处理高浓度含盐废水的机械蒸汽再压缩系统设计及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在印染、化工、造纸、医药和农药等生产过程中会产生大量高浓度含盐废水,有些废水中所含无机盐还具有回收利用的价值,直接排放将导致水环境污染和资源浪费。常规的多效蒸发可以对该类废水进行处理和回收,却存在着能量消耗高、配套设备多、运行费用高等问题。因此,研究一种能耗少、运行费用低且结构紧凑的高浓度含盐废水处理方法具有一定的现实意义。
     为此,本文以降低能耗为目标,提出了处理高浓度含盐废水的两级机械蒸汽再压缩(Mechanical Vapor Re-compression,MVR)的方法,设计了系统流程,建立了系统热力分析平台;设计了系统关键设备结构,构建了工程实验系统装置并实施了工程化的实验研究;最后,对系统开展了综合性能评价分析。
     首先,对现有含盐废水处理技术及高浓度含盐废水特征进行了分析,提出了适合处理高浓度含盐废水的两级MVR方法并设计了具体的工艺流程,构建了系统中主要设备的模型及系统的计算平台并用已公开的数据加以了验证;借助该平台对两级MVR系统及其参比的单级MVR和三效蒸发系统进行了分析,获得了两级MVR系统及参比系统的整体热力性能,所提系统的性能系数和节能率等指标均较参比系统有显著提高,与传统三效相比可节省能耗75.8%;同时分析了一级排出浓度、蒸发温度、传热温差等重要参量对两级MVR系统能耗的影响规律。
     基于以上理论分析,采用遗传算法对加热器的结构进行了基于综合成本目标的优化设计;设计了深入内部的轴向进料闪蒸器及其结构;建立了针对实际工程应用的两级MVR系统装置,该系统置于某染料生产企业用于处理生产过程中产生的高浓度硫酸铵废水,据此研究了系统工程状态下实际运行性能,并与模拟结果进行了对比分析。研究表明,系统实际单位能耗为53.8kWh/t实现了能量消耗低的目标;实际运行结果与模拟结果基本相符,这说明本文建立的模拟和设计模型是可靠的。实验效果表明,系统回收了硫酸铵,排放出了净水,达到了对高浓度废水处理的要求。
     建立了考虑废水中盐分影响的两级MVR系统的火用分析模型,采用上述实验得到的数据,对系统进行了实际状态下的火用分析,获得了系统的火用损失分布状况,及压缩比、蒸发温度和一级排出浓度对系统火用效率的影响规律,并依据分析给出了改进措施。随后,基于以上获得的系统各物流火用,引入热经济学结构理论,构建了两级MVR系统热经济学模型,分析了系统的热经济学成本及其分布,并研究了系统内、外部参量对系统热经济学成本的影响规律。分析结果表明,较之单级MVR系统,本文所述系统的火用效率提高13.4%,单位产品成本降低6.8%,两级MVR系统的综合性能优势明显;内部操作温度变化对系统各组元热经济学成本的影响大于一级排出浓度对各组元的影响;外部电力价格对各组元热经济学成本的影响要大于设备投资对相应组元的影响。
     本文为处理高浓度含盐废水提供了一种低能耗的思路及方法,所获得的研究结果对MVR技术的运用发展具有重要的理论和工程应用价值。
Great deals of high concentrations inorganic salts wastewater are discharged by industries ofdyeing and finishing, chemical engineering, paper making, pharmaceuticals and pesticides. Inorganicsalts contained in some wastewater have the value of recycling. If these wastewater are directlydischarged, it will lead to water pollution and waste of resources. There are some problems forconventional multi-effect evaporation, which can treat this kind of waste water, such as high energyconsumption, more corollary equipment and high operating costs. Therefore, it is necessary to developa method which is low energy consumption, low operating costs and compact, to treat highconcentration saline wastewater.
     In this paper, a method of two-stage mechanical vapor recompression (MVR) was proposed, andthen designed the system process, simulated and analyzed the system, carried out experimental studyand evaluated the performance of the system.
     First, this paper analyzed the existing salinity wastewater treatment technology andcharacteristics of high concentrations of saline wastewater and put forward a new two-stagemechanical vapor recompression evaporation method. The system process corresponding to the newmethod was designed. The model of main equipment and the computing platform of the system wereestablished and verified by public data. Systems of two-stage MVR, one-effect MVR and three-effectevaporation were analyzed. Overall thermal performances were discussed. Results show thatcompared to the reference system, coefficient of performance and energy efficiency of the new systemis higher. And it can save about75.8%of energy compared with the three-effect evaporation. At thesame time, the influence of the parameters (such as one-stage discharge concentration, evaporationtemperature and temperature difference) on energy consumption of the two-stage MVR system isinvestigated.
     Following above theoretical analysis, the heater structure is optimized and designed usinggenetic algorithms with the minimum cost targets. The flasher and its structure with feeds from axiswere designed. Then the actual two-stage MVR system device was build which is placed in a dyemanufacturer for the treatment of high concentration of ammonium sulfate wastewater. Actualoperating performances of system at industrial state were studied. The results show that the actualenergy consumption of system is about53.8kWh/t realized the low energy consumption target; theresults of simulation and experiment are in good agreement which shows that the simulation and design model is reliable. The experimental results show that the system recovers ammonium sulfateand discharges clean water, and reaches the treatment requirements.
     The exergy analysis model of two-stage MVR system considering the influence of salt in thesolution was established. Using above experimental data, the exergy analysis of system had beencarried out at the actual condition. The exergy loss distribution and the effect of compression ratio,evaporation temperature and one-stage discharge concentration on exergy efficiency of the system hadbeen obtained. Improvement measures based on the analysis were suggested. Then, based on theabove logistics exergy, the thermal economics structure theory was introduced to build the thermaleconomics model of two-stage MVR system. The economic cost and distribution was analyzed. Also,the influence of internal and external parameters on the system thermal cost economics was studied.Analysis results showed that compared with single-effect MVR system, system's exergy efficiencydescribed in this article increase by13.4%and the unit product costs decrease by6.8%.So,theadvantages for the comprehensive performance of two-stage MVR system is obvious. the effect ofinternal operating temperature on thermal cost economics of every component is more than the effectof one-stage discharge concentration; The influence of external electricity price on thermal economicscost of every component is greater than the influence of equipment investment.
     This paper provides a low energy consumption method for treatment the high concentrationsaline wastewater. The obtained results have a certain theoretical and practical reference value forapplication and development of MVR technology.
引文
[1]中华人民共和国环境保护部.2010年环境统计年报[EB/OL].(2012-01-18)[2012-08-10].http://zls.mep.gov.cn/hjtj/nb/2010tjnb/201201/t201.
    [2]中华人民共和国环境保护部.2010年中国环境状况公[EB/OL].(2012-06-06)[2013-01-10].http://jcs.mep.gov.cn/hjzl/zkgb/2010zkgb/201106/t20110602_211577.htm.
    [3] Woolard C R, Irvine R L. Treatment of hypersaline wastewater in the sequencing batch reactor[J].Water Research,1995,29(1995):1159-1168.
    [4]农少梅,李捍东,张树增,等.高盐废水处理技术研究新进展[J].江苏环境科技,2008,21(3):72-76.
    [5]邹家庆.工业废水处理技术[M].北京:化学工业出版社,2003.
    [6]中国化工网.中国化工网产品报价[EB/OL][2013-01-11]. http://cn.chemnet.com/price.
    [7] Dincer A R, Kargi F. Effects of operating parameters on performances of nitrification anddenitrification processes [J]. Bioprocess Engineering,2000,23(2000):75-80.
    [8] EL-KadY M, EL-Shibini F. Desalination in Egypt and the future application in supplementaryirrigation[J]. Desalination,2001,136(2001):63-72.
    [9] Sheng H-lin, Ching T S, Mei C-sun. Saline wastewater treatment by electrochemical method[J].Water Research,1998,32(4):1059-1066.
    [10] Kargi F. Enhanced biological treatment of saline wastewater by using halophilic bacteria[J].Biotechnology Letters,2002,24(2002):1569–1572.
    [11] Lefebvre O, Moletta R. Treatment of organic pollution in industrial saline wastewater: A literaturereview[J]. Water Research,2006,40(2006):3671-3682.
    [12]刘正.高浓度含盐废水生物处理技术[J].给水排水,2001,27(11):54-56.
    [13]金可勇,周勇,金水玉,等.高盐度废水的新型膜法处理研究[J].水处理技术,2009,35(2):50-52.
    [14] Mcghee T J. Treatment of Brackish and Saline Waters, Water Supply and Sewerage[M].6th ed.New York: McGraw-Hill Inc,1991.
    [15] Afonso M D, Rodrigo B. Review of the treatment of seafood processing wastewaters and recoveryof proteins therein by membrane separation processes—prospects of the ultrafiltration ofwastewaters from the fish meal industry[J]. Desalination,2002,142(1):29-45.
    [16] Gemma R, Luis S, Javier U. Life cycle assessment of MSF, MED and RO desalinationtechnologies[J]. Energy,2006,31(13):2361-2372.
    [17] Mounir H S, Feidt M, Vasse C. Thermoeconomic study of a system for pollutant concentrationwith mechanical vapour compression[J]. Applied Thermal Engineering,2005(25):473-484.
    [18]王补宣.工程热力学[M].北京:高等教育出版社,2011.
    [19] Mabrouk A A, Nafey S A, Fath H S. Analysis of a new design of a multi-stage flash mechanicalvapor compression desalination process[J].Desalination,2007(204):482-500.
    [20]武江津,安同艳,孙长虹.机械压缩蒸发工艺处理洗毛废水实验研究[J].膜科学与技术,2011,31(3):261-264.
    [21] Heins W, Schooley K, Rcc I. Achieving Zero Liquid Discharge in SAGD Heavy Oil Recovery[J].Journal of Canadian Petroleum Technology,2004,43(8):1-6.
    [22] GEA COMPANY. Evaporation Technology using Mechanical Vapour Recompression. GEAEvaporation Technologies:1-24.
    [23] General Electric Company. Water&process technologies[EB/OL]. http://www.gewater.com/products/equipment
    [24] Heins B, XIE Xiao, YAN Deng-chao. New technology for heavy oil exploitation wastewaterreused as boiler feedwater[J]. Petroleum Exploration and Development,2008,35(1):113-117.
    [25] William F H, Rob M. Vertical-tube evaporator system provides SAGD-quality feed water[J].World Oil Magazine,2007,228(10):1-6.
    [26] Swenson T,Inc. Mechanical recompression [EB/OL]. SWENSON [2011-11-28].http://www.swensontechnology.com/mechrecomp.html.
    [27] Jennifer M S. Strategies to Reduce Terminal Water Consumption of Hydraulic FractureStimulation in the Barnett Shale[D].[博士学位论文],Austin: The University of Texas,2009.
    [28] Aqua-Pure Ventures Inc. Mobile Oilfield Wastewater Recycling-NOMAD2000and CaseStudies[EB/OL][2013-01-22].http://www.aqua-pure.com/technology/evaporation/evaporation.html.
    [29] AGV TECHNOLOGIES, INC. Improving Produced Water Quality for Coal BedMethane,R-518[R/OL]: http://www.rpsea.org/attachments/wysiwyg/4/improving_water_sum.pdf,2004.
    [30] Colorado school of mines. An Integrated Framework for Treatment and Management ofProduced Water,07122-12[R],2009.
    [31] Fredi L, Abraham O. The Mechanical Vapor Compression:38Years of Experience [C]//IDAWorld Congress.Maspalomas, Gran Canaria-Spain,2007:1-10.
    [32] Anderson M A, Cudero A L, Palma J. Capacitive deionization as an electrochemical means ofsaving energy and delivering clean water. Comparison to present desalination practices:Will itcompete[J]. Electrochimica ACTA,2010,35(2010):3845–3856.
    [33]杨向阳,赵翔涌.机械蒸汽再压缩热泵系统在工业中的应用实验研究[J].动力工程,1999,19(增刊):255-258.
    [34]黄成.机械压缩式热泵制盐工艺简述[J].盐业与化工,2010,39(4):42-44.
    [35]高从堦,陈国华.海水淡化技术与工程手册[M].北京:化学工业出版社,2004.
    [36]韩东,彭涛,梁林,等.基于蒸汽机械再压缩的硫酸铵蒸发结晶实验[J].化工进展,2009,28(S1):187-189.
    [37] LIANG Lin, HAN Dong. Energy-Saving Study of a System for Ammonium Sulfate Recoveryfrom Wastewater with Mechanical Vapor Compression (MVC)[J]. Research Journal of AppliedSciences, Engineering,2011,3(11):1227-1232.
    [38]焦冬生,王军.机械压汽蒸馏海水淡化系统的实验研究[J].水处理技术,2007,33(7):37-40.
    [39]焦冬生.机械压汽蒸馏海水淡化系统的可用能分析[J].太阳能学报,2008,29(10):1197-1203.
    [40]焦冬生,王军.机械压汽蒸馏海水淡化系统的性能分析[J].中国科学技术大学学报,2009,39(1):76-82.
    [41]于庆杰,马学虎,林乐,等.小型机械压汽蒸馏装置系统性能研究[J].水处理技术,2008,34(1):37-39.
    [42]鹿方,冯霄,胡志伟.工业热泵的经济性研究[J].西安交通大学学报,2000,34(2):95-99.
    [43]庞卫科,林文野,戴群特,等.机械蒸汽再压缩热泵技术研究进展[J].节能技术,2012,30(4):312-315.
    [44]李清方,刘中良,庞会中,等.基于机械蒸汽压缩蒸发的油田污水脱盐系统及分析[J].化工学报,2011(7):1963-1969.
    [45]吴宏,李育隆,陈江.机械压汽蒸馏系统的热力学分析[C]//中国工程热物理学会工程热力学与能源利用.哈尔滨,2012.
    [46]中国科学院.中国科学院支撑服务国家战略性新兴产业科技行动计划[R],2010.
    [47] Faisal A J, Hisham E D, Hisham E. Analysis of single-effect evaporator desalination systemscombined with vapor compression heat pumps [J]. Desalination,1997(114):253-275.
    [48] Aybar H S. Analysis of a mechanical vapor compression desalination system [J]. Desalination,2002(142):181-186.
    [49]陈金增,李光华,李雁飞.船舶机械蒸汽压缩海水淡化装置性能分析[J].舰船科学技术,2011,33(12):66-68.
    [50]邹龙生,安恩科,唐婧,等.机械蒸汽压缩浓缩渗滤液热力过程数值模拟[J].化学工程,2011,39(2):22-25.
    [51] Hisham E, EL-Dessouky H, AL-ROUMI Y. Analysis of mechanical vapour compressiondesalination process[J]. International Journal of Energy Research,1999,23(5):431-451.
    [52] Hisham E. Design of single-effect mechanical vapor compression[J]. Desalination,2006,190(2006):1-15.
    [53] Hisham E. Design of single-effect mechanical vapor compression[J]. Desalination,2006,190(2006):1-15.
    [54] Mabrouk A A, Nafey S A, Fath H S. Analysis of a new design of a multi-stage flash–mechanicalvapor compression desalination process[J].Desalination,2007(204):482-500.
    [55] Nafey S A,Fath H S,Mabrouk A A.Thermoeconomic design of a multi-effect evaporationmechanical vapor compression(MEE–MVC)desalination process[J].Desalination,2008(230):1-15.
    [56] Lukic N, Diezel L L, FROBA A P, et al. Economical aspects of the improvement of amechanical vapour compression desalination plant by dropwise condensation[J]. Desalination,2010,264(2010):173-178.
    [57] Alasfour F N, Abdulrahim H K. The effect of stage temperature drop on MVC thermalperformance[J]. Desalination,2011,265(1-3):213-221.
    [58] Helal M A, Malek S A. Design of a solar-assisted mechanical vapor compression (MVC)desalination unit for remote areas in the UAE[J].Desalination,2006(197):273-300.
    [59] Karameldin A, Lotfy A, Melchemar S. The Red Sea area wind-driven mechanicalvapor compression desalination system [J]. Desalination,2002(153):47-53.
    [60] Koroneos C, Dompros A, ROUMBAS G. Renewable energy driven desalination systemsmodelling [J]. Journal of Cleaner Production,2007,15(2007):449-464.
    [61] Gude V G, Nirmalakhandan N, DENG Shu-guang. Renewable and sustainable approaches fordesalination [J]. Renewable and Sustainable Energy Reviews,2010,14(2010):2641–2654.
    [62] Driss Z, Ahmed O, Roberto S, et al. An optimization model for a mechanical vapor compressiondesalination plant driven by a wind/PV hybrid system[J]. Applied Energy,2011,8(2011):4042-4052.
    [63] Mohammad A S, HISHAM E. Developments in thermal desalination processes:Design, energy,and costing aspects [J]. Desalination,2007,214(2007):227-240.
    [64] Lara J R, Noyes G, Holtzapple M T. An investigation of high operating temperatures inmechanical vapor-compression desalination [J]. Desalination,2008,227(2008):217–232.
    [65] Jorge Horacio Juan Lara Ruiz. An advanced vapor-compression desalination system [D].[博士学位论文]: Texas A&M University,2005.
    [66] Veza J M. Mechanical vapours compression desalination plants--A case study [J]. Desalination,1995,101(101):1-10.
    [67] Narmine H A, El-Fiqi A K. Mechanical vapor compression desalination systems-a case study[J].Desalination,2003(158):143-150.
    [68] Grattieri W, Medich C, Vanzan R. Electrotechnologies for energy end uses: application ofmechanical vapor recompression to food industry [C]//Proceedings of16th InternationalConference on El.Amsterdam, Netherlands:IEE,2001:5-54.
    [69] Bahar R, Hawlader M A, Woei L S. Performance evaluation of a mechanical vapor compressiondesalination system [J]. Desalination,2004(166):123-127.
    [70] Kamla J, Martin A. Economic benefits of membrane technology vs. evaporator[J]. Desalination,2010,2010(250):961–963.
    [71]周桂英,曲景奎,隋智慧,等.机械压缩蒸发在麻黄素废液处理中的应用与分析[J].过滤与分离,2002,12(3):14-16.
    [72]张金鸿,侯霙,李海芳,等.机械蒸汽再压缩技术处理反渗透浓水的中试研究[J].中国给水排水,2011,27(11):1-4.
    [73] Mabrouk A A, Nafey S A, Fath H S. Thermoeconomic analysis of some existing desalinationprocesses[J]. Desalination,2007(205):354-373.
    [74]熊杰.氧燃烧系统的能源_经济_环境综合分析评价[D].[博士学位论文],武汉:华中科技大学,2011.
    [75] Aspen Technology,Inc. Aspen plus7.1help[M]. Burlington,2009.
    [76] W瓦格纳,A克鲁泽.水和蒸汽的性质[M].项红卫,译.北京:科学出版社,2003.
    [77]大连理工大学.化工原理[M].第2版.北京市:高等教育出版社,2009:395-396.
    [78]叶树滋.硫铵溶液蒸发结晶技术的探讨[J].硫酸工业,2004(2):15-17.
    [79]邓润亚.海水淡化系统能量综合利用与经济性研究[D].[博士学位论文]北京:中国科学院研究生院(工程热物理研究所),2009.
    [80]史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,1996.
    [81] Kays W M, London A L. Compact heat exchangers[M].2nd ed. New York: McGraw-Hill BookCompany,1964.
    [82] Towler G, Sinnott R. Chemical engineering design: principles, practice and economics of plantand process design [M]. London: Butterworth-Heinemann,2008:797-798.
    [83] Sinnott R K. Coulson and Richardson's Chemical Engineering Volume6-Chemical EngineeringDesign [M].4th ed. London: Elsevier,2005.
    [84] Antonio C C, Pelagagge P M, Paolo S. Heat exchanger design based on economicoptimisation[J]. Applied Thermal Engineering,2008,28(2008):1151–1159.
    [85] Hassan H, Ahmadi P, Dincer I. Thermoeconomic optimization of a shell and tube condenserusing both genetic algorithm and particle swarm[J]. International Journal of Refrigeration,2011,34(2011):1066-1079.
    [86] Yavuz. Exergetic optimization of shell and tube heat exchangers using a genetic basedalgorithm[J]. Applied Thermal Engineering,2007,27(2007):1849-1856.
    [87] Eryener D. Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers[J].Energy Conversion and Management,2006,47(2006):1478-1489.
    [88] Unuvar A, Kargici S. An approach for optimum design of heat exchangers[J]. InternationalJournal of Energy Research,2004,28(15):1379-1392.
    [89] Haseli Y, Dincer I, Naterer G F. Optimum temperatures in a shell and tube condenser withrespect to exergy[J]. International Journal of Heat and Mass Transfer,2008,51(2008):2462-2470.
    [90] Ponce-ortega J M, Serna-gonzález M, Jiménez-gutiérrez A. Use of genetic algorithms for theoptimal design of shell-and-tube heat exchangers[J]. Applied Thermal Engineering,2009,29(2009):203-209.
    [91] Taal M, Bulatov I, Kleme J, et al. Cost estimation and energy price forecasts for economicevaluation of retrofit projects[J]. Applied Thermal Engineering,2003,23(2003):1819-1835.
    [92] Branan C R. Rules of thumb for chemical engineers[M].3rd ed. Houston: Gulf Professional,2002.
    [93]化学工业部, HG/T20570.8-95.气一液分离器设计[S].北京:化工部工艺系统设计技术中心站,1996.
    [94]杨向阳,赵翔涌.机械蒸汽再压缩热泵系统在工业中的应用实验研究[J].动力工程,1999,19(增刊):255-258.
    [95]王海澍,郝大雪.热泵蒸发节能减排[J].盐业与化工,2009,38(6):31-34.
    [96]金世琳.带有机械再压缩(MVR)的蒸发器[J].食品与机械,1990(2):25-28.
    [97]恽世昌.机械蒸汽再压缩(MVR)[J].中国乳品工业,1998,21(2):78-81.
    [98]朱平.机械压缩式热泵蒸发的优化计算[J].徐州师范大学学报,2009,27(1):84-86.
    [99] Ramesh K S, Sekulic D P. Fundamentals of heat exchanger design[M]. New Jersey: John Wiley&Sons, Inc.,2003.
    [100]刘朝,曾丹苓.快速降压下过热液中汽泡的生长[J].工程热物理学报,1998,19(1):1-4.
    [101] Avedisian C T. The homogenous nucleation limits of liquids[J].J.Phys.Chem.Ref.Data,1985,14(3):695-729.
    [102] Alamgir M, KAN C-y, Lienhard. An experimental study of the rapid depressurization of hotwater[J]. Journal of Heat Transfer,1980,102:433-438.
    [103]时均,汪家鼎,余国琮,等.化学工程手册[M].北京:化学工业出版社,2001.
    [104]肖素琴,韩厚义.质量流量计[M].北京:中国石化出版社,1999.
    [105] Saybar H. Analysis of a mechanical vapor comp ression desalination system[J]. Desalination,2002,142(2):181.
    [106]中国科学院.科学数据库——工程化学数据库[DB/OL],http://www.sdb.ac.cn,2004.
    [107] Poling B E, Prausnitz J M, O'CONNELL J P. Properties of Gases and Liquids[M].5th ed. NewYork: McGraw-Hill Professional
    [108]吴存真,张诗针,孙志坚.热力过程(火用)分析基础[M].杭州:浙江大学出版社,2000.
    [109]汤学忠.热能转换与利用[M].第2版.北京:冶金工业出版社,2002.
    [110]天津大学物理化学教研室.物理化学[M].北京:高等教育出版社,2010.
    [111]沈维道,童钧耕.工程热力学[M].第4版.北京:高等教育出版社,2010.
    [112]朱明善.能量系统的火用分析[M].北京:清华大学出版社,1988.
    [113] Sharqawy M H, John H V, Zubair S M. On exergy calculations of seawater with applications indesalination systems[J]. International Journal of Thermal Sciences,2011,50(2011):187-196.
    [114] Sato N.Chemical Energy and Exergy[M].Sapporo: Elsevier Science&Technology Books,2004.
    [115]马沛生,李永红.化工热力学[M].第2版.北京:化学工业出版社,2009.
    [116]任宝山,赵景利.含NII4Cl工业废水蒸发处理的炯经济分析[J].河北工业大学学报,1999,28(4):39-43.
    [117]任宝山,赵景利.含NII4Cl工业废水蒸发处理的炯经济分析[J].河北工业大学学报,1999,28(4):39-43.
    [118]牛自得,程芳琴.水盐体系相图及其应用[M].天津:天津大学出版社,2002.
    [119] Kahraman N, Cengel Y A. Exergy analysis of a MSF distillation plant[J]. Energy Conversion andManagement,2005,46(2005):2625–2636.
    [120]张超,刘黎明,陈胜,等.基于热经济学结构理论的热力系统性能评价[J].中国电机工程学报,2005,25(24):108-113.
    [121] JIAN Deng,WANG Ru-zhu,WU Jing-yi, et al. Exergy cost analysis of a micro-trigenerationsystem based on the structural theory of thermoeconomics[J].Energy,2008,33(2008):1417–1426.
    [122]张晓东,高波,王加璇.热经济学结构理论与LIFO法则应用研究[J].中国电机工程学报,2003,23(6):186-189.
    [123]程伟良,黄其励.热经济学的结构理论及其应用[J].哈尔滨工业大学学报,2005,37(10):1388-1445.
    [124]张超.复杂能量系统的热经济学分析与优化[D].[博士学位论文],武汉:华中科技大学,2006.
    [125] Francisco Javier Uche Marcuello. Thermoeconomic analysis andsimulation of a combinedpowerand desalination plant[D].[博士学位论文],Zaragoza: Universidad de Zaragoza,2000.
    [126] Valero A,Serra L,UCHE J.Fundamentals of exergy cost accounting and thermoeconomics.partI:theory[J].Journal of Energy Resources Technology,2006,128(1):1-8.
    [127]邓建,吴静怡,王如竹,等.基于热经济学结构理论的微型冷热电联供系统性能评价[J].工程热物理学报,2008,29(5):731-736.
    [128]熊杰,张超,赵海波,等.基于热经济学结构理论的电站热力系统全局优化[J].中国电机工程学报,2007,27(26):65-71.
    [129] Valero A, Serra L, Lozano M A. Structural theory of thermoeconomics[C]//nternationalSymposium on Thermodynamics and the Design, Analysisand Improvement of Energy Systems,1993:189-198.
    [130] Huang Y, Rezvani S, Wright D M, et al. Techno-economic study of CO2capture and storage incoal fired oxygen fed entrained flow IGCC power plants. Fuel Processing Technology,2008,89(9):916-925.
    [131] Smith M R.Chemical process design and integration [M].Chichester:John Wiley andSons,2005:17-30.
    [132] Stoll H, Todd D M. Competitive power generation costs for IGCC, Presented at gasificationtechnologies conference, Electric power research institute, Sun Francisco, California,1996.
    [133] Thomas K, Robert W, Stefano C, et al. Co-production of hydrogen, electricity and CO2fromcoal with commercial ready technology. Part B: Economics analysis. International Journal ofHydrogen Energy,2005,30:769-784.
    [134] Sayed E Y.Designing desalination systems for higher productivity[J].Desalination,2001(134):129-158.
    [135] JM道格拉斯.化工过程的概念设计[M].蒋楚生,夏平,译.北京:化学工业出版社,1994.
    [136] Bejan A,Tsatsaronis G,Moran M J.Thermal design and optimization[M].NewYork:Wiley,1996.
    [137] Daniel R L, Seader J D, Warren D S.产品与过程设计原理:合成分析与评估[M].朱开宏,李伟,钱四海,译.上海:华东理工大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700