草地螟Loxostege sticticalis迁飞与生殖行为的调控及互作关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草地螟Loxostege sticticalis L.(鳞翅目:螟蛾科)是我国华北、东北和西北地区农牧业生产的重要害虫,解放后已经3次26年暴发成灾,并给我国的农牧业生产造成了巨大的经济损失。迁飞是草地螟在长期的进化过程中形成的一种适应性行为对策,也是其频繁暴发成灾并造成重大产量和经济损失的主要原因。然而,国内外对草地螟迁飞行为发生与调控的基础、以及迁飞在草地螟种群暴发成灾中的作用均知之甚少。为了阐明草地螟的暴发成灾规律,改善和提高预测预报技术水平,本文应用昆虫生态和生理学的原理与方法,研究了未成熟期温度以及成虫期补充营养对草地螟生殖与迁飞行为的调控作用,在此基础上研究明确了生殖对成虫飞行,以及飞行对生殖的影响作用,取得了如下一些原创性结果:
     明确了草地螟未成熟期(卵至蛹)环境温度是影响成虫迁飞行为的原因之一。为了阐明未成熟期环境因子对草地螟迁飞行为的影响作用,对分别由未成熟期18、22、26和30℃条件发育而来的成虫在22℃条件下的飞行能力、飞行肌干重、生殖特征和卵巢发育等进行了研究。所得的结果表明:虽然由26℃发育而来的成虫飞行肌干重显著大于其他处理的,但不同温度发育而来的成虫飞行能力(飞行距离)无显著差异;由22℃发育而来的成虫卵巢发育速度最慢,产卵前期和历期最长、成虫寿命最长。由18℃发育而来的成虫的各项生殖指标虽然与22℃的均无显著差异,但雌蛾寿命较短;由26℃发育而来的成虫产卵量最大,交配次数最多,产卵孵化率最高;另外,由26℃发育而来的成虫产卵前期显著短于源自18和22℃的,但又显著长于源自30℃条件下的。由30℃发育而来的成虫卵巢发育速度最快、产卵前期及成虫寿命最短。这些结果表明,由18-22℃条件下发育而来的成虫迁飞可能性较大,而由26-30℃条件下发育而来的成虫更适宜留在本地生殖。
     证实了补充营养对成虫生殖与迁飞的必要性,发现了成虫羽化后48h是成虫“决定”迁飞与否的敏感时期。对是否补充营养、不同时程和阶段无补充营养对成虫生殖与飞行的影响作用进行研究的结果表明:1)与成虫期饲喂10%葡萄糖溶液的成虫相比,饲喂清水的成虫不仅产卵量降低,产卵前期、产卵历期和寿命缩短,而且飞行能力下降、飞行肌发育延缓、甘油三酯含量降低,表明补充营养对草地螟生殖和迁飞都是必要的;2)对1-5天不等时程的持续饥饿对成虫生殖的影响研究表明,1-3天的持续饥饿可使成虫产卵前期缩短,表明这种情况虽然阻碍了迁飞行为的发生却有利于成虫滞留本地生殖,而4-5天持续饥饿则导致成虫产卵前期延长,表明营养缺乏持续3天以上不仅不利于迁飞行为的发生而且延迟了成虫生殖;3)对1-3日龄成虫分别饥饿24h后发现,在其他生殖参数没有变化的情况下,成虫产卵前期经1和2日龄的饥饿后均缩短,而3日龄饥饿则无此效果,表明羽化后48h是成虫“决定”是否迁飞的敏感时期,该时期的饥饿可使成虫由迁飞转向滞留生殖,这种策略调整增加了草地螟对环境变化的适应能力;4)在敏感时期饥饿24h后,成虫飞行能力仅在处理后的第3天显著高于对照的,而成虫飞行肌干重在饥饿后3-4天均显著大于对照的。卵巢发育级别和卵巢管直径在处理后的第1天显著低于对照,第2天已开始大于对照的,而到第4天则显著超过对照的,表明敏感时期饥饿可加速成虫飞行和生殖系统的发育,但对生殖系统发育的促进作用更强,这也是敏感时期饥饿导致成虫由迁飞转向生殖的原因。
     通过研究生殖对草地螟飞行行为及相关生理特征的影响,明确了生殖后成虫不再迁飞。对产卵或交配后1-5天的雌雄成虫飞行能力、飞行肌干重和甘油三酯含量的研究表明,雌成虫的飞行能力随产卵天数或产卵量的增加而显著下降(y=31.39-0.08x)。另外,与同日龄处女雌成虫相比,产卵雌成虫的飞行能力均显著下降。虽然交配过的雄成虫飞行能力在不同日龄间差异不显著,但与同日龄处女雄成虫相比,多数日龄交配过的雄成虫飞行能力也显著下降;产卵雌成虫的飞行肌干重也随产卵天数或产卵量的增加而显著下降,且与同日龄的处女雌成虫相比,产卵雌成虫飞行肌干重均显著下降。不同日龄的交配雄成虫的飞行肌重量差异不显著,但与同日龄的处女雄成虫相比大多显著下降;产卵雌成虫甘油三酯含量并不随产卵天数或产卵量的增加下降,但与同日龄处女雌成虫相比,甘油三酯含量显著降低约90%。交配过的雄成虫甘油三酯含量的变化趋势与产卵雌成虫的相一致。这些结果表明,开始生殖后的草地螟再次迁飞的可能性很小。这些结果为判别草地螟田间虫源性质提供了进一步的科学依据。
     明确了草地螟的迁飞不仅无需生殖代价,而且还促进了幼虫种群的大发生。为了阐明迁飞对草地螟生殖的影响及其在大发生种群形成中的作用,分别研究了飞行日龄和飞行测试时程对成虫飞行能力和生殖特征的影响。结果显示,在1日龄,成虫不仅飞行能力弱,而且飞行后成虫产卵前期显著延长;在2-5日龄,成虫飞行能力较强,而且飞行后产卵前期、产卵量、产卵历期、交配率、交配次数、寿命以及卵孵化率均无显著变化;甚至在3日龄飞行测试延长到24h,飞行后成虫的这些生殖参数也无显著变化。又根据文中首次定义的描述成虫产卵同步性的概念PFO(Period of first oviposition),对飞行后成虫的产卵同步性的分析显示,从3日龄开始飞行对成虫的产卵同步性有显著的促进作用,且3日龄不等时程的飞行对成虫的产卵同步性均有显著的促进作用。综合成虫飞行能力和飞行后生殖特征可以判断:1)草地螟成虫开始迁飞的生理时期是3日龄;2)草地螟3日龄后的迁飞不仅对成虫的生殖没有负面影响,而且还促进成虫产卵同步性的显著增加。由于田间成虫产卵同步性的增强将导致卵或幼虫密度的快速升高,从而进一步提升了迁入种群后代的为害程度,因此,草地螟迁飞行为引起的成虫产卵同步性的增加是迁飞行为与种群频繁暴发成灾紧密相连的纽带之一。
     主要创新点:
     1.研究阐明了草地螟未成熟期(卵至蛹)温度是影响成虫迁飞行为的环境因子之一:由18-22℃条件下发育而来的成虫迁飞的可能性较大,而在大于26℃条件下发育而来的成虫留在本地生殖的可能性较大。
     2.研究明确了补充营养对成虫的生殖和迁飞的都是必要的;持续3天之内的饥饿促进成虫生殖提前,而3天以上的饥饿对成虫的生殖和飞行均不利;1-2日龄是成虫由迁飞转向滞留生殖的敏感时期;敏感时期饥饿促进成虫飞行系统和卵巢的发育,但对后者的促进作用更强。
     3.通过系统研究生殖对成虫飞行能力及相关生理特征的影响,发现成虫飞行能力、甘油三酯含量以及飞行肌干重随产卵量或产卵天数的增加而下降,并且与同日龄雌雄处女成虫相比生殖后成虫的上述相应参数也均下降,阐明了开始生殖后草地螟成虫不再迁飞的原因。
     4.通过分析飞行能力及飞行后成虫生殖特征的变化规律,明确了3日龄是草地螟成虫开始迁飞的时期;迁飞后成虫不仅不需要付出生殖代价,且结合首次建立的PFO的概念,发现迁飞后成虫产卵同步性的增加是导致草地螟迁入种群发生危害程度加重的主要原因之一。
The beet webworm, Loxostege sticticalis L.(Lepidoptera: Pyralidae) is a very destructive insectpest of crops and fodder plants in the Northern, Northeastern and Northwestern China. It is also along-range migratory pest with larval populations often exploding in regions receiving immigrants.Great yield and economical losses have been caused by the upsurge population of L. sticticalis duringthe26-years since1949. It is known that migration is a major life history strategy evolved fromadaption of the seasonal variations and a major cause for the frequent outbreaks of L. sticticalis.However, the cues that may induce the migratory flight behavior and roles of migration may also playan important role in the formation of outbreak population of L. sticticalis have been less understood inboth home and abroad. In order to demonstrate the environmental cues induced the migratory flightbehavior, and roles of migration played in the formation of outbreak population of L. sticticalis andprovide evidences that may raise the level of forecasting technology. The effect of temperaturesexperienced by the immature stages, and the supplemental nutrition on the migratory and reproductivebehavior, and the interaction between reproduction and migration were investigated by applying theprinciple and methodology of eco-physiology. The major results obtained are summarized as follows.
     The temperature experienced by the immature stages (from egg to pupae) is an important cueaffecting the migratory behavior of the adult L. sticticalis. The flight capacity, dry weight of flightmuscle, ovarian development and the preoviposition period (POP) of the adults developed from thetemperature of18,22,26and30℃were reared at22℃to determine the impacts of temperatureexperienced by the immature stages on the migratory flight behavior. The results showed that the flightcapacity (distance) of the adults developed from the4temperature conditions were not significantlydifferent during a12-h tethered flight test, even though the adults developed from the temperature of26℃possessed significant greater flight muscle than those derived from other temperatures. Besides, theovarian development or POP, oviposition period, and longevity of the adults developed from thetemperature of22and18℃were significantly slower or longer than that of adults developed from22and18℃. Thirdly, the oviposition period of adults derived from26℃was less than that of adults from22and18℃but was significantly greater than that of adults from30℃. The lifetime fecundity, matingfrequency and egg hatching rate of the adults developed from26℃were the greatest amongst the4treatments. Finally, the POP and longevity of the adults developed from the temperature of30℃aresignificantly shorter than those of the adults from other temperatures. All these results suggest that theadults developed from18and22℃intended to migrate while those developed from26and30℃intended to reproduce in the natal habitat.
     The roles of supplemental nutrition in the reproduction and migration of L. sticticalis wereconfirmed and the first2days of adult life were the final sensitive period for the adults to determine if they will migrate or not. Results from the present and absent of supplemental nutrition, and starvationdegree and in different stages of the adult life showed that the supplemental nutrition has a significantbut different effect on the migration and reproduction of L. sticticalis.(i) The POP, preovipositionperiod, lifetime fecundity, longevity, flight capacity, weight of flight muscle and content of triglycerideof the adults fed with only water were significantly shorter or less than that of the adults fed with10%glucose solution, indicating that the supplemental nutrition is crucial to both reproduction and migrationof L. sticticalis.(ii) POP of the moths starved at the first3days of the adult life was curtailed, incomparison with that of the control. However, POP of the moths was significantly prolonged when theirfood was deprived at the3to4day of the adult life.(iii) It was also showed the POP of the moths wassignificantly decreased when the moth was starved for24h at the1st or2nd day of the adult life while itkept unchanged when the moths were starved for24h at the3rd day of the adult life.(iv) It was showedthat the development of both flight and reproductive system is significantly affected when the mothswere starved for24h at the1st day of the adult life. The flight capacity, flight muscle weight, ovariangrade and basic ovariole width at the1st and2nd day post starvation did not significantly differ fromthat of the control moths at the same age. The flight capacity at day3and flight muscle weight at day3and4of the treated moths was greater than that of the controls, while the basic ovariole width at day4of the treated moths was significantly greater than that of the control moths with same age. The resultsobtained showed that the development of reproductive system is faster than the flight system althoughdevelopment of both reproductive and flight system are enhanced.These results implied that themigratory flight behavior of L. sticticalis could be changed at the first2day of the adult life, whichcould be considered as the sensitive period for the shifting of migrants into residents. That is, the mothswould be shifted from a migrant to resident when they do not have food during the first2days afteremergence.
     It is generally believed migration in most insects will stop once reproduction begins. However, theunderlying mechanisms have rarely been investigated and understood. In this study, the variations inflight capacity, flight muscle weight, and triglyceride content of adult L. sticticalis at1to5days aftercopulation or oviposition were investigated to understand the impact of reproduction on the flightcapacity. Flight capacity of the oviposited females was decreased as the number of egg lay increased orthe oviposition period extended (y=31.39-0.08x). Furthermore, flight capacity of oviposited femalewas significantly weaker than that of the virgins with same age. Flight capacity of the mated males, ascompared with that of the virgin with same age was also significantly declined although it was notsignificantly different within the observed period. Flight muscle weight in the oviposited females wasobviously declined as the number of eggs they laid or as their oviposition period increased. Besides, itwas significantly lighter in the ovipositing females than in the virgin females with the same age. Thedifference in flight muscle weight between the mated and virgin males was mostly significant althoughit was not significantly different between the days observed. Triglyceride content of the oviposited female was dramatically decreased and was only around10%of that virgin female at any day observedalthough it was not significantly decreased as their oviposition period extended or as the number of eggsthey laid increased. Triglyceride content of the mated males was also significantly less than that of thevirgin male although it was not significantly different between any days within the observed period.These results suggest that the migration will stop once the moths start to reproduce, which can provide areliable basis for judging the sources of adult population in the field.
     Identifying the reproductive consequences of insect migration is critical to understand itsecological and evolutionary significance. However, many empirical studies are seemingly contradictory,making recognition of unifying themes elusive and controversial. In this study,(i) reproductive costs ofmigratory flight, and (ii) reproductive traits contributing to larval outbreaks of immigrant populationswere examined. It is suggested that the beet webworm does not initiate migratory flight until the3rdnight after emergence. POP, lifetime fecundity, mating capacity, and egg hatch rate for adults thatexperienced prolonged flight after the2nd night did not differ significantly from unflown moths,suggesting these traits are irrelevant to the severity of beet webworm outbreaks after migration.However, the period of first oviposition, a novel parameter measuring synchrony of first egg-laying bycohorts of post-migratory females, for moths flown on days3and5of adulthood was shorter than thatof unflown moths, indicating a tightened time-window for onset of oviposition after migration. Theresulting synchrony of egg-laying will serve to increase egg and subsequent larval densities. A densepopulation offers potential selective advantages to the individual larvae comprising it, whereas the effectfrom the human standpoint is intensification of damage by an outbreak population. The strategy ofsynchronized oviposition may be common in other migratory insect pests, such as locust and armywormspecies, and warrants further study.
     The major discovery points of this dissertation are summarized as follows:
     1. It is demonstrated that the temperature experienced at the immature stages is an important cueaffecting the migratory flight behavior in L. sticticalis. The migration propensity is preferred by adultsdeveloped from18-22℃. On the contrast, adults developed from the temperature of>26℃prefer toreproduce in the natal habitat for their shorter POP.
     2. It is confirmed that supplemental nutrition is critical to the reproduction and migration of L.sticticalis. Both reproductive and migratory flight capacities are significantly decreased when the mothsdo not have food. POP is significantly decreased when the moths are starved at the first2day of adultlife. Neither reproduction nor migration is significantly affected when the moths are starved after twodays of emergence. Development of reproductive and flight system is speeded up when the moths arestarved at day1of adulthood, but the former is favored.
     3. It is found that the adults of L. sticticalis will not migrate when they are mated or oviposited. This is because the flight capacity, triglyceride content and flight muscle weight in both male andfemale are all remarkably decreased as the number of eggs they laid increased or their ovipositionperiod extended. Besides, any of these3parameters of the reproduced adults is decreased in comparisonwith the virgin male or females at the same age, regardless of the significance.
     4. It is demonstrated that there is no reproductive cost for the migration of L. sticticalis, andmigration of the moths initiates at the3rd day after emergence based on the evidences from the flightcapacity, and variations in major reproductive parameters in the moths experienced various flight test.Besides, migration can increase the larval population density and thus enhance their damages thoughdecreasing their period of first oviposition.
引文
1.蔡彬,江幸福,罗礼智,曹雅忠,刘悦秋.温、湿度对粘虫蛾飞行能源物质利用的影响.生态学报,2002,22(7):1068-1074.
    2.曹卫菊,罗礼智,徐建华.我国草地螟的迁飞规律及途径.昆虫知识.2006,43(3):279-283.
    3.曹雅忠,程登发,倪汉祥,李光博.补充营养对粘虫飞翔力效应的研究.首届全国中青年科技工作者学术讨论会论文集,北京:中国科学技术出版社,1991,422-427.
    4.曹雅忠,罗礼智.粘虫飞翔能源物质及其消耗.昆虫学报,1995,38(3):290-295.
    5.曹雅忠,罗礼智.粘虫生殖和飞翔与幼虫期营养的关系.昆虫学报,1996,39(1):105-108.
    6.陈静,罗礼智,潘贤丽,康爱国.草地螟选择大画眉草而非藜产卵的证据及原因.植物保护,2010,36(2):75-79.
    7.陈莉,方丽娟,张少锋,陈红,王承伟,安晓存,张洪文,杜岩,汪喜江.黑龙江省草地螟第三暴发周期气候特征及风险概率.气象与环境学报,2011,27(3):.67-72
    8.陈瑞鹿,暴祥致,王素云,孙雅杰,李立群,刘继荣.草地螟迁飞活动的雷达观测.植物保护学报,1992,19(2):171-174.
    9.陈瑞鹿,暴祥致,王素云,孙雅杰,李立群,刘继荣,张德宽,卢加.公主岭昆虫雷达的装置和初步应用.中国农业科学,1985,18(3):93.
    10.陈阳,姜玉英,刘家骧,吕英,孟正平,陈静,唐继红.标记回收法确认我国北方地区草地螟的迁飞.昆虫学报,2012,55(2):176-182.
    11.顾成玉,梁艳春,张广芝.草地螟种群数量变动及预测预报技术的研究.黑龙江农业科学,1986,(5):18-21.
    12.江幸福,罗礼智,胡毅.成虫期营养对甜菜夜蛾生殖和飞行的影响.植物保护学报,2000a,27(4):327-332.
    13.江幸福,罗礼智,胡毅.饲养温度对粘虫飞行和生殖能力的影响.生态学报,2000b,20(2):288-292.
    14.江幸福,罗礼智,等.温度对甜菜夜蛾飞行能力的影响.昆虫学报,2002,45(2):275-278.
    15.江幸福,罗礼智,胡毅.粘虫产卵前期的遗传特征.生态学报,2005,25(1):68-72.
    16.江幸福,刘悦秋,罗礼智,胡毅.高温对粘虫未成熟期生长发育的影响.北京农学院学报,1998,13(2):20-26.
    17.江幸福,蔡彬,罗礼智,曹雅忠,刘悦秋.温、湿度综合效应对粘虫蛾飞行能力的影响.生态学报,2003,23(4):738-743.
    18.姜玉英,张跃进,杨宝胜,马苍江,王贺军,冯晓东,王春荣.草地螟2008年越冬虫源分布特点和2009年发生趋势分析.中国植保导刊,2009,29(1):39-41.
    19.李光博(中国农业科学院植物保护研究所病虫部测报组).粘虫发生规律的研究概况.植保科技,1973,(1):25-35.
    20.李红,罗礼智.草地螟的寄生蝇种类、寄生方式及其对寄主种群的调控作用.昆虫学报,2007,50(8):840-849.
    21.李克斌,高希武,罗礼智,尹姣,曹雅忠.粘虫飞行过程中四种相关酶的活性变化.昆虫学报,2005a,48(4):643-647.
    22.李克斌,曹雅忠,罗礼智,高希武,尹姣,胡毅.飞行对粘虫体内甘油酯积累与咽侧体活性的影响.昆虫学报,2005b,48(2):155-160.
    23.李克斌,罗礼智,曹雅忠,胡毅.粘虫飞行肌降解与生殖关系的初步研究.中国学术期刊文摘(科技快报),2001,7(5):662-664.
    24.李齐仁.草地螟回升原因及防治措施.山西农业科学,1980,(Z1):9-10.
    25.罗晨,曹雅忠,李克斌.补充营养对粘虫成虫能源物质含量的影响.昆虫学报,2000,43(S1):207-210.
    26.罗礼智.昆虫迁飞行为的发生与调控.科学,1998,50(3):32-35.
    27.罗礼智.我国2004年一代草地螟将暴发成灾.植物保护,2004,30(3):86-88.
    28.罗礼智,李光博.草地螟不同蛾龄成虫飞行能力和行为的研究.青年生态学者论丛(二)昆虫生态学研究,1992,2:303-308.
    29.罗礼智,李光博.草地螟的有效积温及其世代区的划分.昆虫学报,1993a,36(3):332-339.
    30.罗礼智,李光博.温度对草地螟成虫产卵和寿命的影响.昆虫学报,1993b,36(4):459-464.
    31.罗礼智,屈西锋.我国草地螟2004年危害特点及2005年一代危害趋势分析.植物保护,2005,31(3):69-71.
    32.罗礼智,李光博,曹雅忠.草地螟第3个猖獗为害周期已经来临.植物保护,1996,22(5):50-51.
    33.罗礼智,李光博,曹雅忠,胡毅.粘虫幼虫密度对成虫飞行与生殖的影响.昆虫学报,1995a,38(1):38-45.
    34.罗礼智,李光博,胡毅.粘虫飞行与产卵的关系.昆虫学报,1995b,38(3):284-289.
    35.罗礼智,江幸福,李克斌,胡毅.粘虫飞行对生殖及寿命的影响.昆虫学报,1999,42(2):150-158.
    36.罗礼智,黄绍哲,江幸福,张蕾.我国2008年草地螟大发生特征及成因分析.植物保护,2009,35(1):27-33.
    37.罗礼智,张红杰,康爱国.张家口1997年一代草地螟幼虫大发生原因分析.自然灾害学报,1998,7(3):158-164.
    38.屈西峰,邵振润,王建强.我国北方农牧区草地螟暴发周期特点及原因剖析.昆虫知识,1999,36(1):11-14.
    39.孙雅杰,陈瑞鹿.草地螟迁飞、发生区与生活史的研究.华北农学报,1995,10(4),86-91.
    40.孙雅杰,陈瑞鹿,王素云,暴祥致.草地螟雌蛾生殖系统发育的形态变化.昆虫学报,1991,34(2):248-250.
    41.孙雅杰,王素云,暴祥致,陈瑞鹿.草地螟雌蛾发育分级及其在测报中的应用.中国植保导刊,1992,12(2):10-13.
    42.孙雅杰,陈瑞鹿,高月波,卢宗志.草地螟成虫活动与幼虫发育的观察.吉林农业科学,2005,30(3):15-17.
    43.唐红艳.草地螟一代幼虫发生面积的气象预报模型.中国农业气象,2011,32(1):144-147.
    44.唐红艳,牛宝亮.影响草地螟一代幼虫发生的关键气象因子及指标研究.中国农学通报,2010,26(18):270-274.
    45.王竑晟,徐洪富,崔峰.成虫期营养对甜菜夜蛾生殖力及卵巢发育的影响.西南农业学报,2004,17(1):34-37.
    46.王晗,穆晨,倪亦非,林俊,于非,吴乐年,徐光青,季荣.新疆阿勒泰地区草地螟一代成虫卵巢发育与虫源性质探讨.新疆农业科学,2011,48(7):1324-1328.
    47.王娟,江幸福,吴德龙,罗礼智.幼虫密度对甜菜夜蛾生长发育与繁殖的影响.昆虫学报,2008,51(8):889-894.
    48.王凯.草地螟的生殖行为和能力及其在不同环境生理条件下的变异[硕士学位论文].武汉:华中农业大学,2010.
    49.王凯,程云霞,江幸福,罗礼智.草地螟交配行为及能力.应用昆虫学报,2011,48(4):978-981.
    50.王睿文,唐铁朝,康爱国,樊荣贤,孟翠勉,程红霞,孟兆军.1997年草地螟暴发原因分析及其防治对策.植保技术与推广,1998,18(2):16-19.
    51.魏倩,赵晓丽,杜俊岭,崔万里,孙明江.草地螟成虫生殖力与温湿度关系的研究.中国植保导刊,1987a,(S1):9-13.
    52.魏倩,崔万里,杜俊岭,孙明江,赵晓丽,顾成玉,梁艳春,张广芝,李长祥,黄自芳,贾宗谊.黑龙江省草地螟(Loxostege sticticalis)发生规律、预测预报及综合防治研究(1981-1985年).中国植保导刊,1987b,(S1):98-107.
    53.吴秋雁,郭郛.粘虫咽侧体对卵巢发育与成熟的影响.昆虫学报,1963.12(4):402-411
    54.吴孔明,郭予元.营养和幼虫密度对棉铃虫飞翔能力的影响.昆虫学报,1997,40(1):51-57.
    55.武清彪,李卫伟,张崎,陈阔.2003年山西省二代草地螟发生与消长原因分析及防治对策.山西农业科学,2004,32(3):58-60.
    56.尹姣,曹雅忠,罗礼智,胡毅.草地螟对寄主植物的选择性及其化学生态机制.生态学报,2005,25(8):1844-1852.
    57.岳宗岱,袁艺.吉林省草地螟虫源和发生条件的初步分析.吉林农业科学,1983,8(3):78-81.
    58.曾娟,姜玉英,张野.2009年我国草地螟发生特点及原因分析.中国植保导刊,2010,30(5):33-36.
    59.杨素钦,马桂椿.草地螟迁飞路径的探讨.中国植保导刊,1987,(S1):122-128.
    60.张蕾,罗礼智,江幸福,胡毅.一日龄饥饿对粘虫成虫卵巢发育和飞行能力的影响.昆虫学报,2006,49(6):895-902.
    61.张蕾.粘虫迁飞型转为居留型的关键时期和调控基础[博士学位论文].北京:中国农业科学院,2006.
    62.张李香,范锦胜,王贵强.草地螟成虫期补充营养与其生殖力的关系.植物保护,2011,37(2):59-62.
    63.张利增,张莉萍,沈成,乔春花,李登来,马建平,张瑞敬.张家口市2008年二代草地螟幼虫大发生原因分析及防控措施.河北北方学院学报:自然科学版,2009,25(4):26-29.
    64.张云慧,陈林,程登发,姜玉英,吕英.草地螟2007年越冬代成虫迁飞行为研究与虫源分析.昆虫学报,2008,51(7):720-727.
    65.周艳丽,杨骥,范有君,阎志山.草地螟越冬代成虫生物学特性及控制技术研究.中国糖料,2000,(2):22-24.
    66.朱世模.山西中部草地螟发生规律及防治研究.山西农业科学,1963,(2):16-20.
    67. Aksit T, Cakmak I, Ozer G. Effect of temperature and photoperiod on development and fecundityof an acarophagous ladybird beetle, Stethorus gilvifrons. Entomology,2007,35(4):357-366.
    68. Appleby JH, Credland PF. The role of temperature and larval crowding in morph determination ina tropical beetle, Callosobruchus subinnotatus. Journal of Insect Physiology,2007,53(10):983-993.
    69. Arnett RH. American insects. New York: Van Nostrand Reinhold Company,1985, p1024.
    70. Bailey EV, Harris MO. Visual behaviors of the migratory grasshopper, Melanoplus sanguinipes F.(Orthoptera: Acrididae). Journal of Insect Behavior,1991,4(6):707-726.
    71. Baldwin JD, Dingle H. Geographic variation in the effects of temperature on life-history traits inthe large milkweed bug Oncopeltus fasciatus. Oecologia,1986,69(1):64-71.
    72. Bauerfeind SS, Fischer K, Hartstein S, Janowitz S, Martin-Creuzburg D. Effects of adult nutritionon female reproduction in a fruit-feeding butterfly: The role of fruit decay and dietary lipids.Journal of Insect Physiology,2007,53(9):964-973.
    73. Beenakkers AMT. Adipokinetic hormones and lipoprotein interconversions during locust flight.Insect Science&its Application,1991,12(1-2-3):279-287.
    74. Beenakkers AMT, Van der Horst DJ, Van Marrewijk WJA. Insect flight muscle metabolism. InsectBiochemistry,1984,14(3):243-260.
    75. Bertram SM. Positive relationship between signaling time and flight capability in the Texas fieldcricket, Gryllus texensis. Ethology,2007,113(9):875–880.
    76. Bertuso AG, Morooka S, Tojo S. Sensitive periods for wing development and precociousmetamorphosis after precocene treatment of the brown planthopper, Nilaparvata lugens. Journal ofInsect Physiology,2002,48:221-229.
    77. Brower LP. Monarch butterfly orientation: missing pieces of a magnificent puzzle. Journal ofExperimental Biology,1996,199:93-103.
    78. Caldwell RL. A comparison of migratory strategies in two species of milkweed bugs. In:Experimental analysis of insect behaviour (Barton Browne L, ed). New York: Springer,1974.
    79. Cheng YX, Luo LZ, Jiang XF, Sappington TW. Synchronized oviposition triggered by migratoryflight intensifies larval outbreaks of beet webworm. PLoS ONE,2012,7(2): e31562.
    80. Cisper G, Zera AJ, Borst DW. Juvenile hormone titer and morph-specific reproduction in thewing-polymorphic cricket, Gryllus firmus. Journal of Insect Physiology,2000,46(4):585-596.
    81. Cloutier C, Perron LM. Polymorphism and sensitivity to a juvenile hormone analogue in the potatoaphid, Macrosiphum euphorbiae (Homoptera: Aphidiae). Entomologia Experimentalis et Applicata,1975,18(4):457-464.
    82. Coats SA, Mutchmor JA, Tollefson JH. Regulation of migratory flight by juvenile hormone mimicand inhibitor in the Western Corn Rootworm (Coleoptera: Chrysomelidae). Annals of theEntomological Society of America,1987,80(5):697-708.
    83. Cockbain AJ. Viability and fecundity of alate alienicolae of Aphis fabae Scop. after flights toexhaustion. Journal of Experimental Biology,1961,38(1):181-187.
    84. Colvin J, Gatehouse AG. The reproduction-flight syndrome and the inheritance of tethered-flightactivity in the cotton-bollworm moth, Heliothis armigera. Physiological Entomology,1993,18(1):16-22.
    85. Denno RF, Olmstead KL, McCloud ES. Reproductive cost of flight capability: a comparison of lifehistory traits in wing dimorphic planthoppers. Ecological Entomology,1989,14(1):31-44.
    86. Dingle H. Migration strategies of insects. Science,1972,175(4028):1327-1335.
    87. Dingle H. Function of migration in the seasonal synchronization of insects. EntomologiaExperimentalis et Applicata,1982,31(1):36-48.
    88. Dingle H. Migration: the biology of life on the move. New York: Oxford University Press,1996,p480.
    89. Dingle H. Animal migration: is there a common migratory syndrome? Journal of Ornithology,2006,147(2):212-220.
    90. Dingle H, Drake VA. What is migration? Bioscience,2007,57(2):113-121.
    91. Dixon AFG. Crowding and nutrition in the induction of macropterous alatae in Drepanosiphumdixoni. Journal of Insect Physiology,1972,18(3):459-464.
    92. Dixon AFG, Agarwala BK. Ladybird-induced life-history changes in aphids. Proceedings of theRoyal Society B,1999,266(1428):1549-1553.
    93. Dixon AFG, Horth S, Kindlmann P. Migration in insects: cost and strategies. Journal of AnimalEcology,1993,62(1):182-190.
    94. Dyakonova V, Krushinsky A. Previous motor experience enhances courtship behavior in malecricket Gryllus bimaculatus. Journal of Insect Behavior,2008,21(3):172-180.
    95. Edwards FJ. Environmental control of flight muscle histolysis in the bug Dysdercus intermedius.Journal of Insect Physiology,1969,15(11):2013-2020.
    96. Feng H, Wu K, Cheng D, Guo Y. Spring migration and summer dispersal of Loxostege sticticalis(Lepidoptera: Pyralidae) and other insects observed with radar in northern China. EnvironmentalEntomology,2004,33(5):1253-1265.
    97. Frolov AN, Malysh YM, Tokarev YS. Biological features and population density forecasts of thebeet webworm Pyrausta sticticalis L.(Lepidoptera, Pyraustidae) in the period of low populationdensity of the pest in Krasnodar Territory. Entomological Review,2008,88(6):666-675.
    98. Geister TL, Lorenz ML, Hoffmann KH, Fischer K. Adult nutrition and butterfly fitness: effects ofdiet quality on reproductive output, egg composition, and egg hatching success. Frontiers inZoology2008,5(1):10.
    99. Goldsworthy GJ. The Endocrine control of flight metabolism in locust. In: Adv Insect Physiol(Berridge MJ, Treherne JE, Wigglesworth VB, eds). New York: Academic,1983,149-204.
    100. Gondim KC, Oliveira PL, Masuda H. Lipophorin and oogenesis in Rhodnius prolixus: Transfer ofphospholipids. Journal of Insect Physiology,1989,35(1):19-27.
    101. Groeters F, Dingle H. The cost of being able to fly in the milkweed-oleander aphid, Aphis nerii(Homoptera: Aphididae). Evolutionary Ecology,1989,3(4):313-326.
    102. Gu H, Hughes J, Dorn S. Trade-off between mobility and fitness in Cydia pomonella L.(Lepidoptera: Tortricidae). Ecological Entomology,2006,31(1):68-74.
    103. Guerra PA, Pollack GS. A life history trade-off between flight ability and reproductive behavior inmale field crickets (Gryllus texensis). Journal of Insect Behavior,2007,20(4):377-387.
    104. Guerra PA, Pollack GS. Flight behaviour attenuates the trade-off between flight capability andreproduction in a wing polymorphic cricket. Biological Letters,2009,5(2):229-231.
    105. Gunn A, Gatehouse AG. The migration syndrome in the African armyworm moth, Spodopteraexempts: allocation of resources to flight and reproduction. Physiological Entomology,1993,18(2):149-159.
    106. Gunn A, Gatehouse AG, Woodrow KP. Trade-off between flight and reproduction in the Africanarmyworm moth, Spodoptera exempta. Physiological Entomology,1989,14(4):419-427.
    107. Han E-N, Gatehouse AG. Flight capacity: genetic determination and physiological constraints in amigratory moth Mythimna separata. Physiological Entomology,1993,18(2):183-188.
    108. Hanski I, Saastamoinen M, Ovaskainen O. Dispersal-related life-history trade-offs in a butterflymetapopulation. Journal of Animal Ecology,2006,75(1):91-100.
    109. Hanski I, Eralahti C, Kankare M, Ovaskainen O, Siren H. Variation in migration propensity amongindividuals maintained by landscape structure. Ecology Letters,2004,7(10):958-966.
    110. Hardie J. Juvenile hormone mimics the photoperiodic apterization of the slate gynopara of aphid,Aphis fabae. Nature,1980,286(5773):602-604.
    111. Hardie J, Lees AD. Endocrine control or polymorphism and polyphenism. In: ComprehensiveInsect Physiology, Biochemistry and Parmacology (Kerkut GA, Gilbert LI, eds). New York,1985,441-490.
    112. Higaki M, Ando Y. Effect of crowding and photoperiod on wing morph and egg production inEobiana engelhardti subtropica (Orthoptera: Tettigoniidae). Applied Entomology and Zoology,2003,38(3):321-325.
    113. Highnam KC, Haskall PT. The endocrine system of isolated and crowed Locusta and Schistocercain relation to o cyte growth, and the effects of flying upon maturation. Journal of InsectPhysiology1964,10(6):853-864.
    114. Holland RA, Wikelski M, Wilcove DS. How and why do insects migrate? Science,2006,313(5788):794-796.
    115. Iwanaga K, Tojo S. Hormonal control of wing polymorphism in the brown planthopper,Nilaparvata lugens. Procccdings of Assocciation between Plant and Protection,1985,31:84-88.
    116. Iwanaga K, Tojo S. Effects of juvenile hormone and rearing density on wing dimorphism ando cyte development in the brown planthopper, Nilaparvata lugens. Journal of Insect Physiology,1986,32(6):585-590.
    117. Jiang XF, Luo LZ, Sappington TW. Relationship of flight and reproduction in beet armyworm,Spodoptera exigua (Lepidoptera: Noctuidae), a migrant lacking the oogenesis-flight syndrome.Journal of Insect Physiology,2010a,56(1):1631-1637.
    118. Jiang XF, Cao WJ, Zhang L, Luo LZ. Beet Webworm (Lepidoptera: Pyralidae) Migration in China:Evidence from Genetic Markers. Environmental Entomology,2010b,39(1):232-242.
    119. Jim′enez-P′erez A, Wang Q. Male remating behavior and its effect on female reproductive fitnessin Cnephasia jactatana Walker (Lepidoptera: Tortricidae). Journal of Insect Behavior,2004,17(5)685-694.
    120. Johnson B. Studies on the degeneration of the flight muscles of alate aphids I: A comparative studyof the occurrence of muscle breakdown in relation to reproduction in several species. Journal ofInsect Physiology,1957,1(3):248-250.
    121. Johnson B. Wing polymorphism in aphids Ⅲ. The influence of the host plant. EntomologiaExperimentalis et Applicata,1966a,9(2):213-222.
    122. Johnson B. Wing polymorphism in aphids IV. The effect of temperature and photoperiod.Entomologia Experimentalis et Applicata,1966b,9(3):301-313.
    123. Johnson B, Birks PR. Studies on wing polymorphism in aphids I. The developmental processinvolved in the production of the different forms. Entomologia Experimentalis et Applicata,1960,3(4):327-339.
    124. Johnson CG. Physiological factors in insect migration by flight. Nature,1963,198(4879):423-427.
    125. Johnson CG. Migration and dispersal of insects by flight. London: Methuen,1969, p763.
    126. Kati A, Hardie J. Regulation of wing formation and adult development in an aphid host, Aphisfabae, by the parasitoid Aphidius colemani. Journal of Insect Physiology,2010,56(1):14-20.
    127. Keil S, Gu H, Dorn S. Response of Cydia pomonella to selection on mobility: laboratoryevaluation and field verification. Ecological Entomology,2001,26(5):495-501.
    128. Kennedy JS. The migration of the desert locust (Schistocerca gregaria Forsk.). I. The behaviour ofswarms. II. A theory of long-range migrations. Philosophical Transactions of the Royal Society B:Biological Sciences,1951,235(625):163-290.
    129. Knor IB, Bashev AN, Alekseev AA, Kirov EI. Effect of population density on the dynamics of thebeet webworm Loxostege sticticalis L.(Lepidoptera: Pyralidae). Entomological Review,1993,72:117-124.
    130. Kobayashi M, Ishikawa H. Involvement of juvenile hormone and ubiquitin-dependent proteolysisin flight muscle breakdown of alate aphid (Acyrthosiphon pisum). Journal of Insect Physiology,1994,40(2):107-111.
    131. Kowerwitz, FL, Pruess, KP. Migratory potential of the army cutworm. Journal of the KansasEntomological Society,1964,37(3):234-239.
    132. Kong H, Luo L, Jiang X, Zhang L. Effects of larval density on flight potential of the beetwebworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Environmental Entomology,2010,39(5):1579-1585.
    133. Langellotto GA, Denno RF, Ott JR. A trade-off between flight capability and reproduction in malesof a wing-dimorphic insect. Ecology,2000,81:865-875.
    134. Lipsitz EY, McFarlane JE. Total lipid and phospholipid during the life cycle of the house cricket,Acheta domesticus (L.). Comparative Biochemistry and Physiology,1970,34(3):699-705.
    135. Lorenz MW. Adipokinetic hormone inhibits the formation of energy stores and egg production inthe cricket Gryllus bimaculatus. Comparative Biochemistry and Physiology-Part B: Biochemistry&Molecular Biology,2003,136(2):197-206.
    136. Lorenz MW. Oogenesis-flight syndrome in crickets: Age-dependent egg production, flightperformance, and biochemical composition of the flight muscles in adult female Gryllusbimaculatus. Journal of Insect Physiology,2007,53(8):819-832.
    137. Luo, L Z, Johnson, S J, Hammond, A M, et al. Determination and consideration of flight potentialin a laboratory population of true armyworm (Lepidoptera: Noctuidae). EnvironmentalEntomology,2002,31(1):1-9.
    138. Mason LJ, Johnson SJ, Woodring JP. Seasonal and ontogenetic examination of the reproductivebiology of Pseudoplusia includens (Lepidoptera: Noctuidae). Environmental Entomology,1989,18(6):980-985.
    139. Mel'Nichenko, A. N. Regularities of mass flying of the adults of Loxostege sticticalis L. and theproblem of the prognosis of their flight migrations. Bulletin of Plant Protection.1936,17:56.
    140. McAnelly ML, Rankin MA. Migration in the grasshopper Melanoplus sanguinipes (Fab.). II.Interactions between flight and reproduction. Biological Bulletin,1986,170(3):378-392.
    141. McCaffery AR, Page WW. Factors influencing the production of long-winged Zonocerusvariegatus. Journal of Insect Physiology,1978,24(6-7):465-472.
    142. Mevi-Schütz J, Erhardt A. Mating frequency influences nectar amino acid preference of Pieris napi.proceedings. Biological Sciences2004,271(1535):153-158.
    143. Mole S, Zera AJ. Differential allocation of resources underlies the dispersal-reproduction trade-offin the wing-dimorphic cricket, Gryllus rubens. Oecologia,1993,93(1):121-127.
    144. Mole S, Zera AJ. Differential resource consumption obviates a potential flight-fecundity trade-offin the sand cricket (Gryllus firmus). Functional Ecology,1994,8(5):573-580.
    145. Murata M, Tojo S. Utilization of lipid for flight and reproduction in Spodoptera litura (Lepidoptera:Noctuidae). European Journal of Entomology,2002,99(2):221-224.
    146. Newman JA, Gibson DJ, Parsons AJ, Thornley JHM. How predicable are aphid populationresponsed to elevated CO2? Journal of Animal Ecology,2003,72(4):556-566.
    147. Oliveira GA, Baptista DL, Guimar es-Motta H, Almeida IC, Masuda H, Atella GC.Flight-oogenesis syndrome in a blood-sucking bug: Biochemical aspects of lipid metabolism.Archives of Insect Biochemistry and Physiology,2006,62(4):164-175.
    148. Pepper JH. The effect of certain climate factors on the distribution of the beet webworm (Loxostegesticticalis L.) in North American. Ecology,1938,19(4):565-571.
    149. Rankin MA. Effects of precocene I and II on flight behavior in Oncopeltus fasciatus, the migratorymilkweed bug. Journal of Insect Physiology,1980,26:67-74.
    150. Rankin MA, Riddiford LM. Hormonal control of migratory flight in Oncopeltus fasciatus: Theeffects of the corpus cardiacum, corpus allatum, and starvation on migration and reproduction.General and Comparative Endocrinology,1977,33(3):309-321.
    151. Rankin MA, Rankin S. Some factors affecting presumed migratory flight activity of the convergentladybeetle Hippodamia convergens (Coccinellidae: Coleoptera). Biological Bulletin,1980,158(3):356-369
    152. Rankin MA, Burchsted JCA. The cost of migration in insects. Annual Review of Entomology,1992,37(1):533-559.
    153. Rankin MA, Hampton EN, Summy KR. Investigations of the oogenesis-flight syndrome inAnthonomus grandis (Coleoptera: Curculionidae) using tethered flight tests Journal of InsectBehavior,1994,7(6):795-810.
    154. Riley JR, Reynolds DR, Farmery MJ. Observations of the flight behaviour of the army worm moth,Spodoptera exempta, at an emergence site using radar and infra-red optical techniques. EcologicalEntomology,1983,8(4):395-418.
    155. Roff DA. Dispersal in dipterans: its costs and consequences. Journal of Animal Ecology,1977,46(2):443-456
    156. Roff DA. The cost of being able to fly: a study of wing polymorphism in two species of crickets.Oecologia,1984,63(1):30-37.
    157. Roff DA. Exaptation and the evolution of dealation in insects. Journal of Evolutionary Biology,1989,2(2):109-123.
    158. Roff DA, Fairbairn DJ. The evolution and genetics of migration in insects. BioScience,2007,57(2):155-164.
    159. Rose DJW, Dewhurst CF, Page WW. The African armyworm handbook: the status, biology,ecology, epidemiology and management of Spodoptera exempta (Lepidoptera: Noctuidae).2ed.Chatham, UK: Natural Resources Institute,2000, p315.
    160. Russell RW, May ML, Soltesz KL, Fitzpatrick JW. Massive swarm migration of dragonflies(Odonata) in eastern North America. America Midland Naturalist,1998,140(2):325-342.
    161. Rygg TD. Flight of Oscinella frit L.(Diptera: Chloropidae) females in relation to age and ovarydevelopment. Entomologia Experimentalis et Applicata,1966,9(1):74-84.
    162. Saastamoinen M, Sterren Dvd, Vastenhout N, Zwaan BJ, Brakefield PM. Predictive adaptiveresponses: condition-dependent impact of adult nutrition and flight in the tropical butterflyBicyclus anynana. The American Naturalist,2010,176(6):686-698.
    163. Saglam IK, Roff DA, Fairbairn DJ. Male sand crickets trade-off flight capability for reproductivepotential. Journal of Evolutionary Biology,2008,21(4):997-1004.
    164. Saks ME, Rankin MA, Stinner RE. Sexually differentiated flight responses of the Mexican beanbeetle to larval and adult nutrition. Oecologia,1988,75(2):296-302.
    165. Sappington TW, Showers WB. Influence of larval starvation and adult diet on long-duration flightbehavior of the migratory moth Agrotis ipsilon (Lepidoptera: Noctuidae). EnvironmentalEntomology,1993,22(1):141-148.
    166. Sasaki R, Nakasuji F, Fujisaki K. Environmental factors determining wing form in the lygaeid bug,Dimorphopterus japonicus (Heteroptera: Lygaeidae). Applied Entomology and Zoology,2002,37(2):329-333.
    167. Sasaki R, Nakasuji F, Fujisaki K. Seasonal changes in wing dimorphism of the lygaeid bugDimorphopterus japonicus (Heteroptera: Lygaeidae) in relation to environmental factors.Entomological Science,2003,6(2):63-70.
    168. Shimizu T, Masaki S. Injury causes microptery in the ground cricket, Dianemobius fascipes.Journal of Insect Physiology,1993,39(2):1021-1027.
    169. Slansky FJ. Food consumption and reproduction as affected by tethered flight in female milkweedbugs (Oncopeltus fasciatus). Entomologia Experimentalis et Applicata,1980,28(3):277-286.
    170. Solbreck C, Pehrson I. Relations between environment, migration and reproduction in a seed bug,Neacoryphus bicrucis (say)(Heteroptera: Lygaeidae). Oecologia,1979,43(1):51-62.
    171. Southwood TRE. Migration of terrestrial arthropods in relation to habitat. Biological Reviews,1962,37(2):171-211.
    172. Stjernholm F, Karlsson B, Boggs C, L. Age-related changes in thoracic mass: possible reallocationof resources to reproduction in butterflies. Anglais,2005,86(3):363-380.
    173. Stril’Nikov, I. D. The migrations of Loxostege sticticalis L.(In Russian with a summary inGerman.) Bulletin of Insect science. Leshalf,1935,19:77-120.
    174. Sutherland ORW. The role of crowding in the production of winged forms by two strains of the peaaphid, Acyrthosiphon pisum. Journal of Insect Physiology,1969,15(8):1385-1410.
    175. Tanaka S. Wing polymorphism, egg production and adult longevity in Pteronemobiustaprobanensis Walker (Orthoptera, Gryllidae). The Entomological Society of Japan,1976,44(3):327-333.
    176. Tanaka S. Effects of wing-pad removal and corpus allatum implantation on development of wings,flight muscles, and related structures in the striped ground cricket, Allonemobius fasciatus.Physiological Entomology,1985,10(4):453-462.
    177. Tanaka S. De-alation and its influences on egg production and flight muscle histolysis in a cricket(Velarifictorus parvus) that undergoes inter-reproductive migration. Journal of Insect Physiology,1991,37(7):517-523.
    178. Tanaka S. Allocation of resources to egg production and flight muscle development in a wingdimorphic cricket, Modicogryllus confirmatus. Journal of Insect Physiology,1993,39(6):493-498.
    179. Tanaka S. Effects of suppressed oviposition activity and flight muscle histolysis on foodconsumption and ovarian development in a wing-dimorphic cricket: an explanation for sporadicconclusions related to physiological trade-offs. Journal of Insect Physiology,2001,47(1):83-94.
    180. Tanaka S, Suzuki Y. Physiological trade-offs between reproduction, flight capability and longevityin a wing-dimorphic cricket, Modicogryllus confirmatus. Journal of Insect Physiology,1998,44(2):121-129.
    181. Van der Horst DJ. Insect adipokinetic hormones: release and integration of flight energymetabolism. Comparative Biochemistry and Physiology Part B: Biochemistry and MolecularBiology,2003,136(2):217-226.
    182. Van der Horst DJ, Rodenburg KW. Locust flight activity as a model for hormonal regulation oflipid mobilization and transport. Journal of Insect Physiology,2010,56(8):844-853.
    183. Van der Horst DJ, Van Hoof D, Van Marrewijk WJA, Rodenburg KW. Alternative lipidmobilization: The insect shuttle system. Molecular and Cellular Biochemistry,2002,239(1):113-119.
    184. Weisser WW, Braendle C, Minoretti N. Predator-induced morphological shift in the pea aphid.Proceedings of the Royal Society B: Biological Sciences,1999,266(1424):1175-1181.
    185. Willers JL, Schneider JC, Ramaswamy SB. Fecundity, longevity and caloric patterns in femaleHeliothis virescens: changes with age due to flight and supplemental carbohydrate. Journal ofInsect Physiology,1987,33(1):803-808.
    186. Zera AJ. The endocrine regulation of wing polymorphism in insects: state of the art, recentsurprises, and future directions. Integrative and Comparative Biology,2004,43(5):607-616.
    187. Zera AJ, Tiebel KC. Differences in juvenile hormone sterase activity between presumptivemacroptrous and brachypterous Gryllus rubens, implications to the hornonal control of wingpolymorphism. Journal of Insect Physiology,1989,35(1):7-17.
    188. Zera AJ, Denno RF. Physiology and ecology of dispersal polymorphism in insects. Annual Reviewof Entomology,1997,42:207-230.
    189. Zera AJ, Brink T. Nutrient absorption and utilization by wing and flight muscle morphs of thecricket Gryllus firmus: implications for the trade-off between flight capability and earlyreproduction. Journal of Insect Physiology,2000,46(8):1207-1218.
    190. Zera AJ, Harshman LG. The physiology of life history trade-offs in animals. Annual Review ofEcology, Evolution, and Systematics,2001,32(1):95-126.
    191. Zera AJ, Larsen A. The metabolic basis of life history variation: genetic and phenotypic differencesin lipid reserves among life history morphs of the wing-polymorphic cricket, Gryllus firmus.Journal of Insect Physiology,2001,47(10):1147-1160.
    192. Zera AJ, Mole S, Rokke K. Lipid, carbohydrate and nitrogen content of long-and short-wingedGryllus firmus: Implications for the physiological cost of flight capability. Journal of InsectPhysiology,1994,40(12):1037-1044.
    193. Zera AJ, Sall J, Grudzinski K. Flight‐muscle polymorphism in the cricket Gryllus firmus: musclecharacteristics and their influence on the evolution of flightlessness. Physiological Zoology,1997,70(5):519-529.
    194. Zhang L, Jiang XF, Luo LZ. Determination of sensitive stage for switching migrant orientalarmyworms into residents. Environmental Entomology,2008a,37(6):1389-1395.
    195. Zhang L, Luo LZ, Jiang XF. Starvation influences allatotropin gene expression and juvenilehormone titer in the female adult oriental armyworm, Mythimna separata. Archives of InsectBiochemistry and Physiology,2008b,68(2):63-70.
    196. Zhang Y, Wu K, Wyckhuys KAG, Heimpel GE. Trade-offs between flight and fecundity in thesoybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology,2009,102(1):133-138.
    197. Zhao Z, Zera AJ. Differential lipid biosynthesis underlies a tradeoff between reproduction andflight capability in a wing-polymorphic cricket. Proceedings of the National Academy of Sciences2002,99(26):16829-16834.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700