
    [97]张贤达,朱孝龙,保铮.基于分阶段学习的盲信号分离[J].中国科学(E辑:信息科学), 2002, 32(5): 693-703
    [98] J. Karvanen, A. Cichocki. Measuring Sparseness Of Noisy Signals [C]. 4th Int. Symp. on Independent Component Analysis and Blind Signal Separation (ICA2003), 2003, 125-130
    [99] Paul, D. O’Grady. Sparse Separation of Under-Determined Speech Mixtures [D]. National University of Ireland, 2007
    [100] M. Zibulevsky, B. A. Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary [J]. Neural Computation, 2001, 13(4): 863-882
    [101]王建英,尹忠科,张春梅.信号与图像的稀疏分解及初步应用[M].成都,西南交通大学出版社, 2006.
    [102] I. F. Gorodnitsky, B. D. Rao. Sparse signal reconstruction from limited datausing FOCUSS: a re-weighted minimum norm algorithm [J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
    [103]杨福生,洪波.独立分量分析的原理与应用[M].北京,清华大学出版社, 2006.
    [104] S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic Decomposition by Basis Pursuit [J]. SIAM Rev., 2001, 43(1): 129-159
    [105] K. Waheed, F. M. Salem. Algebraic Overcomplete Independent Component Analysis [C]. ICA2003, 2003, 1077-1082
    [106]白树忠.欠定盲源分离算法及在语音处理中的应用研究[D].山东大学, 2008.
    [107] P. D. O'Grady, B. A. Pearlmutter. Convolutive Non-Negative Matrix Factorisation with a Sparseness Constraint [C]. In IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006, 427-432.
    [108] A. Cichocki, J. Karhunen, W. Kasprzak, R. Vigario. Neural networks for blind separation with unknown number of sources [J]. Neurocomputing, 1999, 24(1-3): 55-93
    [109]章新华,张安清,孙剑平.一种信号源数目的盲估计方法[J].系统工程与电子技术, 2001, 23(9): 9-11
    [110]张洪渊,贾鹏,史习智.确定盲分离中未知源信号个数的奇异值分解法[J].上海交通大学学报, 2001, 35(8): 1155-1158
    [111] T.-Y. Sun, C.-C. Liu, S.-T. Hsieh, S.-J. Tsai. Blind separation with unknown number of sources based on auto-trimmed neural network [J]. Neurocomputing, 2008, 71(10-12): 2271-2280
    [112]冶继民.信源数目未知与变化时的盲信号分离方法研究[D].西安电子科技大学, 2005.
    [113] M. Zibulevsky, B. A. Pearlmutter. Blind Source Separation by Sparse Decomposition in a Signal Dictionary [J]. Neural Comput., 2001,13(4): 863-882
    [114] M.-S. Yang, K.-L. Wu. A Similarity-Based Robust Clustering Method [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26(4): 434-448
    [115] N. Mitianoudis, T. Stathaki. Batch and Online Underdetermined Source Separation Using Laplacian Mixture Models [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(6): 1818-1832
    [116] P. J. Huber. Robust Statistics [M]. Wiley, 1981.
    [117] Y. Washizawa, A. Cichocki. On-Line K-PLANE Clustering Learning Algorithm for Sparse Comopnent Analysis [C]. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2006, 681-684
    [118] P. Dezhong, X. Yong. Underdetermined Blind Source Separation Based on Relaxed Sparsity Condition of Sources [J]. IEEE Transactions on SignalProcessing, 2009, 57(2): 809-814
    [119] Z. He, A. Cichocki, Y. Li, S. Xie, S. Sanei. K-hyperline clustering learning for sparse component analysis [J]. Signal Processing, 2009, 89(6): 1011-1022
    [120] H. Frigui, R. Krishnapuram. A Robust Competitive Clustering Algorithm With Applications in Computer Vision [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1999, 21(5): 450-465
    [121]张贤达.矩阵分析与应用[M].北京,清华大学出版社, 2006.
    [122] C. F′evotte, R. Gribonval, E. Vincent. BSS EVAL Toolbox User Guide, IRISA Technical Report 1706, Rennes, France, http://www.irisa.fr /metiss/bss eval//metiss/bss eval/, April 2005
    [123]刘盛鹏.基于Contourlet变换的图像稀疏分量分析[D].上海大学,2007
    [124] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, W. A. Stahel. Robust Statistics: The Approach Based on Influence Functions [M]. Wiley, New York, 1986
    [125] S. Rickard, A. Cichocki. When is non-negative matrix decomposition unique?, in Information Sciences and Systems [C]. CISS 2008. 42nd Annual Conference on, 2008, 1091-1092
    [126] F.-Y. Wang, Y. Wang, T.-H. Chan, C.-Y. Chi. Blind Separation of Multichannel Biomedical Image Patterns by Non-negative Least-Correlated Component Analysis [C]. In Pattern Recognition in Bioinformatics, 2006, 151-162
    [127] W. Wenwu, A. Cichocki, J. A. Chambers. A Multiplicative Algorithm for Convolutive Non-Negative Matrix Factorization Based on Squared Euclidean Distance [J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2858-2864
    [128] A. Cichocki, R. Zdunek, S.-i. Amari. Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization [C]. In Independent Component Analysis, ICA07, 2007, 169-176
    [129] P. D. O'Grady, S. T. Rickard. Compressive sampling of non-negative signals, in Machine Learning for Signal Processing [C]. MLSP 2008. IEEE Workshop on, 2008, 133-138
    [130] P. D. O'Grady, S. T. Rickard. Recovery of Non-Negative Signals from Compressively Sampled Observations Via Non-Negative Quadratic Programming [C]. SPARS '09, April 2009, Saint-Malo France, 2009.
    [131] Cichocki, R. Zdunek. NMFLAB - MATLAB Toolbox for Non-Negative Matrix Factorizati, http://www.bsp.brain.riken.jp/ICALAB/nmflab.html.
    [132] ORL face image database: http://www.cl.cam.ac.uk / research/ dtg/ attarchive/ facedatabase.html.
    [133]梅铁民.盲源信号分离时域与频域算法研究[D].大连理工大学, 2006
    [134]黄青华.基于源信号模型的盲分离技术研究及应用[D].上海交通大学, 2007
    [135] Ranian Acharyya. A novel approach for blind separation of convolutive mixtures [D]. Electricai Engineering Melbourne, Florida, 2007
    [136] Chauhan Shashank. Parameter estimation and signal processing techniques for Operational Modal Analysis [D]. University of Cincinnati, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700