基于理论生长方的尾巨桉人工林栽培密度效应评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Richards等6种理论生长方为基础,利用14年生的不同栽培密度尾巨桉(E. urophylla×E. grandis)人工林固定样地多次林分生长量调查资料,采用Marquardt叠代法对林分的树高、胸径和蓄积量的平均生长过进行了拟合,同时构建并分析了不同栽培密度林分在62个月、110个月和161个月时的直径累积结构方。以建立的林分蓄积量生长方为基础,对比分析了不同栽培密度处理下林分的年均蓄积生长量和连年蓄积生长量的变化规律,为尾巨桉人工林的合理经营提供了一定的参考依据。得出的主要结论如下:
     1.不同林龄的尾巨桉人工林林分的平均树高、平均胸径和平均蓄积量在不同栽培密度处理间均表现出一定的差异。总的趋势是平均树高和平均胸径在不同栽培密度处理间的差异随林龄的增大而增大,平均蓄积生长量在不同栽培密度处理间的差异主要表现在林分8年生以前,以后,平均蓄积量在不同栽培密度处理间的差异开始不明显。
     2. Marquardt叠代法可用于对理论生长方参数的拟合。理论生长方对林分生长过的模拟表现出了较高模拟效果(相关系数均在0.95以上)。总的来看,Korf方对林分树高、胸径和蓄积量平均生长过的模拟精度最高,Richards方次之;理论生长方对林分树高和胸径平均生长过的模拟精度均随栽培密度的增大而增加,对林分平均蓄积量生长过的模拟精度在不同栽培密度间没有明显变化;各理论方对林分生长中期(约50~100个月)的模拟精度高于前期(约0~49个月)和后期(约101~161个月)。
     3.理论生长方拟合所得的平均树高、平均胸径的理论最大值随栽培密度的减小而增大,林分平均蓄积量的理论最大值在不同栽培密度间则没有表现出明显的差异;平均树高的最大瞬时增长速率随栽培密度的增大而增大,平均胸径的最大瞬时增长速率则随栽培密度的增大而减小,平均蓄积量的最大瞬时增长速率在不同栽培密度间没有表现出规律性的变化;高栽培密度林分具有较高的平均树高生长速率,但持续的时间相对较短;低栽培密度林分平均树高生长速率相对较低,但持续的时间较长。
     4. Weibull方对林分直径累积结构的模拟精度最高,Richards方和Logistic方依次次之;各理论方对林分直径累积结构的模拟精度均表现出随栽培密度的增大而升高的趋势;883株/ha和667株/ha两种栽培密度下的林分径阶结构呈现整体跃迁。
     5.基于Korf方拟合得出的林分平均蓄积量生长模型,计算得出不同栽培密度林分的年均蓄积生长量和连年蓄积生长量,并确定了各栽培密度林分的数量成熟龄。通过分析,林分的数量成熟龄随栽培密度的增加而提前,最大栽培密度林分(2222株/ha)的数量成熟龄为6年左右,最低栽培密度林分(667株/ha)则需10年左右。
     6.栽培密度为2222株/ha,1667株/ha,1250株/ha的林分适于作为短周期的纸浆材或者旋切板材人工林经营,栽培密度为883株/ha和667株/ha的林分可用于生产大径级的锯材产品。研究认为,最优栽培模式是采用较高的初植密度(1667株/ha以上),在林分经营的过中实施间伐。
Stand growth processes on average height, average diameter at breast height (DBH) and average stand volume of Eucalyptus urophylla×E.grandis plantation with 6 spacing treatments aged at14-year-old were represented with 6 theoretic growth equations (Korf, Logistic, Richards, Schumacher and Weibull). Levenberg-Marquardt iteration method was used to estimate the parameters of equations and achieved a good precision. Stand cumulative diameter distribution equations at the 62nd month, 110th month and 161st month were represented with three theoretic growth equations (Logistic, Richards and Weibull). Several suggestions on the plantation management were proposed. Conclusions are followed:
     1. There were differences in average height of stand trees and DBH among 6 treatments at the same age. With the stand growth, the differences among each treatment became more significant. The differences of stand volume among each treatment only presented before 8 years old. And then, there were not significant differences of stand volume among 6 spacing treatments.
     2. Levenberg-Marquardt iteration method could be adopted to estimate the parameters of the theoretic growth equations precisely and each theoretic growth equation fit the growth process of stands with high precision and correlation. The coefficient of determination of each equation was more than 0.95. In total, Korf equation and Richards equation were much better than the other theoretic growth equations. To fit the average height and DBH growth process of dense stands, the precisions of each equation were much higher than sparser ones. The similarity trends did not present when modeled the stand volume of the same object. The mean residual of each equation aged from 50 to 100 month was smaller than younger and elder ones.
     3. The theoretic maximums of height and DBH of sparse stands estimated with the theoretic equations were higher than denser ones. But, there were not significant differences of the theoretic maximum of stand volume estimated with the theoretic equations among 6 spacing treatments. With the planting density increase, the intrinsic rate of increase of height growth equations became bigger, the intrinsic rate of increase of DBH growth equations become smaller, and significant differences of intrinsic rate of increase of stand volume growth equations were not presented. The rates of increment of tree height of denser stands were much higher, but lasting time was short.
     4. To represent the stand cumulative diameter distribution, the modeling precision of Weibull equation was the highest, Richards equation and Logistic equation were lower, respectively. The precisions of cumulative diameter distribution equations of denser stands were higher than the sparser ones. The DBH classes of stands with 883 trees/ha and 667 trees/ha transferred holistically, the others were not.
     5. Age of quantitative maturity of every treatment stands were estimated. It showed that the ages of quantitative maturity were delayed with the planting density increase. The age of quantitative maturity of the densest stand with 2222 trees/ha was 6 years and the sparest stands (667 trees/ha) would be 10 years.
     6. Stands with 2222 trees/ha, 1667trees/ha and 1250 trees/ha are reasonable for production of pulp and veneer. Stands with 883 trees/ha and 667 trees/ha might be for sawtimber production. It is much more economy to establish plantation with initial density of more than 1667 trees/ha, and thinning should be made.
引文
[1] Makinen A, Kangas A, Virta J K, et al. Comparison of treewise and standwise forest simulators by means of quantile regression. Forest Ecology and Management, 2008, 255: 2709~2717
    [2] Brooker M I H, Kleinig D A. Eucalyptus Field Guide to Volume 1; South–Western & Southern Australia, Fully Revised & Update Second Edition. Bloomings Books, 2002: 353
    [3] Salas C, Garcia O. Modeling height development of mature Nothofaguas obliqua. Forest Ecology and Management, 2006, 229: 1~6.
    [4] FAO. Eucalyptus for Planting. FAO, Rome, 1979: 677
    [5] FAO.世界森林状况.罗马:英国牛津文字出版社设计出版, 1997: 16~16
    [6] IUFRO. The Future of Eucalyptus or Wood Products.IUFRO Conference Proceedings. Tasmania, 2000: 9
    [7] Julian C F, Huiquan B, Peter K. Ades. Spatial dependence and individual-tree growth models II. Modeling spatial dependence. Forest Ecology and Management, 2007, 245: 20~30
    [8] Montagu K D, Kearney D E, Smith R G B. The biology and silviculture of pruning planted eucalypts for clear wood production-a review Forest Ecology and Management, 2003, 179(13): 1~13
    [9] Kiviste A K. Mathematical functions of forest growth. Estonian Agricultural Academy, 1988: 33
    [10] Jacobs M R.桉树栽培.罗马:联合国粮食及农业组织, 1979: 252
    [11] Macros B A, Hortensia S B, et al. Dynamic growth model for I-214 poplar plantations in the northern and central plateaux in Spain. Forest Ecology and Management, 2008, 255: 1167~1178
    [12] Medhurst J L. Early-age and Later-age Thinning Affects Growth, Dominance and Interspecific Competition in Eucalyptus intense Plantations. Canada Forest Research, 2001, 31(2): 187~197
    [13] Newton P F, Amponsah I G. Comparative evaluation of five height–diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability. Forest Ecology and Management, 2007, 247: 149~166
    [14] Robert N P, Giovanni S. The relative contributions of tree improvement and cultural practice toward productivity gains in Eucalyptus pulpwood stands. Forest Ecology and Management, 2004, 193: 33~43
    [15] Sweda T, Koide T. Application of growth equations to the growth of trees in stem radius (1) application to white spruce. Japan Forest Science, 1981: 113~124
    [16] Sweda T, Koieo T. Theoretical growth equation and their application in forestry. Bull Nagoya Univ. For., 1984, 7: 149~260
    [17] Timo T, Eero F. Individual tree models for the crown biomass distribution of Scots pine, Norway spruce and birch in Finland. Forest Ecology and Management, 2008, 255: 455~467
    [18] William A N, Gerrand A M. Growth and branching habit of Eucalyptus nitens at different spacing and the effect on final crop selection. Forest Ecology and Management, 1999, 123(2~3): 217~229
    [19] Zeide B. Accuracy of equations describing diameter growth. Canada Forest Research, 1989, 19: 1283~1286
    [20] Zeide B. Analysis of growth equations. Forest Science, 1993, 3: 594~516
    [21]白秀萍.澳大利亚森林资源与人工造林动向.世界林业动态, 2007, (16): 6
    [22]鲍甫成,江泽慧等.中国主要人工林树种木材性质.北京:中国林业出版社, 1998
    [23]蔡煜东,陈德辉.运用遗传算法拟合Logistic曲线的研究.生物数学学报, 1995, 10(1): 59~63
    [24]陈少雄.桉树大径材培育―桉树培育的新方向.桉树科技, 2002, (1): 6~10
    [25]邓红兵,王庆礼.红松、长白落叶松树高生长模型的研究及应用.辽宁林业科技, 1997, (5): 24~28
    [26]段爱国,张建国,童书振. 6种生长方在杉木人工林林分直径结构上的应用.林业科学研究, 2003, 16(4): 423~429
    [27]冯文博,钟慕尧,黄树才,等.桉树大径材培育技术及其经济效益.桉树科技, 2006, 23(2): 30~32
    [28]黄宝灵,吕成群,蒙钰钗,等.不同造林密度对尾叶桉生长、产量及材性影响的研究.林业科学, 2000, 36(1): 81~91
    [29]黄家荣.马尾松人工林单木竞争指针就生长模型研究.林业科技, 2001, 26(3): 1~4
    [30]黄锡泽,周国福,李宏伟,等.尾巨桉人工林栽培密度研究.广西林业科学, 2005, 34(1): 5~7
    [31]惠刚盈,胡艳波,罗云伍,等.杉木中大径材成材激励的研究.林业科学研究, 2000, 13(2): 177~181
    [32]惠刚盈,盛炜彤.林分直径结构模型的研究.林业科学研究, 1995, (2): 127~131
    [33]江波,袁位高,戚连忠,等.江河滩地大径杨木培育关键技术研究.林业科学. 2002, 38(1): 68~75
    [34]江泽慧.中国现代林业.北京:中国林业出版社, 2000: 14~71
    [35]李景文.森林生态学.北京:中国林业出版社, 1994: 165
    [36]李文灿.对Logistic方的再认识.北京林业大学学报, 1990, 2: 121~127
    [37]李志辉,曾光正,谢耀坚,等.不同栽培密度的巨尾桉丰产示范林经济效果评价.中南林业大学学报, 2000, 3(9): 54~59
    [38]林成来,洪伟,吴承祯,等.马尾松人工林生长模型的研究.福建林学院学报, 2000, 20(3): 227~230
    [39]林国金.闽南桉树大径材培育技术.林业实用技术, 2005, (6): 20
    [40]孟宪宇.测树学(第二版).北京:中国林业出版社, 1996: 67
    [41]莫晓勇.桉树纸浆用材林经济效益分析.桉树科技, 2007, 24(1): 8~15
    [42]聂影,杨洪强.政策面调整下中国林产品对外贸易走势研究.林业经济问题, 2006, 26(1): 44~49
    [43]祁述雄.中国桉树(第二版).北京:中国林业出版社, 2002.8
    [44]祁述雄.中国桉树(第一版).北京:中国林业出版社, 1989.10
    [45]申文辉,李宏伟,黄锡泽,等.东门桉树无性系选育研究.桉树科技, 2004, 65: 9~15
    [46]盛炜彤.杉木建筑材优化栽培模式研究总报告.世界林业研究, 1996, 9(专题): 32~53
    [47]孙晓梅,李凤日,牛,等.长白落叶松人工林生长模型的研究.林业科学研究, 1998, 11(3): 306~312
    [48]王明庥.林木遗传育种学.北京:中国林业出版社, 2004: 209~211
    [49]吴承祯,洪伟.杉木人工林直径结构模型的研究.福建林学院学报, 1998, (2): 110~113
    [50]吴巩胜.水曲柳落叶松人工混交林生长模型的研究.东北林业大学硕士学位论文. 1999: 2
    [51]项东云,陈健波,叶露,等.广西桉树人工林发展现状、问题与对策.广西林业科学, 2006, 35(4): 195~201
    [52]项东云.新世纪广西桉树人工林可持续发展策略探讨,广西林业科学, 2002, 31(3): 114~121
    [53]徐大平.桉树速生丰产林.世纪初的桉树研究(首届全国林业学术大会桉树分会论文集).北京:中国林业出版社, 2006: 5~8
    [54]徐建民,白嘉雨,陆钊华.华南地区桉树可持续遗传改良与育种策略.林业科学研究, 2001, 14(6): 587~597
    [55]杨民胜,刘效章,陈少雄.“桉树珍贵用材树种引进”课题组赴澳采购及考察报告.桉树科技, 2001, (2): 1~8
    [56]杨先锋,叶金山.关于杉木大径材定向培育几项措施的初步探讨.江西林业科技, 2001(2): 32~34
    [57]殷亚方,杨民胜,王丽娟,等.巴西桉树人工林资源及其实木加工利用.世界林业研究, 2005, 18(1): 60~64
    [58]张建国,段爱国.理论生长方对杉木人工林直径结构的模拟研究.林业科学, 2003, 39(6): 55~61
    [59]张建国,段爱国.理论生长方和直径分布模型的研究.北京:科学出版社, 2004: 3~12
    [60]郑治刚,李留瑜,刘建国,等.关于以森林经理基础理论的数学描述.森林资源管理, 1997, (6): 68~75
    [61]张少昂,王冬梅. Richards方分析和一种新的树木理论生长方.北京林业大学学报, 1992, (3): 99~105
    [62]郑镜明,王洪峰.论我国南方发展珍优阔叶树大径材人工林.热带林业, 2002,30(2): 41~45
    [63]周少英,徐峰.广西东门林场五种桉树木材干缩和变形特性研究.中国林学会木材科学分会第九次学术研讨会论文集, 2004: 2~6
    [64]周元满,谢正生,刘新田. Richards函数在桉树无性系林分生长预测上的应用研究.西南农业大学学报(自然科学版), 2005, 27(2): 240~243
    [65]朱积余,廖培来.广西名优经济树种.北京:中国林业出版社, 2006: 40~41
    [66]朱林峰,方文彬.初植密度对尾叶桉木材材性影响规律的研究.世界林业研究, 1995, (8): 327~335
    [67]朱绍辉,钱桂枝,疏贵平. Richards生长函数在意大利杨树无性系人工林生长预测上的应用.江苏林业科技, 2000, 27(1): 27~30
    [68]李昌荣,项东云,周国福,等.栽培密度与施肥对尾巨桉中大径材生长的影响.广西林业科学, 2007, 36(1): 31~35
    [69]李光友,徐建民,陆钊华,等.尾叶桉短轮伐期经营林分生长研究.广东林业科技, 2004, 20(1): 12~15
    [70]王辉阳.不同林地清理方式和造林密度对巨尾桉生长的影响分析.江苏林业科技, 2007, 34(3): 9~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700