HCFC123高温工况下水平管外冷凝换热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境问题是当今世界各国面临的重大社会问题。我国形势尤为严峻,能源短缺,能源利用率低,能耗高,CO2和SO2排放量居世界各国前列。随着城市化进程和经济发展速度的加快,我国将长期面临能源供应和环境保护的巨大压力,采用热泵技术是减少化石类能源消耗、降低环境污染的重要措施。民用和工业燃煤(气、油)锅炉热源改造要求能源利用率较高的供热热源,高温热泵是技术和经济可行的替代热源。以市政污水和工业废热水为低位热源的高温热泵已成为极具吸引力的供热热源,受到政府和用户的高度重视。以油田含油污水为低位热源的高位热泵也是解决油田地区城市集中供热和原油伴热输送的理想热源。
     壳管式冷凝器是高温热泵机组的重要部件,其传热能力在很大程度上决定了高温热泵的性能。3D强化管在壳管式冷凝器中的使用极大增强了壳管式换热器的换热性能进而提高了热泵机组的运行效率,取得了显著的节能、省材、减重、紧凑的效果和良好的经济效益。为此,本文建立了高温工质冷凝换热试验台,试验研究了高温工况下高温工质HCFC123在多种管外的冷凝换热性能,为优化壳管式冷凝器及开发高温热泵机组提供理论基础。本文主要完成了以下工作内容
     1、建立了高温工质冷凝换热试验台。通过对工质在管外冷凝换热特性的分析确定了试验研究目标,根据试验台设计原理及关键测试参数设计了试验台结构及主要设备,介绍了误差传递理论及误差分配方案,选择了测量仪表并对试验台误差影响因素进行了分析。
     2、开发了高温工质冷凝换热试验台监控系统。首先确定试验台监控目标并将试验台监控系统分为高温工质蒸气控制子系统和冷却水控制子系统,其次利用C++ Builder编制了监控程序,接着介绍了试验台工作过程及监控系统运行调试过程,分析了试验台运行调试结果。
     3、试验研究了HCFC123光管管外冷凝换热特性。文中介绍了试验管材并确定了试验工况,讨论了试验数据处理方法及模型评价标准,试验分析了单管外冷凝换热的直接及间接影响因素并与Nusselt经典理论模型比较,
Now, energy resource and environment are the great social problems that every country especially our country is faced with. Our country is being lack of energy, energy inefficient, high energy consumption and has the larger discharge of CO2 and SO2. With quickening of cities and economy development speed, China will face great pressure of energy resource supply and environment protection for a long time. Heat pump has been an important technology measure to reduce energy consumption of the fossil energy resource and environment pollution. Alternation and rebuilding of civil and industry boilers with cost, gas and oil demand higher efficiency heating source and high-temperature heat pump (HTHP) is feasible alternate one both in technology and economy. By using the municipal sewage and industrial waste warm water as lower quality heat source, the HTHP has been a sort of very commercioganic heating source and attached importance by government and users. The HTHP, which low quality heat source is waste water including oil, is also an ideal heating source to use in civil central heating system and oil transportation system in oil field.
     The performance of HTHP is depended on the heat transfer capability of shell-tube condenser, which is an important part of HTHP. The usage of three-dimensional (3D) enhanced tube increases greatly the heat transfer ability of shell-tube heat transferr and improves the operational efficiency of heat pump, achieving better economical effectiveness and prominent effects such as energy conservation, material-saving, weight reduction and compactness. Accordingly, the condensation heat transfer test-board for high-temperature refrigerant is established in the thesis, and the condensation heat transfer performance of HCFC123 outside kinds of tubes is researched under high-temperature condition, which providing a theoretic basis for optimization of shell-tube condenser and the development of HTHP. This thesis is divided into six chapters; the detailed content is given as following.
     1、The high-temperature refrigerant condensation heat transfer test-board is set up. The experiment goal is determined through the characteristics analysis of refrigerant condensation outside tubes. The structure of test-board and its main
引文
1 Z. Martin. The Swiss Retrofit Heat Pump Programme. The 7th International Energy Agency Conference on Heat Pump Technologies. 2002:209~218
    2 G.. Breembrook. Retrofitting with Heat Pump in Buildings. The 7th International Energy Agency Conference on Heat Pump Technologies. 2002:685~693
    3 尹军, 韦新东. 我国主要城市污水中可利用热能状况初探. 中国给水排水. 2001, 17(4):27~30
    4 K. Honjo. Current Status of Super Heat Pump Energy Accumulation System Heat Pumps for Energy Efficiency and Environmental Progress. 1993:553~561
    5 R. Mottal. Heat Pump Technology and Working Fluids. XIXth International Congress of Refrigeration. 1995:1334~1341
    6 李新国. 中高温热泵及其用压缩式制冷机的研究. 天津大学硕士学位论文. 1989:3~4
    7 陈东. 压缩机中高温热泵低环害工质的理论和实验研究. 天津大学博士学位论文. 1997:1~10
    8 Y. T. Ma. CO2 Transcritical Cycle for Ground Source Heat Pump. The 7th International Energy Agency Conference on Heat Pump Technologies. 2002:981~990
    9 吕灿仁, 杨昭, 马一太. 利用变电站调相机冷却水为热源的热泵系统的研究与分析. 制冷技术. 1992, (2):1~3
    10 蒯大秋, 张嘉辉, 马一太. 浅池水热源热泵的实验研究. 工程热力学与能源利用. 1996, 10:108~111
    11 刘南希, 史琳, 李扬帆, 等. 中高温热泵工质及试台研究. 工程热物理学报. 2003, 24(1):5~9
    12 韩凤臣, 李印秋, 沈雷, 等. 热泵在原油集输工艺中应用的技术经济分析. 应用能源技术. 1998, (3):27~29
    13 张永贵, 冯晓九. 用热泵回收原油集输过程余热的试验. 油气田地面工程. 1998, 17(3):71~72
    14 张亚立. 污水水源中高温热泵机组模拟及区域供热技术经济分析. 哈尔滨工业大学硕士论文. 2002
    15 李忠建. 高温热泵换热器热工设计及系统模拟分析. 哈尔滨工业大学硕士论文. 2004
    16 任晓东. 二元离心压缩机结构设计及叶轮流场数值模拟方法探索. 哈尔滨工业大学硕士论文. 2005
    17 张淑彦. 中高温热泵工质热力性质及循环性能分析. 哈尔滨工业大学硕士论文. 2005
    18 赵天怡. 多孔孔板节流试验及高温热泵优化设计方法. 哈尔滨工业大学硕士论文. 2005
    19 张吉礼. 离心式多级压缩水—水高温热泵技术研究. 哈尔滨工业大学博士后研究工作报告. 2006
    20 陆亚俊, 马最良, 姚杨. 空调工程中的制冷技术. 哈尔滨工业大学出版社. 1997
    21 J. Pekins. Apparatus for Producing Ice and Cooling Fluids. Patent 6662, United Kingdom. 1834
    22 N. Petter. CO2 Heat Pump Water Heater, Charateristics, System Design and Experimental Results. International Journal of Refrigeration. 1998, 21(3):172~179
    23 马一太, 王侃宏, 王景刚, 等. CO2 跨临界水-水热泵循环系统的实验研究. 暖通空调. 2001, 31(3):1~4
    24 王凯, 李建风, 曹锋. 高温水源热泵研究与发展趋势. http://www.e-hvacr.com/jszx/zt/rtjs/200606/5585.html
    25 马一太, 王景刚, 魏东. 自然工质在制冷空调领域里的应用分析. 制冷学报. 2002, (1):1~5
    26 马一太, 王景刚, 魏东. 国内外自然工质研究现状与发展趋势. 暖通空调. 2003, 33(1):41~46
    27 K. Nakatani, N. Ikoma, K. Arita, et al. Development of High-Temperature Heat Pump Using Alternative Mixtures. National Technical Report. 1989, 35(6):12~16
    28 L. Liebenberg, J. P. Meyer. Potential of the Zeotropic Mixtures R22/R142b in High-Temperature Heat Pump Water Heaters with Capacity Modulation. ASHRAE Transaction. 1998, 104(1):418~429
    29 陈东. 压缩式中高温热泵低环害循环工质的理论和试验研究. 天津大学博士论文. 1997
    30 赵力. 中高温地热热泵循环工质及系统智能调控的研究. 天津大学博士论文. 2001
    31 H. Wang, L. MA, H. LI. Working Fluids for Moderate and High-Temperature Heat Pumps. Proceedings of the 5th Rgustav Lorentzen Conference on Natural Working Fluids, Guangzhou China, 2002:393~399
    32 刘南希, 史琳, 韩礼钟, 等. 高温工质 HTR01 水源热泵机组的研究. 暖通空调. 2004, 34(8):48~52
    33 马利敏, 王怀信, 郑臣明. 几种中高温热泵工质的理论循环性能. 天津大学学报. 2005, 38(8):689~694
    34 S. Devotta, V. R. Pendyala. Thermodynamic Screening of Some HFCs and HFEs for High-Temperature Heat Pumps as Alternative to CFC114. International Journal of Refrigeration. 1994, 17:338~342
    35 R. M. Lazzrazin. Heat Pumps in Industry: Application Heat Recover Systems & CHP. 1995, 15(3):305~317
    36 K. Maruo, A. Sekiya. Research on Fluorine Containing New Refrigerants—HFEs. Procs. of the Int. Symposium on HCFC Alternative Refrigerants and Environmental Technology. 2002:69~74
    37 G. Angelino,C. Invernizzib. Experimental Inverstigation on the Thermal Stability of Some New Zero ODP Refrigerants. International Journal of Refrigeration. 2003, 26:51~58
    38 T. X. Li, K. H. Guo, R. Z. Wang. High-Temperature Hot Water Heat Pump with Non-Azeotropic Refrigerant Mixture HCFC-22/HCFC-141b. Energy and Management. 2002, 43(15):2033~2040
    39 Ma Limin, Wang Huaixin, Li Hailong, et al. Theoretical Investigation on the Working Fluids for Moderate and High-Temperature Heat Pumps. Journal of Engineering Themophysics. 2003, 24(5):73~740
    40 马利敏, 王怀信, 郑臣明. 离心式冷水空调机组中 CFC11 替代工质的研究. 工程热物理学报. 2004, 25(3):385~388
    41 王鑫, 史琳, 朱明善. 制冷剂替代物安全性评价的现状和研究课题. 暖通空调. 2003, 32(2):38~42
    42 郭心正. 中国 ODS 替代品领域的研究进展. 精细与专用化学品. 2004, 12(16):1~4
    43 张华, 马波. 制冷工质的安全、环境评价指标和数据. 节能技术. 2000, 8(6):3~8
    44 S. Goktun. Selection of Working Fluids for High-Temperature Heat Pumps. Energy. 1995, 20:623~625
    45 Donald Wuebbles, James M. Calm. An Enviromntal Rational for Retention of Endangered Chemicals. Science. 1997, 278:1090~1091
    46 董天禄. 离心式/螺杆式制冷机组及应用. 机械工业出版社. 2002:228~229
    47 张正国, 王世平, 林培森. 强化冷凝换热管的开发研究. 现代化工. 1997, (12):13~15
    48 陈海波. 非共沸混合工质 R407c 在新型冷凝器上的强化传热研究. 华南理工硕士学位论文. 2001:6~10
    49 Grogoring R. Z. Angew Math Phys. 1954, 5:36~49
    50 K. O. Beatty, D. L. Katz. Condensation of Vapours on outside of Finned Tubes. Chemical Engineering Progress. 1948, 44(1):55~70
    51 W. Nusselt. Die Oberflachenkondensation Des Wasserdampfes. Z. Vereines Deutsch. Ing. 1916, 60:541~546
    52 B. S. Yilbas, N. Altuntop. Condensation Heat Transfer of Freon-21 on Plain Horizontal Tubes. Indian Journal of Technology. 1990, 28:100~106
    53 B. Cheng, W. Q. Tao. Experimental Study of R-152a Film Condensation on Single Horizontal Smooth Tube and Enhance Tubes. Journal of Heat Transfer. 1994, 116:266~270
    54 M. Belghazi, A. Bontemps, J. C. Signe, et al. Condensation Heat Transfer of a Pure Fluid and Binary Mixture outside a Bundle of Smooth Horizontal Tubes: Comparison of Experimental Results and a Classical Model. International Journal of Refrigeration. 2001, 24:841~855
    55 D. Gstoehl, J. R. Thome. Film Condensation of R-134a on Tube Array with Plain and Enhanced Surfaces: Part I—Experimental Heat Transfer Coefficients. Journal of Heat Transfer. 2006, 128:21~32
    56 P. J. Marto. An Evaluation of Film Condensation on Horizontal Integral-Fin Tubes. Journal of Heat Transfer. 1988, 110:1287~1305
    57 H. Honda, B. Uchima, S. Nozu, et al. Condensation of Downward Flowing R-113 Vapor on Bundles of Horizontal Smooth Tubes. Heat Transfer-Japanese Research. 1989, 18(6):31~52
    58 W. Y. Cheng, C. C. Wang. Condensation of R-134a on Enhanced Tubes. ASHRAE Transaction 100 part 2. 1994:809~817
    59 D. Gstoehl, J. R. Thome. Film Condensation of R-134a on Tube Array with Plain and Enhanced Surfaces: Part II—Empirical Prediction of Inundation Effects. Journal of Heat Transfer. 2006, 128:33~43
    60 A. G. Michael, J. W. Rose, L. C. Daniels. Forced Convection Condensation on a Horizontal Tube—Experimental with Vertical Downflow of Steam. Journal of Heat Transfer. 1989, (111):791~797
    61 C. M. Chu, J. M. McNaught. Condensation on Bundles of Plain and Low-Finned Tubes-Effect of Vapour Shear and Condensate Inundation. Heat Transfer: 3rd UK National Heat Transfer Conf. Univesity of Birrmingham, England, Institution of Chemical Engineers Symposium Series. 1992, 129(1):225~232
    62 D. L. Randall, S. J. Eckels. Effect of Inundation upon Condensation Heat Transfer Performance of R-134a: Part I—Facility Overview and Data Analysis. International Journal of HVAC&R Research. 2005, 11(4):527-542
    63 D. L. Randall, S. J. Eckels. Effect of Inundation upon Condensation Heat Transfer Performance of R-134a: Part II—Results. International Journal of HVAC&R Research. 2005, 11(4):543~562
    64 S. S. Kutateladze, I. I. Gogonin, V. I. Sosunov. The Influence of Condensate Flow Rate on Heat Transfer in Film Condensation of Stationary Vapour on Horizontal Tube Banks. International Journal of Heat and Mass Transfer. 1985, 28(5):1011~1018
    65 J. F. Roques, V. Dupont, J. R. Thome. Falling Film Transitions on Plain and Enhanced Tubes. Journal of Heat Tranfer. 2002, 124:491~499
    66 V. A. Karkhu, V. P. Borovkov. Film Condensation of Vapour at Finely-Finned Horizontal Tubes. Heat Transfer—Soviet Research. 1971, (3):183~191
    67 A. F. Mills, G. L. Hubbard, G. L. Jams, et al. Experimental Study of Film Condensation on Horizontal Grooved Tubes. Desalination. 1975, 16:121~133
    68 T. C. Carnavos. An Experimental Study: Condensation R-11 on Augmented Tubes. Asme. Paper No. 80-HT-54. 1980
    69 H. Honda, S. Nozu, K. Mitsumri. Augmntation of Condensation onHorizontal Finned Tubes by Attaching a Porous Drainage Plate. Proc. ASME-Thermal Engineering Joint Conference. 1983, 3:289~296
    70 H. Honda, S. Nozu. Effect of Drainage Strips on the Condensation Heat Transfer Performance of Horizontal Finned Tubes. Proc. Int. Symp. on Heat Transfer. 1985, 2, Paper No.85-ISHT-II-32
    71 W. W. Huebsch, M. B. Pate. A Comparative Study of Shell-Side Condensation on Integral Tubes with R-114 and R-236ea. ASHRAE Transaction. 2004:40~52
    72 H. Masuda, J. W. Rose. An Experimental Study of Condensation of Refrigerant 113 on Low Integral-Fin Tubes. Proc. Int. Symp. on Heat Transfer. Beijing. 1985, 2:32
    73 P. J. Marto, E. Mitrou. A. S. Wanniarachchi, et al. Film Condensation of Steam on Horizontal Finnd Tubes: Effect of Fin Shape. Proc. 8th Int. Heat Transfer Conference. Washington DC. 1986, 4:1695~1700
    74 G. F. Sukhatme, B. S. Jagadish, P. Prabhakaran. Film Condensation of R-11 Vapour on Single Horizontal Enhanced Condenser Tubes. ASME Journal of Heat Transfer. 1988, 110
    75 A. K. Das, G. A. Incheck, P. J. Marto. The Effect of Fin Height during Steam Condensation on a Horizontal Stainless Steel Integral-Fin Tube. Enhanced Heat Transfer, 1999, (6):237~250
    76 D. L. Katz, J. M. Geist. Condensation on Six Finned Tubes in a Vertical Row. Trans. ASME. 1948, 70:907~914
    77 H. Honda, H. Takamatsu, N.Takada, et al. Design Method for Shell and Tube Condensers in Refrigeration Units. Heat Transfer in Condensation, Eurotherm Seminar 47, Paris, 1995:110~115
    78 H. Honda, H. Takamatsu, N. Takada, et al. Condensation of HCFC-123 in Staggered Bundles of Horizontal Finned Tubes. Proceeding of the 4th ASME-JSME Thermal Engineering Joint Conference. 1995, 2:415~422
    79 S. J. Eckels. Effects of Inundation and Miscible Oil upon Condensation Heat Transfer Performance of R-134a. ASHRAE Report 984. 2002
    80 R. L. Webb, C. G. Murawski. Row Effect for R-11 Condensation on Enhanced Tubes. Journal of Heat Transfer. 1990, (112):768~776
    81 C. M. Chu, J. M. McNaught. Tube Bundle Effects in CrossflowCondensation on Low-Finned Tubess. Proc. 10th International Heat Transfer Conf.. Brighton. Institution of Chemical Engineers Symposium Series. 1994, 135(3):293~298
    82 J. B. Huber, L. E. Rewert, M. B. Pate. Shell-Side Condensation Heat Transfer of R-134a—Part I: Finned-Tube Performance. AHSRAE Transaction 100 Part 2. 1994:239~247
    83 F. Kulis, A. Compingt, P. Mercier, et al. Design Method for Shell and Tube Condensers in Refrigeration Units. Heat Transfer in Condensation, Eurotherm Seminar 47. Paris. 1995:133~138
    84 H. Honda, H. Takamastu, N. Takada. Condensation of HCFC123 in Bundles of Horizontal Finned Tubes: Effects of Fin Geometry and Tube Arrangment. International Journal of Refrigeration. 1996, 19(1):1~9
    85 L. E. Rewert, J. B. Huber, M. B. Pate. The Effect of R-123 Condenste Inundation and Vapour Enhanced Tube Geometries. AHSRAE Transaction 102 Part 2. 1996:273~284
    86 L. E. Rewert, J. B. Huber, M. B. Pate. The Effect of R-134a Inundation on Enhanced Tube Geometries. AHSRAE Transaction 102 Part 2. 1996:285~296
    87 H. Honda, N. Takata, H. Takamatsu, et al. Condensatoin of Downward-Flowing HFC-134a in a Staggered Bundle of Horizontal Finned Tubes: Effect of Fin Geometry. International Journal of Refrigeration. 2002, 25:3~10
    88 J. F. Roques, J. R. Thome. Falling Film Transitions between Droplet, Column and Sheet Flow Modes on a Vertical Array of Horizontal 19 FPI and
    40 FPI Low-Finnd Tubes. Heat Transfer Engineering. 2003, 24(6):40~45
    89 W. Y. Cheng, C. C. Wang, Y. Z. Hu. Film Condensation of HCFC-22 on Horizontal Enhanced Tubes. International Communications in Heat Transfer. 1996, (23):79~90
    90 帅志明, 张红星, 冯海仙. 水平螺旋槽铜管管外水蒸汽冷凝换热准则方程. 东南大学学报. 1994, 24(增刊):36~39
    91 廖强, 辛明道. 水平冷凝强化传热管的传热性能. 重庆大学学报. 1996, 19(1):68~73
    92 张正国, 林培森, 王世平. 花瓣形翅片管的开发及其纵向冲刷冷凝强化传热的研究. 石油化工设备. 1996, 25(3):3~6
    93 马济成, 陈瑞球, 陈蓓蕾, 等. 双侧强化换热高效冷凝管的试验研究. 天津商学院学报. 1997, (4):6~10
    94 金安. 水平不锈钢螺旋槽管管外冷凝换热特性研究. 石油化工设备. 1999, 28(2):13~16
    95 顾红芳, 孙丹, 章燕谋, 等. V 型纵槽队水平螺旋管外冷凝换热的强化. 化学工程. 2000, 28(5):18~20
    96 黄烜, 董超, 李瑞阳, 等. 强化管外 CFC11 与 HCFC123 冷凝换热系数的对比试验研究. 能源技术. 2001, 22(4):179~182
    97 T. N. Nguyen, J. A. Orozco. Condensation of CFC113 on Enhanced Surfaces. ASHRAE Transaction 100 Part1. 1994:736~743
    98 陆金铭. 螺旋槽管用于强化冷凝的试验研究. 华东船舶工业学院学报. 1995, 9(2):87~91
    99 H. Honda, H. Takamastu, K. Kim. Condensation of CFC-11 and HCFC-123 in In-Line Bundles of Horizontal Finned Tubes: Effect of Fin Geometry. Journal of Enhanced Heat Transfer. 1994, 1(2):197~209
    100 彭海涛, 李芳明, 李娬, 等. R22 饱和蒸气在水平双侧强化管外冷凝换热的试验研究. 西安交通大学学报. 1997, 31(2):51~56
    101 M. Belghazi, A. Bontemps, C. Marvillet. Condensation Heat Transfer on Enhanced Surface Tubes: Experimental Results and Predictive Theory. Journal of Heat Transfer. 2002, 124:754~761
    102 J. B. Huber, L. E. Rewert, M. B. Pate. Shell-Side Condensation Heat Transfer of R-134a—Part II: Enhanced Tube Performance. AHSRAE Transaction 100 Part 2. 1994:248~256
    103 H. Honda, B. Uchima, S. Nozu, et al. Film Condensation of R-113 on In-Line Bundles of Horizontal Finned Tubes. Journal of Heat Transfer. 1991, 113:479~486
    104 H. Honda, B. Uchima, S. Nozu, et al. Film Condensation of R-113 on Staggered Bundles of Horizontal Finned Tubes. Journal of Heat Transfer. 1992, 114:442~449
    105 H. Honda, H. Takamatsu, N. Takada. Condensation of HCFC123 in Bundles of Horizontal Finned Tubes: Effects of Finned Geometry and Tube Arragement. International Journal of Refrigeration. 1996, (19):1~9
    106 M. W. Browne, P. K. Bansal. An Overview of Condensation Heat Transfer on Horizontal Tube Bundles. Applied Thermal Enginering. 1999, 19:565~594
    107 A. Cavallini, G. Gnsi, D. D. Col, et al. Condensation inside and outside Smooth and Enhanced Tubes—a Review of Recent Research. International Journal of Refrigeration. 2003, 26:373~392
    108 施林德尔. 换热器设计手册(第二卷). 机械工业出版社
    109 B. JI.伊萨琴科. 传热学. 高等教育出版社, 1987
    110 彦启森. 空气调节用之类高技术. 建筑工业出版社, 1980
    111 M.A. 米海耶夫. 传热学基础. 王补宣译. 第二版. 高等教育出版社, 1958:143-152
    112 钱颂文. 换热器设计手册. 化学工业出版社, 2002:114
    113 冯健美, 屈宗长, 司玉宝, 等. 管外冷凝换热的计算. 压缩机技术. 2005, 163(5):3~5
    114 E. M. Sparrow, J. L. Gregg. A Boundary-Layer Treatment of Laminar Film Condensation. Journal of Heat Transfer. 1959:13~18
    115 C. Y. Koh, E. M. Sparrow, J. P. Harnett. The Two Phase Boundary-Layer in Laminar Condensation. Interational Journal of Heat Transfer. 1961, 2:69~82
    116 A. A. Nicol, D. J. Wallace. The Influence of Vapour Shear on Condensation on a Cylinder. Symp on Multi-Phase Flow Systems. Int. Chem. Engrs. Symp.. 1974
    117 T. Fujii, H. Uehara, C. Kurata. Laminar Film Condensation of Flowing Vapour on a Horizontal Cylinder. Interational Journal of Heat and Mass Transfer. 1972, 15:235~246
    118 E. S. Gaddis. Solution on the Two Phase Boundary-Layer Equations for Laminar Film Condensation on Vapour Flowing Perpendicular to a Horizontal Cylinder. Interational Journal of Heat and Mass Transfer. 1979, 22:371~382
    119 H. Karabulut, O. E. Ataer. Numerical Analysis of Laminar Film Condensation. Interational Journal of Refrigeration. 1996, 19(2):117~123
    120 L. G. Shekriladze, V. I. Gomelauri. Theoretical Study of Laminar Film Condensation of Flowing Vapour. Interational Journal of Heat and Mass Transfer. 1966, 9:581~591
    121 J. W. Rose. Effect of Pressure Gradient in Forced Convection Condensationon a Horizontal Tube. Interational Journal of Heat Transfer. 1984, 27(1):39~47
    122 秀英. 关于卧式换热器水蒸汽在管外冷凝时给热系数的探讨. 天津化工. 1994, (1):29~31
    123 刘晓华, 李维仲, 崔峨. 水平管外轴向对流冷凝强化传热的研究. 大连理工大学学报. 1998, 38(3):286~289
    124 刘晓华, 李维仲, 叶景岩. 水平管外蒸气轴向流动冷凝换热数值解析的新解. 石油化工高等学校学报. 1998, 12(1):73~77
    125 刘晓华, 李维仲, 赵宗昌, 等. 水平管外蒸气轴向流动冷凝换热理论与试验研究. 大连理工大学学报. 2002, 42(2):185~189
    126 K. O. Beatty, D. L. Katz. Condensation of Vapours on outside of Finned Tubes. Chemical Engineering Progress. 1948, 44(1):55~70
    127 T. M. Rudy, R. L. Webb. Theoretical Model for Condensation on Horizontal Integral-Fin Tube. Heat Transfer. Seattle. AIChe. Symp. Ser. 1983, 79:11~18
    128 G. F. Smirnov, I. I. Lukanov. Study of Heat Transfer form Freon-11 Condensating on a Bundle of Finned Tubes. Heat Transfer—Soviet Research. 1972, (3):51~56
    129 T. M. Rudy, R. L. Webb. An Analytical Model to Predict Condensate Retention on Horizontal Integral-Fin Tube. Journal of Heat Transfer, 1985:361~368
    130 H. Masuda, J. W. Rose, An Experimental Study of Condensation of Refrigerant 113 on Low Integral-Fin Tubes. Heat Transfer Science and Technology, Hemisphere, New York, 1987:480~487
    131 吴沛宜. 氟利昂 12、113 在水平肋管外冷凝放热的准则方程. 西安交通大学学报, 1979, (3):1~10
    132 R. G. Sardesai, R. G. Owen, R. A. Smith. IChemE. Symp. Series. 1983, 75:415~428
    133 H. Honda. A Prediction Method for Heat Transfer during Film Condensation on Horizontal Low Integral Fin Tubes. ASME HTD-38. 1984:107~114
    134 厉彦忠, 吴清金. 水平肋管外冷凝换热的理论与试验研究. 西安交通大学学报. 1987, 21(4):85~92
    135 H. Honda, S. Nozu. A Prediction Method for Heat Transfer during Film Condensation on Horizontal Low Integral-Fin Tubes. Journal of HeatTransfer. 1987, 109:218~225
    136 H. Honda, S. Nozu, B.Uchima. A Generalized Prediction Method for Heat Transfer during Film Condensation on a Horizontal Low Finned Tube. ASME-JSME Thermal Engineering Joint Conference. 1987, 4:385~392
    137 T. Adamek, R. L.Webb. Predition of Film Condensation on Horizontal Integral Finned Tubes. International Journal of Heat and Mass Transfer. 1990, 33:1721~1735
    138 J. W. Rose. An Approximate Equation for the Vapour-Side Heat Transfer Coefficient for Condensation on Low-Finned Tubes. International Journal of Heat and Mass Transfer. 1994, 37:865~875
    139 A. Briggs, J. W. Rose. Effect of Fin Efficiency on a Model for Condensation Heat Transfer on a Horizontal Integral-Fin Tube. International Journal of Heat and Mass Transfer. 1994, 37(1):457~463
    140 A. Cavilinni, L. Doretti, G. A. Longo, et al. A New Model for Forced-Convection Condensation on Integral-Fin Tubes. Journal of Heat Transfer. 1996, 118:689~693
    141 张正芳, 戴先斌, 马同泽. 水平管多空表面的冷凝换热研究. 工程热物理学报. 1995, 16(2):215~219
    142 L. K. Sreepathi, S. L. Bapat, S. P. Sukhatme. Heat Transfer during Film Condensation of R-123 Vapour on Horizontal Integral-Fin Tubes. Journal of Enhanced Heat Transfer. 1996, 3:147~164
    143 A. K. Das, G. A. Incheck, P. J. Marto. The Effect of Fin Height during Steam Condensation on a Horizontal Stainless Steel Integral-Fin Tube. Journal of Enhanced Heat Transfer. 1999, (6):237~250
    144 R. Kumar, H. K. Varma, B. Mohanty, et al. Prediction of Heat Transfer Coefficient during Condensation of Water and R-134a on Single Horizontal Integral-Fin Tubes. International Journal of Refrigeration. 2002, 25:111~126
    145 王晓璐. 螺旋槽管在冷凝器中的应用. 郑州纺织工学院学报. 1995, 6(4):15~20
    146 顾红芳, 孙丹, 章燕谋, 等. 水平螺旋管外 V 型槽强化冷凝换热的理论研究. 西安交通大学学报. 1997, 33(7):57~61
    147 梁平, 龙新峰, 庄礼贤, 等. 内外螺旋三角翅片管管外冷凝换热建模与优化( Ⅰ )—物理数学模型及数学处理方法. 华南理工大学学报. 1999,27(5):78~83
    148 梁平, 龙新峰, 庄礼贤, 等. 内外螺旋三角翅片管管外冷凝换热建模与优化( Ⅱ )—数值分析与优化. 华南理工大学学报. 1999, 27(7):91~96
    149 左建国, 李维仲, 徐士鸣. 水平管外强化冷凝换热的数值解. 工程热物理学报. 2003, 24(2):265~267
    150 M. Jakob. Mech. Eng.. 1936, 58:163
    151 D. Q. Kern. Mathematical Development of Loading in Horizontal Condensers. American Institue Chemistry Engeering Journal. 1958, 4:157~60
    152 D. M. Eissenberg. An Investigation of the Variable Affecting Steam Condensation on the Outside of a Horizontal Tube Bundle. University of Tennessee PhD Thesis. 1972
    153 陈长青, 沈裕浩. 低温换热器. 机械工业出版社, 1993:23~24
    154 H. Honda, S. Nozu, Y. Takeda. A Theoretical Model of Film Condensation of Horizontal Low Finned Tubes. Journal of Heat Transfer. 1989, 111:525~532
    155 冯健美. 纯质及混合工质冷凝换热计算及冷凝器的计算机模拟. 西安建筑科技大学硕士论文. 1999
    156 冯健美 , 屈宗长 , 张强 , 等 . 水平管外及管束间冷凝换热的计算 . Refrigeration. 2000, 19(3):72~76
    157 章熙民, 任泽霈. 传热学. 第四版. 中国建筑工业出版社, 2001
    158 水冷式制冷剂冷凝器性能试验方法. 美国供暖制冷空调工程师学会标准ANSI/ASHRAE 22-1992
    159 邹平华. 散热器试验台高位水箱的设计与研究. 哈尔滨建筑工程学院学报. 1983, (3):70~74
    160 丁振良. 误差理论与数据处理. 哈尔滨工业大学出版社, 1987
    161 徐大中, 糜振琥. 热工测量与试验数据整理. 上海交通大学出版社, 1991
    162 张吉礼, 陈永攀, 李丰丰, 等. 表面式换热器试验台水侧换热量测试误差分析. 暖通空调. 2005, 35(11):6~9
    163 李士勇. 模糊控制·神经控制和智能控制论. 哈尔滨工业大学出版社, 1998
    164 张法文, 谷俊杰. 热工过程控制系统分析、设计和调试. 中国电力出版社, 1997
    165 黎洪生, 樊金荣, 黄玉娟. 采用 PLC 的 PID 轻烃处理积分分离控制系统.计算机辅助工程. 2002, (2):25~30
    166 钟斌, 黎和昌, 敬新益, 等. 利用 Visual C++和 ADAM 模块开发温度采集与控制系统. 南昌工程学院学报. 2005, 24(3):46~49
    167 李 智 慧 , 秦 成 . C++ Builder 从 入 门 到 精 通 . 清 华 大 学 出 版 社 , 1999:242~277
    168 John Miano, Tom Cabanski, Harold Howe. BORLAND C++ Builder 编程指南. 郝杰, 崔健东, 龚惠. 电子工业出版社, 1998:385~416
    169 W. H. McAdams. Heat Transmission. 3rd Edition. McGraw-Hill, New York, 1954
    170 W. M. Rohsenow. Heat Transfer and Temperature Distribution in Laminar Film Condensation. Trans. Asme. 1956, 79:1645~1648
    171 X. Hu, A.M. Jacobi. The Intertube Falling Film Part 1—Flow Characteristics, Mode Transitions and Hystersis. ASME Journal of Heat Transfer. 1996, 118:616~625
    172 M. M. Chen. An Analytical Study of Laminar Film Condensation: Part 2—Single and Multiple Horizontal Tubes. Journal of Heat Transfer. 1961, 83:55~60
    173 孙荣恒, 黄雯莹, 伊亨云. 数理统计. 重庆大学出版社, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700