科学与工程计算中的Fourier级数多尺度方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,科学与工程中的多尺度问题引起了计算科学工作者的重视。多尺度问题中区域几何参数或材料物理参数在多个量级上变化,导致求解区域中具有大梯度特性的边界层或间断层出现。对于多尺度问题而言,传统的计算分析方法逐步暴露出精度不高、计算量大的缺点,甚至由于求解模式的内在局限而难以应用。因此,如何改进传统分析方法,建立灵活、精确、高效的多尺度计算手段构成未来10年、乃至更长一段时期内计算科学的热点研究方向。
     其中,通过对传统的数值计算方法进行改进,已先后提出稳定化有限元方法、泡函数方法、小波有限元方法、无网格方法、基于有限增量微积分的多尺度方法、变分多尺度方法等一批多尺度方法,掀起了多尺度方法研究的一次小高潮。但由于研究工作仍局限在数值计算方法的理论框架内,相应的研究成果不可避免地具有数值计算方法的计算成本高、场变量高阶导数计算精度低、计算参数对计算结果影响分析困难等不足。为此,本文将从数值计算方法的理论框架中走出来,及时进入解析计算方法的理论框架中去,着力拓展多尺度方法理论研究与运用研究。
     本文在传统解析计算方法——Fourier级数方法已有研究成果的基础上,开展多尺度问题解析求解方法研究工作。通过推导函数高阶(偏)导数的Fourier级数的一般表达式奠定方法研究的理论基础;在统一的理论基础上,发展函数及其高阶(偏)导数联合逼近的复合Fourier级数方法理论体系;并结合新的理论体系,逐步形成多尺度计算中简明、高效的解析计算手段——Fourier级数多尺度方法。
     本文研究工作主要由以下三部分组成:
     第一部分为理论基础研究部分。其中,第2章运用Stokes变换技巧,获得了函数不同阶次(偏)导数的Fourier级数中Fourier系数之间的迭代关系以及关于函数高阶(偏)导数的Fourier级数的一般表述结果,构建出函数高阶(偏)导数以及函数常系数线性微分算子中系数集合,并进一步明确了函数Fourier级数逐项可导的充分条件。关于函数Fourier级数高阶求导过程中函数的Fourier系数、函数的边界Fourier系数、函数的边界(端点)值或函数的角点值等系数分布规律的理论分析深化了函数Fourier级数的高阶(偏)导数运算的复杂性认识,并纠正了Chaudhuri的理论错误。第3章基于Fourier级数逐项2r次(r为正整数)可导的技术要求,确立了函数的分解结构,构建了复合Fourier级数联合逼近方法框架体系,完成了基于代数多项式插值的复合Fourier级数联合逼近方法的完备代数多项式再生性理论分析以及逼近精度算例验证。复合Fourier级数方法是带补充项的Fourier级数方法理论体系的完善,不仅摆脱了函数边界条件的强烈依赖性,具备函数及其2r阶(偏)导数一致逼近、联合逼近的能力,而且全面实现了逼近函数序列中不同性质函数的均衡使用、有机融合。
     第二部分为计算方法研究部分。第4章针对具有一般边界条件的2r阶常系数线性微分方程中多尺度现象的解析求解问题,分析了基于代数多项式插值的复合Fourier级数联合逼近方法的局限性,发展了基于微分方程齐次解插值的复合Fourier级数方法的新型求解模式,确立了Fourier级数多尺度方法的理论框架,并在此基础上明确了微分方程解函数的分解结构,细化了Fourier级数多尺度方法中技术环节的实施方法。Fourier级数多尺度方法既充分利用已有Fourier级数方法的成就,又突出解函数结构分解的基础地位,实现了Fourier级数解形式的确定性、灵活性的完美结合。
     第三部分为应用案例研究部分。其中,第5章、第6章分别针对Fourier级数多尺度方法在一维、二维对流扩散反应方程以及双参数地基上厚板弹性弯曲问题中的运用问题,导出了具体的Fourier级数多尺度解形式,利用数值算例分析了Fourier级数多尺度解的收敛特性,完成了Fourier级数多尺度计算方案的优化设置,并揭示了对流扩散反应方程和双参数地基上厚板弹性弯曲问题的多尺度性态。第7章针对Fourier级数多尺度方法在矩形截面梁中波传播问题中的运用问题,导出了基于三维弹性动力学方程的矩形截面梁中波传播问题的Fourier级数多尺度解形式,明确了矩形截面梁中波型的对称性分解以及频率方程获取、求解的实施方法,并利用数值算例分析了矩形截面梁中Fourier级数多尺度解收敛特性、弹性波在方形截面梁中的传播特性及其多尺度表现形式。关于Fourier级数多尺度方法的算例验证规范了Fourier级数多尺度方法的运用过程,实现了Fourier级数多尺度解形式与离散系统导出技术的有效融合,充分体现出边界条件、乃至计算参数大范围变动情况下Fourier级数多尺度计算方案的稳定性、可靠性等优越性质。
In recent years, considerable effort has been spent for the solution of the multiscale problems in science and engineering. These multiscale problems are characterized by the existence of the boundary and/or internal layers, where sharp gradients may appear due to numeric values of the geometrical and/or physical parameters differing in several orders of magnitudes. As to the multiscale problems, traditional analysis methods find difficulties such as low precision, high cost or even are of no effect for their inherent limitations. Therefore, by properly modifying the traditional analysis methods, the flexible, accurate and efficient multiscale analysis techniques are to be developed, which forms the research direction for computational science in the next decade or even in a longer period.
     Nowadays, by successful modification of some traditional numeric methods, a series of multiscale analysis methods, for instance stabilized finite element method, bubble method, wavelet based finite element method, meshfree method, finite increment calculus based multiscale method and variational multiscale method, have been proposed, which bring to a dramatic breakthrough for the current multiscale analysis methods. But it is worthy of note that all the research is restricted within the theoretical framework of numeric methods and the accordingly obtained multiscale analysis methods inevitably have such disadvantages as high costs of computation, low precision of higher derivates of the solution, and difficulties in analysis of computational parameters'effects on computational results. By contrast with this usual approach, in this dissertation the theoretical framework of analytic methods is adopted, on the basis of which new type of multiscale method is to be developed and properly applied.
     Herein academic achievements of the Fourier series method, a traditional analytic method, are taken as a beginning of the research of analytic methods for the multiscale problems. By deriving general formulas of higher (partial) derivatives of Fourier series, a theoretical foundation of multiscale method research has been laid firstly. And with this theoretical foundation, the composite Fourier series method for combined approach of functions and their higher (partial) derivatives is proposed. Then within the theoretical framework of the composite Fourier series method, a concise, efficient multiscale analysis procedure, by name the Fourier series multiscale method, is obtained.
     The research in this dissertation is composed of three parts.
     The first part is focused on the theoretical foundation of the Fourier series multiscale method. In chapter 2, the Stokes transform is employed and the iterative relations between the Fourier coffecients in Fourier series of different order (partial) derivatives of the functions and ulteriorly the general formulas for the Fourier series of higher order (partial) derivatives of the functions are acquired. Sets of coefficients concerned in the higher order (partial) derivatives and linear differential operators with constant coefficients of the functions are derived. And accordingly the sufficiency conditions for term-by-term differentitation of Fourier series of the functions are put forward. Distribution of coefficients concerned during the course of higher order differentitation of Fourier series of the functions, such as Fourier coefficients of the functions, boundary Fourier coefficients of the functions, boundary (or end) values of the functions and sometimes the corner values of the functions, are thoroughly analyzed, which makes the complexity of the higher order differentitation of Fourier series of the functions understandable and rectifys the mistakes in professor Chaudhuri's research. In Chapter 3, on the basis of the requirements of the 2r (r is a positive integer) times term-by-term differentitation of Fourier series of the functions, desired decomposition structures of the functions are settled and the methodology of combined approach of the functions with composite Fourier series is proposed. And specifically for the algebraic polynomial interpolation based composite Fourier series method, theoretical analysis of algebraic polynomial regeneration is carried out and numeric examples are demonstrated. This newly proposed composite Fourier series method is verified as an improvement of the Fourier series method with supplementary terms, which is feasible for functions with varied boundary conditions, has excellent uniform and combined convergence of functions and their (partial) derivatives up to 2r order, and strikes a proper balance in the use of different kinds of basis functions in approach function series.
     The second part is focused on the computational procedure of the Fourier series multiscale method. In chapter 4, as to the analytic analysis of multiscale phenomena inherent in the 2r order linear differential equations with constant coefficients, limitations of the algebraic polynomial interpolation based composite Fourier series method are discussed and a new solution pattern, where homogeneous solutions of the differential equations are adopted as interpolation functions in the composite Fourier series method, is developed. The theoretical framework of the Fouriel series multiscale method is consequently established, in which decomposition structures of solutions of the differential equations are specified and practical schemes for application are detailed. The Fourier series multiscale method has not only made full use of academic achievements of the Fourier series method, but also given prominence to the fundamental position of structural decomposition of solutions of the differential equations, which results in perfect integration of invariance and flexibility of the Fourier series solution.
     The third part is focused on the practical application of the Fourier series multiscale method. In chapter 5 and chapter 6, one-dimensional and two-dimensional convection-diffusion-reaction equations and elastic bending of a thick plate on biparametric foundation are analyzed successively by the Fourier series multiscale method, where the specific Fourier series multiscale solutions are derived, convergence characteristics of the Fourier series multiscale solutions are investigated by numeric examples, schemes for application of the Fourier series multiscale method are optimized, and multiscale properties of the convection-diffusion-reaction equations and the bending problem of a thick plate on biparametric foundation are demonstrated. In chapter 7, the Fourier series multiscale method is applied to the analysis of wave propagation in an infinite rectangular beam. Initially, by solving the three-dimensional elastodynamic equations a Fourier series multiscale solution is derived for wave motion within the beam. And then implementation procedures of symmetric decomposition of different kinds of waves propagating in a rectangular beam as well as acquisition and disposal of the frequency equation are presented. Finally numeric examples are given in illustration of the convergence characteristics of Fourier series multiscale solution in a rectangular beam, along with propagation characteristics and multiscale behaviors of elastic waves in a square beam. The three case studies above provide detailed schemes for application of the Fourier series multiscale method to science and engineering, arrive at a fusion of the Fourier series multiscale solution and the derivation techniques of discrete systems, and demonstrate the merit of the Fourier series multiscale method which yields stabilized and accurate numeric results for all range of computational parameters and boundary conditions.
引文
[1]Oden J T, Belytschko T, Babuska I, et al. Research directions in computational mechanics[J]. Computer Methods in Applied Mechanics and Engineering,2003,192: 913-922.
    [2]Zienkiewicz O C, Taylor R L. The Finite Element Method (5th edn), vols.l-3[M]. Oxford: Butterworth-Heinemann,2000.
    [3]Onate E. Multiscale computational analysis in mechanics using finite calculus:an introduction[J]. Computer Methods in Applied Mechanics and Engineering,2003,192: 3043-3059.
    [4]Donea J, Huerta A. Finite Element Methods for Flow Problems[M]. Chichester:John Wiley & Sons Ltd,2003.
    [5]Liu G R, Gu Y T著,王建明,周学军泽.无网格法理论及程序设计[M].济南:山东大学出版社,2007.
    [6]汤国安,刘学军,房亮,等.DEM及数字地形分析中尺度问题研究综述[J].武汉大学学报(信息科学版),2006,31(12):1059-1066.
    [7]徐光宪.物质结构的层次和尺度[J].科技导报,2002,(1):3-5.
    [8]苏理宏,李小文,黄裕霞.遥感尺度问题研究进展[J].地球科学进展,2001,16(4):544-548.
    [9]李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-18.
    [10]李静海,欧阳洁,高十秋,等.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社,2005.
    [11]胡英,刘洪来,叶汝强.化学化工中结构的多层次和多尺度研究方法[J].大学化学,2002,17(1):12-20.
    [12]Wei J. Design and integration of multi-scale structures[J]. Chemical Engineering Science, 2004,59:1641-1651.
    [13]Aubry D, Jay G, Tie B, et al. A combined mesh and model adaptive strategy for the scaling issues in the numerical modelling of the ductile damage in thin panels[J]. Computer Methods in Applied Mechanics and Engineering,2003,192:3285-3300.
    [14]唐祯安,王立鼎.关于微尺度理论[J].光学精密工程,2001,9(6):493-498.
    [15]张丽.纳米材料小尺寸大效应[J].高科技与产业化,2007,(7):28-29.
    [16]马哲树,姚寿广,明晓.微细尺度传热学及其研究进展[J].自然杂志,2002,25(2):76-79.
    [17]过增元.国际传热研究前沿—微细尺度传热[J].力学进展,2000,30(1):1-6.
    [18]魏悦广.机械微型化所面临的科学难题—尺度效应[J].世界科技研究与发展,2000,22(2):57-60.
    [19]秦丰华,姚久成,孙德军,等.微尺度圆管内气体流量的实验测量[J].实验力学,2001,16(2):119-126.
    [20]侯中怀,辛厚文.介观化学体系中的动力学尺度效应[J].化学进展,2006,18(2/3):142-158.
    [21]Bazant Z, Chen E P. Scaling of structural failure[J]. Applied Mechanics Review,1997, 50(10):593-627.
    [22]孙军,刘刚,丁向东.介观尺度铜膜力学行为尺度效应研究进展[J].中国材料进展,2009,28(1):49-53.
    [23]张颖,王蔚,田丽,等.微流动的尺寸效应[J]. MEMS器件与技术,2008,45(1):33-37.
    [24]苏继龙,庄哲峰,陈学永,等.MEMS微结构变形行为尺度效应的研究进展[J].传感器与微系统,2009,28(7):1-4.
    [25]韩鹏,龚健雅.遥感尺度选择问题研究进展[J].遥感信息,2008,(1):96-99.
    [26]张颢,焦子锑,杨华,等.直方图尺度效应研究[J].中国科学(D辑),2002,32(4):307-316.
    [27]Murdoch T J T, Aronson R B. Scale-dependent spatial variability of coral assemblages along the Florida Reef Tract[J]. Coral Reefs,1999,18:341-351.
    [28]何国威,夏蒙棼,柯孚久,等.多尺度耦合现象:挑战和机遇[J].自然科学进展,2004,14(2):121-124.
    [29]Wang H Y, He G W, Xia M F, et al. Multiscale coupling in complex mechanical systems[J]. Chemical Engineering Science,2004,59:1677-1686.
    [30]郭(?)孙,胡英,王(?).等.物质转换过程中的多尺度效应[M].哈尔滨:黑龙江教育 版社,2002.
    [31]Hughes T J R. Multiscale phenomena:Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[J]. Computer Methods in Applied Mechanics and Engineering.1995,127:387-401.
    [32]Rank E, Krause R. A multiscale finite-element method[J]. Computers & Structures,1997, 64(1-4):139-144.
    [33]Fish J, Shek K. Multiscale analysis of composite materials and structures[J]. Composite Science and Technology,2000,60:2547-2556.
    [34]Masud A, Khurram R A. A multiscale/stabilized finite element method for the advection-diffusion equation[J]. Computer Methods in Applied Mechanics and Engineering,2004, 193:1997-2018.
    [35]Brooks A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering,1982,32: 199-259.
    [36]Hughes T J R, Franca L P, Hulbert G M. A new finite element formulation for computational fluid dynamics:Ⅷ. The Galerkin/least-squares method for advective-diffusive equations[J]. Computer Methods in Applied Mechanics and Engineering,1989, 73:173-189.
    [37]Franca L P, Farhat C. Bubble functions prompt unusual stabilized finite element methods[J]. Computer Methods in Applied Mechanics and Engineering,1995,123:299-308.
    [38]Barrenechea G R, Valentin F. An unusual stabilized finite element method for a generalized Stokes problem[J]. Numerische Mathematik,2002,92:653-677.
    [39]Galeao A C, Do Carmo E G. A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems[J]. Computer Methods in Applied Mechanics and Engineering,1988,68:83-95.
    [40]Lyra P R M, Almeida R C. A preliminary study on the performance of stabilized finite element CFD methods on triangular, quadrilateral and mixed unstructured meshes[J]. Communications in Numerical Methods in Engineering,2002,18:53-61.
    [41]Do Carmo E G, Alvarez G B. A new stabilized finite element formulation for scalar convection-diffusion problems:the streamline and approximate upwind/Petrov-Galerkin method[J]. Computer Methods in Applied Mechanics and Engineering,2003,192: 3379-3396.
    [42]Galeao A C, Almeida R C, Malta S M C, et al. Finite element analysis of convection dominated reaction-diffusion problems[J]. Applied Numerical Mathematics,2004,48: 205-222.
    [43]Do Carmo E G, Galeao A C. Feedback Petrov-Galerkin methods for convection-dominated problems[J]. Computer Methods in Applied Mechanics and Engineering,1991,88:1-16.
    [44]Buscaglia G C, Basombrio F G, Codina R. Fourier analysis of an equal-order incompressible flow solver stabilized by pressure gradient projection[J]. International Journal for Numerical Methods in Fluids,2000,34:65-92.
    [45]Codina R, Blasco J, Buscaglia G C, et al. Implementation of a stabilized finite element formulation for the incompressible Navier-Stokes equations based on a pressure gradient projection[J]. International Journal for Numerical Methods in Fluids,2001,37:419-444.
    [46]Blasco J, Codina R. Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier-Stokes equations[J]. Applied Numerical Mathematics,2001,38,475-497.
    [47]Dohrmann C R, Bochev P B. A stabilized finite element method for the Stokes problem based on polynomial pressure projections[J]. International Journal for Numerical Methods in Fluids,2004,46:183-201.
    [48]Tobiska L. On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations[J]. Computer Methods in Applied Mechanics and Engineering,2009,198:831-837.
    [49]Agarwal A N, Pinsky P M. Stabilized element residual method (SERM):A posteriori error estimation for the advection-diffusion equation[J]. Journal of Computational and Applied Mathematics,1996,74:3-17.
    [50]Franca L P, Hauke G, Masud A. Revisiting stabilized finite element methods for the advective-diffusive equation[J]. Computer Methods in Applied Mechanics and Engineering, 2006,195:1560-1572.
    [51]Tobiska L. Analysis of a new stabilized higher order finite element method for advection-diffusion equations[J]. Computer Methods in Applied Mechanics and Engineering,2006, 196:538-550.
    [52]Huerta A, Donea J. Time-accurate solution of stabilized convection-diffusion-reaction equations:I-time and space discretization[J]. Communications in Numerical Methods in Engineering,2002,18:565-573.
    [53]Huerta A, Roig B, Donea J. Time-accurate solution of stabilized convection-diffusion-reaction equations:Ⅱ-accuracy analysis and examples[J]. Communications in Numerical Methods in Engineering,2002,18:575-584.
    [54]Amara M, Vera E C, Trujillo D. A three field stabilized finite element method for the Stokes equations[J]. Numerical Analysis,2002, C. R. Acad. Sci. Paris, Ser.1334:603-608.
    [55]Bochev P B, Gunzburger M D, Lehoucq R B. On stabilized finite element methods for the Stokes problem in the small time step limit[J]. International Journal for Numerical Methods in Fluids,2007,53:573-597.
    [56]Burman E, Hansbo P. A unified stabilized method for Stokes'and Darcy's equations[J]. Journal of Computational and Applied Mathematics,2007,198:35-51.
    [57]Araya R, Barrenechea G R, Pozal A. An adaptive stabilized finite element method for the generalized Stokes problem[J]. Journal of Computational and Applied Mathematics,2008, 214:457-479.
    [58]Whiting C H, Jansen K E. A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis[J]. International Journal for Numerical Methods in Fluids,2001,35:93-116.
    [59]Minev P D. A stabilized incremental projection scheme for the incompressible Navier-Stokes equations[J]. International Journal for Numerical Methods in Fluids,2001,36: 441-464.
    [60]N'dri D, Garon A, Fortin A. Incompressible Navier-Stokes computations with stable and stabilized space-time fornmiations:a comparative study[J]. Communications in Numerical Methods in Engineering,2002,18:495-512.
    [61]Codina R, Folch A. A stabilized finite element predictor-corrector scheme for the incompressible Navier-Stokes equations using a nodal-based implementation[J]. International Journal for Numerical Methods in Fluids,2004,44:483-503.
    [62]He Y N, Wang A N, Mei L Q. Stabilized finite-element method for the stationary Navier-Stokes equations[J], Journal of Engineering Mathematics,2005,51:367-380.
    [63]Codina R. A nodal-based implementation of a stabilized finite element method for incompressible flow problems[J]. International Journal for Numerical Methods in Fluids, 2000,33:737-766.
    [64]Codina R. A stabilized finite element method for generalized statonary imcompressible flows[J]. Computer Methods in Applied Mechanics and Engineering,2001,190:2681-2706.
    [65]Burman E, Hansbo P. A stabilized non-conforming finite element method for incompressible flow[J]. Computer Methods in Applied Mechanics and Engineering,2006, 195:2881-2899.
    [66]De Sampaio P A B. A stabilized finite element method for incompressible flow and heat transfer:A natural derivation based on the use of local time-steps[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:6177-6190.
    [67]Maniatty A M, Liu Y. Stabilized finite element method for viscoplastic flow:formulation with state variable evolution[J]. International Journal for Numerical Methods in Engineering,2003,56:185-209.
    [68]Sze K Y, Yi S, Tay M H. An explicit hybrid stabilized eighteen-node solid element for thin shell analysis[J]. International Journal for Numerical Methods in Engineering,1997,40: 1839-1856.
    [69]Ye X. Stabilized finite element approximations for the Reissner-Mindlin plate[J]. Advances in Computational Mathematics,2000,13:375-386.
    [70]Legay A, Combescure A. Elastoplastic stability analysis of shells using the physically stabilized finite element SHB8PS[J]. International Journal for Numerical Methods in Engineering.2003.57:1299-1322.
    [71]Yao L Q, Lu L. Hybrid-stabilized solid-shell model of laminated composite piezoelectric structures under non-linear distribution of electric potential through thickness[J]. International Journal for Numerical Methods in Engineering,2003,58:1499-1522.
    [72]Bischoff M, Bletzinger K M. Improving stability and accuracy of Reissner-Mindlin plate finite elements via algebraic subgrid scale stabilization[J]. Computer Methods in Applied Mechanics and Engineering,2004,193:1517-1528.
    [73]Gruttmann F, Wagner W. A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element[J]. International Journal for Numerical Methods in Engineering,2004,61: 2273-2295.
    [74]De Sampaio P A B, Hallak P H, Coutinho A L G, et al. A stabilized finite element procedure for turbulent fluid-structure interaction using adaptive time-space refinement[J]. International Journal for Numerical Methods in Fluids,2004,44:673-693.
    [75]Thompson L L, Sankar S. Dispersion analysis of stabilized finite element methods for acoustic fluid interaction with Reissner/Mindlin plates[J]. International Journal for Numerical Methods in Engineering,2001,50:2521-2545.
    [76]Franca L P, Farhat C, Lesoinne M, et al. Unusual stabilized finite element methods and residual free bubbles[J]. International Journal for Numerical Methods in Fluids,1998,27: 159-168.
    [77]Franca L P, Valentin F. On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation[J]. Computer Methods in Applied Mechanics and Engineering,2000,190:1785-1800.
    [78]Azhari M, Bradford M A. Local buckling by complex finite strip method using bubble function[J]. Journal of Engineering Mechanics,1994,120(1):43-57.
    [79]Azhari M, Hoshdar S, Bradford M A. On the use of bubble functions in the local buckling analysis of plate structures by the spline finite strip method[J]. International Journal for Numerical Methods in Engineering,2000,48:583-593.
    [80]Ho S P, Yeh Y L. The use of 2D enriched elements with bubble functions for finite element analysis[J]. Computers and Structures,2006,84:2081-2091.
    [81]Franca L P, Farhat C, Macedo A P, et al. Residual-free_bubbie for the Helmholtz equation [J]. International Journal for Numerical Methods in Engineering,1997,40:4003-4009.
    [82]Farhat C, Harari I, Franca L P. The discontinuous enrichment method[J]. Computer Methods in Applied Mechanics and Engineering,2001,190:6455-6479.
    [83]Brezzi F, Franca L P, Russo A. Further considerations on residual-free bubbles for advective-diffusive equations[J]. Computer Methods in Applied Mechanics and Engineering,1998,166:25-33.
    [84]Brezzi F, Marini D, Suli E. Residual-free bubbles for advection-diffusion problems:the general error analysis[J]. Numerische Mathematik,2000,85:31-47.
    [85]Sangalli G. A discontinuous residual-free bubble method for advection-diffusion problems[J]. Journal of Engineering Mathematics,2004,49:149-162.
    [86]Parvazinia M, Nassehi V, Wakeman R J. Multi-scale finite element modelling using bubble function method for a convection-diffusion problem[J]. Chemical Engineering Science, 2006,61:2742-2751.
    [87]Nassehi V, Parvazinia M. A multiscale finite element space-time discretization method for transient transport phenomena using bubble functions[J]. Finite Elements in Analysis and Design,2009,45(5):315-323.
    [88]Parvazinia M, Nassehi V. Multiscale finite element modeling of diffusion-reaction equation using bubble functions with bilinear and triangular elements[J]. Computer Methods in Applied Mechanics and Engineering,2007,196:1095-1107.
    [89]Canuto C, Russo A, Van Kemenade V. Stabilized spectral methods for the Navier-Stokes equations:residual-free bubbles and preconditioning[J]. Computer Methods in Applied Mechanics and Engineering,1998,166:65-83.
    [90]Franca L P, Oliveira S P. Pressure bubbles stabilization features in the Stokes problem[J]. Computer Methods in Applied Mechanics and Engineering,2003,192:1929-1937.
    [91]Parvazinia M, Nassehi V, Wakeman R J. Multi-scale finite element modelling of laminar steady flow through highly permeable porous media[J]. Chemical Engineering Science, 2006,61:586-596.
    [92]Dolbow J E, Franca L P. Residual-free bubbles for embedded Dirichlet problems[J]. Computer Methods in Applied Mechanics and Engineering,2008,197:3751-3759.
    [93]曾攀.计算力学中的高精度数值分析新方法-复合单元法[J].中国科学(E辑),2000,30(1):39-46.
    [94]Franca L P, Madureira A L, Valentin F. Towards multiscale functions:enriching finite element spaces with local but not bubble-like functions[J]. Computer Methods in Applied Mechanics and Engineering,2005,194:3006-3021.
    [95]Barrenechea G R, Valentin F. Relationship between multiscale enrichment and stabilized finite element methods for the generalized Stokes problem[J]. Numerical Analysis,2005, C. R. Acad. Sci. Paris, Ser. 1341:635-640.
    [96]Araya R, Barrenechea G R, Franca L P, et al. Stabilization arising from PGEM:A review and further developments[J]. Applied Numerical Mathematics,2009,59:2065-2081.
    [97]Barrenechea G R, Franca L P, Valentin F. A Petrov-Galerkin enriched method:A mass conservative finite element method for the Darcy equation[J]. Computer Methods in Applied Mechanics and Engineering,2007,196:2449-2464.
    [98]Franca L P, Russo A. Recovering SUPG using Petrov-Galerkin formulations enriched with adjoint residual-free bubbles[J]. Computer Methods in Applied Mechanics and Engineering, 2000,182:333-339.
    [99]Russo A. Streamline-upwind Petrov/Galerkin method (SUPG) vs residual-free bubbles (RFB)[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:1608-1620.
    [100]Franca L P, Russo A. Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles[J]. Applied mathematics letter,1996,9(5):83-88.
    [101]Franca L P, Russo A. Mass lumping emanating from residual-free bubbles[J]. Computer Methods in Applied Mechanics and Engineering,1997,142:353-360.
    [102]Franca L P, Russo A. Unlocking with residual-free bubbles[J]. Computer Methods in Applied Mechanics and Engineering,1997,142:361-364.
    [103]Brezzi F, Marini D, Russo A. Application of the pseudo residual-free bubbles to stabilization of convection-diffusion problems[J]. Computer Methods in Applied Mechanics and Engineering,1998,166:51-63.
    [104]Franca L P, Neslhurk A, Stvnes M. On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method[J]. Computer Methods in Applied Mechanics and Engineering,1998,166:35-49.
    [105]Brezzi F, Marini L D. Augmented spaces, two-level methods, and stabilizing subgrids[J]. International Journal for Numerical Methods in Fluids,2002,40:31-46.
    [106]Brezzi F, Marini L D, Russo A. On the choice of a stabilizing subgrid for convection-diffusion problems[J]. Computer Methods in Applied Mechanics and Engineering,2005,194:127-148.
    [107]徐长发,李国宽.实用小波分析(第二版)[M].武汉:华中科技大学出版社,2004.
    [108]Dahmen W, Kurdila A J, Oswald P. Multiscale wavelet methods for partial differential equations[M]. San Diego:Academic Press,1997.
    [109]Dahmen W. Wavelet methods for PDEs-some recent developments[J]. Journal of Computational and Applied Mathematics,2001,128:133-185.
    [110]Jang G W, Kim J E, Kim Y Y. Multiscale Galerkin method using interpolation wavelets for two-dimensional elliptic problems in general domains[J]. International Journal for Numerical Methods in Engineering,2004,59:225-253.
    [111]Kim J E, Jang G W, Kim Y Y. Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization[J]. International Journal of Solids and Structures,2003,40:6473-6496.
    [112]何正嘉,陈雪峰,李兵,等.小波有限元理论及其工程应用[M].北京:科学出版社,2006.
    [113]张雄,刘岩.无网格法[M].北京:清华大学出版社,2004.
    [114]Onate E, Garcia J, Idelsohn S. Computation of the stabilization parameter for the finite element solution of advective-diffusive problems[J]. International Journal for Numerical Methods in Fluids,1997,25:1385-1407.
    [115]Onate E. Derivation of stabilized equations for advective-diffusive transport and fluid flow problems[J]. Computer Methods in Applied Mechanics and Engineering,1998,151: 233-267.
    [116]Onate E, Manzan M. A general procedure for deriving stabilized space-time finite element methods for advective-diffusive problems[J]. International Journal for Numerical Methods in Fluids,1999,31:203-221.
    [117]Onate E. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation[J]. Computer Methods in Applied Mechanics and Engineering,2000,182:355-370.
    [118]Onate E, Zarate F, Idelsohn S R. Finite element formulation for convective-diffusive problems with sharp gradients using finite calculus[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:1793-1825.
    [119]Onate E, Miquel J, Hauke G. Stabilized formulation for the advection-diffusion-absorption equation using finite calculus and linear finite elements[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:3926-3946.
    [120]Onate E, Miquel J, Zarate F. Stabilized solution of the multidimensional advection-diffusion-absorption equation using linear finite elements[J]. Computers & Fluids,2007,36: 92-112.
    [121]Onate E, Valls A, Garcia J. Modeling incompressible flows at low and high Reynolds numbers via a finite calculus-finite element approach[J]. Journal of Computational Physics, 2007,224:332-351.
    [122]Onate E, Rojek J, Chiumenti M, et al. Advances in stabilized finite element and particle methods for bulk forming processes[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:6750-6777.
    [123]Hughes T J R, Feijoo G R, Mazzei L, et al. The variational multiscale method-a paradigm for computational mechanics[J]. Computer Methods in Applied Mechanics and Engineering,1998,166:3-24.
    [124]Brezzi F, Franca L P, Hughes T J R, et al. b=(?)∫[J]. Computer Methods in Applied Mechanics and Engineering,1997,145:329-339.
    [125]Strouboulis T, Babuska I, Copps K. The design and analysis of the Generalized Finite Element Method[J]. Computer Methods in Applied Mechanics and Engineering,2000,181: 43-69.
    [126]Strouboulis T, Copps K, Babuska I. Computational mechanics advances:the Generalized Finite Element Method[J]. Computer Methods in Applied Mechames and Engineering, 2001,190:4081-4193.
    [127]Strouboulis T, Babuska I, Hidajat R. The generalized finite element method for Helmholtz equation:Theory, computation, and open problems[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:4711-4731.
    [128]Strouboulis T, Hidajat R, Babuska I. The generalized finite element method for Helmholtz equation. Part Ⅱ:Effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment[J]. Computer Methods in Applied Mechanics and Engineering,2008,197:364-380.
    [129]Chen H. Enriched finite element methods and their application[D]. Northwestern University,2003.
    [130]Dolbow J E. An extended finite element method with discontinuous enrichment for applied mechanics[D]. Northwestern University,1999.
    [131]Moes N, Belytschko T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics,2002,69:813-833.
    [132]Chessa J. The extended finite element method for free surface and two-phase flow problems[D]. Northwestern University,2003.
    [133]Wang H W. Fluid-structure interaction[D]. Northwestern University,2007.
    [134]John V, Kaya S, Layton W. A two-level variational multiscale method for convection-dominated convection-diffusion equations[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:4594-4603.
    [135]Efendiev Y R. The multiscale finite element method (MsFEM) and its applications[D]. California Institute of Technology,1999.
    [136]Ming P B, Yue X Y. Numerical methods for multiscale elliptic problems[J]. Journal of Computational Physics,2006,214:421-445.
    [137]Hughes T J R, Stewart J R. A space-time formulation for multiscale phenomena[J]. Journal of Computational and Applied Mathematics,1996,74:217-229.
    [138]Hulshoff S J. Implicit subgrid-scale models in space-time variational-multiscale discretizations[J]. International Journal for Numerical Methods in Fluids,2005,47: 1093-1099.
    [139]Gravemeier V, Wall W A, Ramm E. A three-level finite element method for the instationary incompressible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering,2004,193:1323-1366.
    [140]Calo V M. Residual-based multiscale turbulence modeling:Finite volume simulations of bypass transition[D]. Stanford University,2004.
    [141]Bensow R E, Larson M G. Residual based VMS subgrid modeling for vortex flows[J]. Computer Methods in Applied Mechanics and Engineering,2010,199:802-809.
    [142]Hauke G, Fuster D, Doweidar M H. Variational multiscale a-posteriori error estimation for multi-dimensional transport problems[J]. Computer Methods in Applied Mechanics and Engineering,2008,197:2701-2718.
    [143]John V, Kaya S. Finite element error analysis of a variational multiscale method for the Navier-Stokes equations[J]. Advances in Computational Mathematics,2008,28:43-61.
    [144]Larson M G, Malqvist A. Adaptive variational multiscale methods based on a posteriori error estimation:Energy norm estimates for elliptic problems[J]. Computer Methods in Applied Mechanics and Engineering,2007,196:2313-2324.
    [145]Zheng H B, Hou Y R, Shi F. Adaptive variational multiscale methods for incompressible flow based on two local Gauss integrations[J]. Journal of Computational Physics,2010, 229:7030-7041.
    [146]Cottrell J A. Isogeometric analysis and numerical modeling of the fine scales within the variational multiscale method[D]. The University of Texas at Austin,2007.
    [147]Bazilevs Y, Michler C, Calo V M, et al. Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes[J]. Computer Methods in Applied Mechanics and Engineering,2010,199: 780-790.
    [148]Gomez H, Hughes T J R, Nogueira X, et al. Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations[J]. Computer Methods in Applied Mechanics and Engineering, 2010,199:1828-1840.
    [149]Evans J A, Hughes T J R, Sangalli G. Enforcement of constraints and maximum principles in the variational multiscaie meinod[J]. Computer Methods in Applied Mechanics and Engineering,2009,199:61-76.
    [150]Yeon J H, Youn S K. Variational multiscale analysis of elastoplastic deformation using meshfree approximation[J]. International Journal of Solids and Structures,2008,45:4709-4724.
    [151]Zhang L, Ouyang J, Wang X X, et al. Variational multiscale element-free Galerkin method for 2D Burgers' equation[J]. Journal of Computational Physics,2010,229:7147-7161.
    [152]Oberai A A, Pinsky P M. A multiscale finite element method for the Helmholtz equation[J]. Computer Methods in Applied Mechanics and Engineering,1998,154:281-297.
    [153]Hauke G, Garcia-Olivares A. Variational subgrid scale formulations for the advection-diffusion-reaction equation[J]. Computer Methods in Applied Mechanics and Engineering, 2001,190:6847-6865.
    [154]Hauke G. A simple subgrid scale stabilized method for the advection-diffusion-reaction equation[J]. Computer Methods in Applied Mechanics and Engineering,2002,191:2925-2947.
    [155]Hughes T J R, Wells G N. Conservation properties for the Galerkin and stabilized forms of the advection-diffusion and incompressible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering,2005,194:1141-1159.
    [156]Song L N, Hou Y R, Zheng H B. A variational multiscale method based on bubble functions for convection-dominated convection-diffusion equation[J].Applied Mathematics and Computation,2010,217:2226-2237.
    [157]Liu X H, Li S F. A variational multiscale stabilized finite element method for the Stokes flow problem[J]. Finite Elements in Analysis and Design,2006,42:580-591.
    [158]Badia S, Codina R. On a multiscale approach to the transient Stokes problem:Dynamic subscales and anisotropic space-time discretization[J]. Applied Mathematics and Computation,2009,207:415-433.
    [159]Masud A, Hughes T J R. A stabilized mixed finite element method for Darcy flow[J]. Computer Methods in Applied Mechanics and Engineering,2002,191:4341-4370.
    [160]Nakshatrala K B, Turner D Z, Hjelmstad K D. A stabilized mixed finite element method for Darcy flow based on a multiscale decomposition of the solution[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:4036-4049.
    [161]Masud A, Khurram R A. A multiscale finite element method for the incompressible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 2006,195:1750-1777.
    [162]Burman E. Interior penalty variational multiscale method for the incompressible Navier-Stokes equation:Monitoring artificial dissipation[J]. Computer Methods in Applied Mechanics and Engineering,2007,196:4045-4058.
    [163]Levasseur V, Sagaut P, Chalot F. An entropy-variable-based VMS/GLS method for the simulation of compressible flows on unstructured grids[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:1154-1179.
    [164]Rispoli F, Saavedra G Z R. A stabilized finite element method based on SGS models for compressible flows[J]. Computer Methods in Applied Mechanics and Engineering,2006, 196:652-664.
    [165]Principe J, Codina R, Henke F. The dissipative structure of variational multiscale methods for incompressible flows[J]. Computer Methods in Applied Mechanics and Engineering, 2010,199:791-801.
    [166]Narayanan V A B, Zabaras N. Variational multiscale stabilized FEM formulations for transport equations:stochastic advection-diffusion and incompressible stochastic Navier-Stokes equations[J]. Journal of Computational Physics,2005,202:94-133.
    [167]Asokan B V, Zabaras N. A stochastic variational multiscale method for diffusion in heterogeneous random media[J]. Journal of Computational Physics,2006,218:654-676.
    [168]Juanes R. A variational multiscale finite element method for multiphase flow in porous media[J]. Finite Elements in Analysis and Design,2005,41:763-777.
    [169]Scovazzi G. Multiscale methods in science and engineering[D]. Stanford University,2004.
    [170]Kaya S. Numerical analysis of a variational multiscale method for turbulence[D]. University of Pittsburgh,2004.
    [171]Van der Bos F, Van der Vegt J J W, Geurts B J. A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques[J]. Computer Methods in Applied Mechanics and Engineering,2007,196:2863-2875.
    [172]Hsu M C, Bazilevs Y, Calo V M, et al. Improving stability of stabilized and multiscale formulations in flow simulations at small time steps[J]. Computer Methods in Applied Mechanics and Engineering,2010,199:828-840.
    [173]John V, Kindl A. Numerical studies of finite element variational multiscale methods for turbulent flow simulations[J]. Computer Methods in Applied Mechanics and Engineering, 2010,199:841-852.
    [174]Hughes T J R, Mazzei L, Jansen K E. Large Eddy Simulation and the variational multiscale method[J]. Computing and Visualization in Science,2000,3:47-59.
    [175]Hughes T J R, Mazzei L, Oberai A A. The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence[J]. Physics of Fluids,2001,13(2):505-512.
    [176]Hughes T J R, Oberai A A, Mazzei L. Large eddy simulation of turbulent channel flows by the variational multiscale method[J]. Physics of Fluids,2001,13(6):1784-1799.
    [177]Holmen J, Hughes T J R, Oberai A A, et al. Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow[J]. Physics of Fluids,2004,16(3): 824-827.
    [178]Farhat C, Rajasekharan A, Koobus B. A dynamic variational multiscale method for large eddy simulations on unstructured meshes[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:1667-1691.
    [179]Gravemeier V. Variational multiscale large eddy simulation of turbulent flow in a diffuser [J]. Computational Mechanics,2007,39:477-495.
    [180]Wanderer J, Oberai A A. A two-parameter variational multiscale method for large eddy simulation[J]. Physics of Fluids,2008,20(8):085107.
    [181]Gravemeier V, Gee M W, Kronbichler M, et al. An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow[J]. Computer Methods in Applied Mechanics and Engineering,2010,199:853-864.
    [182]Gravemeier V, Wall W A. An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent variable-density flow at low Mach number[J]. Journal of Computational Physics,2010,229:6047-6070.
    [183].Ouviard H, Koobuc B, Dervieux A, et al. Classical and variational muiliscaie I ES of the flow around a circular cylinder on unstructured grids[J]. Computers and Fluids,2010,39: 1083-1094.
    [184]John V, Kindl A, Suciu C. Finite element LES and VMS methods on tetrahedral meshes[J]. Journal of Computational and Applied Mathematics,2010,233:3095-3102.
    [185]Creighton S L. Embedding models of fine scale physics in the macromechanical formulation of solid mechanics by variational multiscale techniques[D]. The University of Michigan,2003.
    [186]Garikipati K. Variational multiscale methods to embed the macromechanical continuum formulation with fine-scale strain gradient theories[J]. International Journal for Numerical Methods in Engineering,2003,57:1283-1298.
    [187]Creighton S L, Regueiro R A, Garikipati K, et al. A variational multiscale method to incorporate strain gradients in a phenomenological plasticity model [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:5453-5475.
    [188]Garikipati K, Hughes T J R. A variational multiscale approach to strain localization-formulation for multidimensional problems[J]. Computer Methods in Applied Mechanics and Engineering,2000,188:39-60.
    [189]Masud A, Franca L P. A hierarchical multiscale framework for problems with multiscale source terms[J]. Computer Methods in Applied Mechanics and Engineering,2008,197: 2692-2700.
    [190]Masud A, Xia K M. A variational multiscale method for inelasticity:Application to superelasticity in shape memory alloys[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:4512-4531.
    [191]Fourier J著,桂质亮译.热的解析理论[M].北京:北京大学出版社,2005.
    [192]郭敦仁:,孙小礼.傅立叶,一首数学的诗—纪念傅立叶诞生220周年[J].自然辩证法研究,1988,4(6):18-24.
    [193]Timoshenko S, Woinowsky-Krieger S著,板壳理论翻译组译.板壳理论[M].北京:科学出版社,1977.
    [194]张福范.弹性薄板(第二版)[M].北京:科学出版社,1984.
    [195]Gorman D J. Free vibration analysis of rectangular plates[M]. North Holland:Elsevier, 1982.
    [196]Gorman D J. A comprehensive study of the free vibration of rectangular plates resting on symmetrically distributed uniform elastic edge supports[J]. Journal of Applied Mechanics, 1989,56:893-899.
    [197]Gorman D J, Ding W. Accurate free vibration analysis of the completely free rectangular Mindlin plate[J]. Journal of Sound and Vibration,1996,189(3):341-353.
    [198]Michelussi D J. Free vibration and buckling analysis of thin rectangular plates with classical boundary condition under unilateral in-plane loads[D]. University of Ottawa, 1996.
    [199]Singhal R K, Gorman D J. Free vibration of partially clamped rectangular plates with and without rigid point supports[J]. Journal of Sound and Vibration,1997,203(2):181-192.
    [200]Gorman D J. Accurate free vibration analysis of point supported Mindlin plates by the suoerposition method[J]. Journal of Sound and Vibration,1999,219(2):265-277.
    [201]Gorman D J. Free vibration and buckling of in-plane loaded plates with rotational elastic edge support[J]. Journal of Sound and Vibration,2000,229(4):755-773.
    [202]Gorman D J, Singhal R. Free vibration analysis of cantilever plates with step discontinuities in properties by the method of superposition [J]. Journal of Sound and Vibration,2002,253(3):631-652.
    [203]Gorman D J, Ding W. Accurate free vibration analysis of completely free symmetric cross-ply rectangular laminated plates[J]. Composite Structures,2003,60:359-365.
    [204]Gorman D J. Accurate analytical type solutions for the free in-plane vibration of clamped and simply supported rectangular plates[J]. Journal of Sound and Vibration,2004,276: 311-333.
    [205]Gorman D J. Highly accurate free vibration eigenvalues for the completely free orthotropic plate[J]. Journal of Sound and Vibration,2005,280:1095-1115.
    [206]Gorman D J, Garibaldi L. Accurate analytical type solutions for free vibration frequencies and mode shapes of multi-span bridge decks:the span-by-span approach[J]. Journal of Sound and Vibration,2006,290:321-336.
    [207]Gorman D J. Exact solutions for the free in-plane vibration of rectangular plates with two opposite edges simply supported[J]. Journal of Sound and Vibration,2006,294:131-161.
    [208]Gorman D J. On use of the Dirac delta function in the vibration analysis of elastic structures[J]. International Journal of Solids and Structures,2008,45:4605-4614.
    [209]Gorman D J. Accurate in-plane free vibration analysis of rectangular orthotropic plates[J]. Journal of Sound and Vibration,2009,323:426-443.
    [210]Gorman D J, Singhal R. Steady-state response of a cantilever plate subjected to harmonic displacement excitation at the base[J]. Journal of Sound and Vibration,2009,323: 1003-1015.
    [211]Gorman D J, Ding W. Accurate free vibration analysis of laminated symmetric cross-ply rectangular plates by the superposition-Galerkin method[J]. Composite Structures,1995, 31:129-136.
    [212]Gorman D J, Ding W. Accurate free vibration analysis of clamped antisymmetric angle-ply laminated rectangular plates by the Superposition-Galerkin method[J]. Composite Structures,1996,34:387-395.
    [213]Gorman D J, Ding W. The Superposition-Galerkin method for free vibration analysis of rectangular plates[J]. Journal of Sound and Vibration,1996,194(2):187-198.
    [214]Gorman D J. Free vibration analysis of completely free rectangular plates by the Superposition-Galerkin method[J]. Journal of Sound and Vibration,2000,237(5):901-914.
    [215]黄炎.弹性薄板理论[M].长沙:国防科技大学出版社,1992.
    [216]黄炎,唐羽章,徐小利.正交异性矩形薄板自由振动的一般解析解[J].工程力学,2001,18(3):45-52.
    [217]杨端生,潘军,黄炎.各向异性矩形薄板弯曲问题的一般解[J].计算力学学报,2002,19(3):286-290.
    [218]黄炎,蒋咏秋,李家文.弹性地基上各向异性板的静力分析[J].应用力学学报,2006,23(3):466-469.
    [219]黄炎,雷勇军,中慧君.各向异性矩形板自由振动的一般解析解法[J].应用数学和力学,2006,27(4):411-416.
    [220]黄炎,廖瑛,谢燕.双参数弹性地基上受压的正交异性板的自由振动[J].工程力学,2006.23(3).46-49.
    [221]郑荣跃,黄炎,寥一寰.混合边界矩形板的自由振动分析[J].工程力学,2008,25(8):13-17.
    [222]郑荣跃,蔺文峰,黄炎.各向异性矩形板的稳定性分析[J].工程力学,2009,26(8):30-33.
    [223]杨端生,蔺文峰,黄炎.转动弹性支承矩形板自由振动的一般解析解法[J].工程力学,2010,27(3):15-18.
    [224]杨端生,黄炎,任仙海.对称迭层矩形板的平面应力分析[J].应用数学和力学,2006,27(12):1506-1512.
    [225]Huang Y, Yuan D C. Static analysis of symmetric angle-ply laminated plates by analytical method[J]. American Institute of Aeronautics and Astronautics Journal,2006,44:667-669.
    [226]Chaudhuri R A, Abu-Arja K R. Exact solution of shear-flexible doubly curved anti-symmetric angle-ply shells[J]. International Journal of Engineering Science,1988,26: 587-604.
    [227]Chaudhuri R A, Abu-Arja K R. Static analysis of moderately thick anti-symmetric angle-ply cylindrical panels and shells[J]. International Journal of Solids and Structures, 1991,28:1-16.
    [228]Chaudhuri R A, Kabir H R H. A boundary discontinuous Fourier solution for clamped transversely isotropic (pyrolytic graphite) Mindlin plates[J]. International Journal of Solids and Structures,1992,30:287-297.
    [229]Chaudhuri R A, Kabir H R H. Fourier solution to higher-order theory based laminated shell boundary-value problem[J]. American Institute of Aeronautics and Astronautics Journal, 1995,33:1681-1688.
    [230]Chaudhuri R A. On the roles of complementary and admissible boundary constraints in Fourier solutions to the boundary value problems of completely coupled rth order PDEs[J]. Journal of Sound and Vibration,2002,251(2):261-313.
    [231]Chaudhuri R A, Balaraman K, Kunukkasseril V X. A combined theoretical and experimental investigation on free vibration of thin symmetrically laminated anisotropic plates[J]. Composite Structures,2005,67:85-97.
    [232]Chaudhun R A, Kabir H P. H. Effect of boundary constraint on the frequency respouse of moderately thick doubly curved cross-ply panels using mixed fourier solution functions[J]. Journal of Sound and Vibration,2005,283:263-293.
    [233]Oktem A S. The effect of boundary conditions on the response of laminated thick composite plates and shells[D]. The University of Utah,2005.
    [234]Oktem A S, Chaudhuri R A. Levy type analysis of cross-ply plates based on higher-order theory[J]. Composite Structures,2007,78:243-253.
    [235]Oktem A S, Chaudhuri R A. Fourier solution to a thick cross-ply Levy type clamped plate problem[J]. Composite Structures,2007,79:481-492.
    [236]Oktem A S, Chaudhuri R A. Levy type Fourier analysis of thick cross-ply doubly curved panels[J]. Composite Structures,2007,80:475-488.
    [237]Oktem A S, Chaudhuri R A. Fourier analysis of thick cross-ply Levy type clamped doubly-curved panels[J]. Composite Structures,2007,80:489-503.
    [238]Oktem A S, Chaudhuri R A. Boundary discontinuous Fourier analysis of thick cross-ply clamped plates[J]. Composite Structures,2008,82:539-548.
    [239]Oktem A S, Chaudhuri R A. Effect of inplane boundary constraints on the response of thick general (unsymmetric) cross-ply plates[J]. Composite Structures,2008,83:1-12.
    [240]Oktem A S, Chaudhuri R A. Sensitivity of the response of thick cross-ply doubly curved panels to edge clamping[J]. Composite Structures,2009,87:293-306.
    [241]Oktem A S, Soares C G. Boundary discontinuous Fourier solution for plates and doubly curved panels using a higher order theory[J]. Composites:Part B,2011,42:842-850.
    [242]Kabir H R H, Chaudhuri R A. Boundary-continuous Fourier solution for clamped Mindlin plates[J]. Journal of Engineering Mechanics,1992,118(7):1457-1467.
    [243]Kabir H R H.A novel approach to the solution of shear flexible rectangular plates with arbitrary laminations[J]. Composite:Part B,1996,27B:95-104.
    [244]Kabir H R H. On boundary value problems of moderately thick shallow cylindrical panels with arbitrary laminations[J]. Composite Structures,1996,34:169-184.
    [245]Kabir H R H. Anti-symmetric angle-ply laminated thick cylindrical panels[J]. International Journal of Solids and Structures,1998,35(28-29):3717-3735.
    [246]Kabir H R H. Free vibration response of shear-deformable antisymmetric cross-ply cylindrical panels[J]. Journal of Sound and Vibration,1998,217(4):601-618.
    [247]Kabir H R H, Al-Khaleefi A M, Chaudhuri R A. Free vibration analysis of thin arbitrarily laminated anisotropic plates using boundary-continuous displacement Fourier approach[J]. Composite Structures,2001,53:469-476.
    [248]Kabir H R H. Application of linear shallow shell theory of Reissner to frequency response of thin cylindrical panels with arbitrary lamination[J]. Composite Structures,2002,56: 35-52.
    [249]Kabir H R H, Al-Khaleefi A M, Al-Marzouk M. Double orthogonal set of solution functions for cross-ply laminated shear flexible cylindrical/doubly curved panels[J]. Composite Structures,2003,59:189-198.
    [250]Kabir H R H, Al-Khaleefi A M, Chaudhuri R A. Frequency response of a moderately thick antisymmetric cross-ply cyclindrical panel using mixed type of fourier solution functions[J]. Journal of Sound and Vibration,2003,259(4):809-828.
    [251]Kabir H R H. On free vibration response and mode shapes of arbitrarily laminated rectangular plates[J]. Composite Structures,2004,65:13-27.
    [252]Kabir H R H, Hamad M A M, Al-Duaij J, et al. Thermal buckling response of all-edge clamped rectangular plates with symmetric angle-ply lamination[J]. Composite Structures, 2007,79:148-155.
    [253]严宗达.结构力学中的富里叶级数解法[M].天津:天津大学出版社,1989.
    [254]Li W L. Free vibrations of beams with general boundary conditions[J]. Journal of Sound and Vibration,2000,237(4):709-725.
    [255]Li W L. Dynamic analysis of beams with arbitrary elastic supports at both ends[J]. Journal of Sound and Vibration,2001,246(4):751-756.
    [256]Li W L, Daniels M. A Fourier series method for the vibrations of elastically restrained plates arbitrarily loaded with springs and masses[J]. Journal of Sound and Vibration,2002, 252(4):768-781.
    [257]Li W L. Comparision of Fourier sine and cosine series eapansions for beams with arbitrary boundary conditions[J]. Journal of Sound and Vibration,2002,255(1):185-194.
    [258]Li W L. Vibration analysis of rectanguiar piaies with general elastic boundary supports[J]. Journal of Sound and Vibration,2004,273:619-635.
    [259]Li W L, Xu H A. An exact Fourier series method for the vibration analysis of multispan beam systems[J]. Journal of Computational and Nonlinear Dynamics,2009,4(2):021001.
    [260]Li W L, Zhang X F, Du J T, et al. An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports[J]. Journal of Sound and Vibration,2009,321:254-269.
    [261]Asmar N H.偏微分方程教程(英文版.第二版)[M].北京:机械工业出版社,2004.
    [262]Morton J, Silverberg L. Fourier series of half-range functions by smooth extension[J]. Applied Mathematical Modelling,2009,33:812-821.
    [263]Kashin B S, Saakian A A著,孙永生,王昆扬译.正交级数[M].北京:北京师范大学出版社,2007.
    [264]郇中丹,黄海洋.偏微分方程[M].北京:高等教育出版社,2004.
    [265]程建春.数学物理方程及其近似方法[M].北京:科学出版社,2005.
    [266]Haberman R著,郇中丹,李援南,刘歆,等译.实用偏微分方程(原书第四版)[M].北京:机械工业出版社,2007.
    [267]张承宗,杨光松.各向异性板结构横向弯曲问题一般解析解[J].力学学报,1996,28(4):429-440.
    [268]孙卫明,杨光松. Reissner厚板弹性弯曲的一般解析解[J].应用数学和力学,1998,19(1):79-87.
    [269]孙卫明,杨光松,张承宗.双参数地基上弹性厚板弯曲的一般解析解[J].工程力学,1999,16(2):71-78.
    [270]许琪楼,姜锐,唐高明,等.四边支承矩形板弯曲统一求解方法—兼论纳维叶解与李维解的统一性[J].工程力学,1999,16(3):90-99.
    [271]许琪楼,姜锐,唐高明,等.一边固定一角点或二角点支承的矩形板弯曲统一求解方法[J].计算力学学报,1999,16(2):210-215.
    [272]Kim H K, Kim M S. Vibration of beams with generally restrained boundary conditions using Fourier series[J]. Journal of Sound and Vibration,2001,245(5):771-784.
    [273]Khalili M R, Malekzadeh K, Mittal R K. A new approach to static and dynamic analysis of composite plates with different boundary conditions[J]. Composite Structures,2005. 69: 149-155.
    [274]莫国端,刘开第.函数逼近论方法[M].北京:科学出版社,2003.
    [275]徐利治,周蕴时,孙玉柏.逼近论[M].北京:国防工业出版社,1985.
    [276]梁学章,李强.多元逼近[M].北京:国防工业出版社,2005.
    [277]蒋尔雄,赵风光,苏仰锋.数值逼近[M].上海:复旦大学出版社,2008.
    [278]Henwood D J, Whiteman J R, Yettram A L. Finite difference solution of a system of first-order partial differential equations[J]. International Journal for Numerical Methods in Engineering,1981,17:1385-1395.
    [279]张望喜,易伟建.双参数地基上厚薄板通用元与地基参数识别的挠度反分析[J].工程力学,2003,20(6):46-51.
    [280]Abdalla J A, Ibrahim A M. Development of a discrete Reissner-Mindlin element on Winkler foundation[J]. Finite Elements in Analysis and Design,2006,42:740-748.
    [281]Rashed Y F, Aliabadi M H, Brebbia C A. A boundary element formulation for a Reissner plate on a Pasternak foundation[J]. Computers and Structures,1999,70:515-532.
    [282]邓安福,干腾君,李正良,等.弹性地基上厚板的计算分析[J].岩土工程学报,2003,25(6):653-657.
    [283]曾祥勇,朱爱军,邓安福.Winkler地基上厚板分析的自然单元法[J].固体力学学报,2008,29(2):163-169.
    [284]周小义,邓安福,郑冰.弹性地基上中厚板分析的数值流形方法[J].工业建筑,2008,38(1):65-68.
    [285]李永彪,张德澄.双参数弹性地基上中厚板弯曲问题的有限元线法分析[J].土木工程学报,2002,35(5):87-92.
    [286]Wen P H. The fundamental solution of Mindlin plates resting on an elastic foundation in the Laplace domain and its applications[J]. International Journal of Solids and Structures, 2008,45:1032-1050.
    [287]Henwood D J, Whiteman J R, Yettram A L.Fourier series solution for a rectangular thick plate with free edges on an elastic foundation[J]. International Journal for Numerical Methods in Engineering,1982,18:1801-1820.
    [288]石小平 姚祖康.弹性地基上四边自由矩形厚板的解[J].力学与实践,1986,(2):19-23
    [289]林健,黄琳.大型空间结构的动力学建模与控制[J].力学进展,1991,21(3):333-341.
    [290]黄琳,秦化淑,郑应平,等.复杂控制理论系统:构想和前景[J].自动化学报,1993,19(2):129-136.
    [291]黄文虎,王文清,张景绘,等.航天柔性结构振动控制的若干新进展[J]_力学进展,1997,27(1):5-18.
    [292]黄文虎.航天结构主被动一体化振动控制技术的研究现状和进展[J].应用力学学报,2001,18(3):1-7.
    [293]Hagedorn P. Active vibration damping in large flexible structures[C]. Germain P, Piau M, Caillerie D(eds), Proceedings of the 17th International Congress of Theoretical and Applied Mechanics, Amsterdam, Elsevier Science Publishers,1989,83-100.
    [294]Meirovitch L, Bennighof J K. Modal control traveling waves in flexible structures[J]. Journal of Sound and Vibration,1986,111(1):131-144.
    [295]Von Flotow A H. Traveling wave control for large spacecraft structures[J]. Journal of Guidance, Control and Dynamics,1986,9(4):462-468.
    [296]蒋式勤,张若京.用行波控制技术对弦振动的主动隔振[J].同济大学学报,1991,19(4):489-494.
    [297]蒋式勤,张若京.梁振动的主动控制[J].同济大学学报,1992,20(2):233-237.
    [298]Mace B R. Wave reflection and transmission in beams[J]. Journal of Sound and Vibration, 1984,97(2):237-246.
    [299]Von Flotow A H. Wave-absorbing controllers for a flexible beam[J]. Journal of Guidance, Control and Dynamics,1986,9(6):673-680.
    [300]Mace B R. Active control of flexible vibrations [J]. Journal of Sound and Vibration,1987, 114(2):253-270.
    [301]Pines D J, Von Flotow A. H. Active control of bending wave propagation at acoustic frequencies[J]. Journal of Sound and Vibration,1990,142(3):391-412.
    [302]Elliott S J, Billet L. Adaptive control of flexural waves propagating in a beam [J]. Journal of Sound and Vibration,1993,163(2):295-310.
    [303]程伟.典型结构波传播分析及其在梁振动控制中的应用[D].博十学位论文,北京:北京大学,1994.
    [304]Brennan M J, Elliott S J, Pinnington R J. Strategies for the active control of flexural vibration on a beam[J]. Journal of Sound and Vibration,1995,186(4):657-688.
    [305]谭平.基于行波模型的结构响应控制律研究[J].应用力学学报,1997,14(增刊):88-91.
    [306]Yuan J, Fung K Y. A travelling wave approach to active noise control in ducts[J]. Journal of Sound and Vibration,1999,219(2):307-321.
    [307]Kessissoglou N J. An analytical and experimental investigation on active control of the flexural wave transmission in a simply supported ribbed plate[J]. Journal of Sound and Vibration,2001,240(1):73-85.
    [308]Mei C, Mace B R, Jones R W. Hybrid wave/mode active vibration control[J]. Journal of Sound and Vibration,2001,247(5):765-784.
    [309]Halkyard C R, Mace B R. Feedforward adaptive control of flexural vibration in a beam using wave amplitudes [J]. Journal of Sound and Vibration,2002,254(1):117-141.
    [310]Xu M B, Song G. Adaptive control of vibration wave propagation in cylindrical shells using SMA wall joint[J]. Journal of Sound and Vibration,2004,278:307-326.
    [311]谭平,孙晔,程懋华,等.结构扰动的行波主动控制[J].振动、测试与诊断,2004,24(2):128-130.
    [312]谭平.结构的行波控制[J].吉林大学学报(工学版),2006,36(3):417-421.
    [313]任建亭,邓长华,姜节胜.基于行波方法的智能悬臂梁振动控制[J].振动工程学报,2006,19(1):98-103.
    [314]陈涛,胡超,黄文虎.Timoshenko梁的行波和模态的混合控制方法[J].振动工程学报,2007,20(1):40-44.
    [315]胡超,陈涛,黄文虎.基于行波和模态的混合方法对Timoshenko梁进行振动主动控制[J].航空学报,2007,28(2):301-308.
    [316]陈涛,胡超,黄文虎.基于Mindlin板理论对悬臂板结构实施振动控制[J].振动与冲击,2008,27(5):8-11.
    [317]Mei C. Hybrid wave/mode active control of bending vibrations in beams based on the advanced Timoshenko theory[J]. Journal of Sound and Vibration,2009,322:29-38.
    [318]Pan J, Hansen C H. Active control of total vibratory power flow in a beam, Part One: Physical system analysis[J]. Journal of the Acoustical Society of America,1991,89(1): 200-209.
    [319]Clark R L, Pan J, Hansen C H. An experimental study of the active control of multi-wave types in an elastic beam[J]. Journal of the Acoustical Society of America,1992,92(2): 871-876.
    [320]Gardonio P, Elliott S J. Active control of waves on a one-dimensional structure with a scattering termination[J]. Journal of Sound and Vibration,1996,192(3):701-730.
    [321]Harland N R, Mace B R, Jones R W. Wave propagation, reflection and transmission in tunable fluid-filled beams[J]. Journal of Sound and Vibration,2001,241(5):735-754.
    [322]胡超,韩刚,房学谦,等Mindlin板条中弹性波传播问题的分析[J].应用数学和力学,2006,27(6):701-708.
    [323]Lee S K, Mace B R, Brennan M J. Wave propagation, reflection and transmission in non-uniform one-dimensional waveguides[J]. Journal of Sound and Vibration,2007,304: 31-49.
    [324]Lee S K, Mace B R, Brennan M J. Wave propagation, reflection and transmission in curved beams[J]. Journal of Sound and Vibration,2007,306:636-656.
    [325]Mace B R, Manconi E. Modelling wave propagation in two-dimensional structures using finite element analysis[J]. Journal of Sound and Vibration,2008,318:884-902.
    [326]阿肯巴赫J D著,徐植信,洪锦如译.弹性固体中波的传播[M].上海:同济大学出版社,1992.
    [327]艾龙根A C,舒胡毕E S著,戈革译.弹性动力学第二卷(线性理论)[M].北京:石油工业出版社,1983.
    [328]Fraser W B. Stress wave propagation in rectangular bars[J]. International Journal of Solids and Structures,1969,5(4):379-397.
    [329]Kang L C. A Fourier series method for polygonal domains:large element computation for plates[D]. Stanford University,1992.
    [330]Deng J G, Cheng F P. Fourier series method for plane elastic problems of polygonal domain[J]. Computer Methods in Applied Mechanics and Engineering,2001,190: 4569-4585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700