大型石灰石—石膏湿法烟气脱硫系统可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国燃煤电厂烟气脱硫系统(FGD)处于大规模的建设和运行初期,脱硫系统的运行状态已经成为发电企业上网脱硫电价考核的依据,烟气脱硫系统的可靠性差,难以满足电厂安全、可靠、经济、高效的要求。国内FGD可靠性方面的研究开展较少,主要以脱硫效率和投运率来度量FGD的可靠性。本文从可靠性评价、影响因素分析和维修策略优化等几个方面对烟气脱硫系统的可靠性进行研究,研究成果如下:
     根据脱硫系统特性,结合有关系统运行考核指标要求,划分系统可靠性状态,建立了脱硫系统可靠性评价体系。提出了统计FGD运行工况和评价可靠性水平的特征指标;给出了可用系数(AF)等可靠性特征量真值的点估计和区间估计方法。定义检修系数为可靠性特征量以建立脱硫系统可靠性增长模型,利用该模型描述脱硫系统可靠性增长状态;烟气脱硫设施建设完成或技术改造后,需对设施的可靠性状态进行验收验证,论文给出了可靠性特征量的定时截尾验证方案,并进行了可靠性实例验证。
     在综合分析了系统设计、工艺条件、设备健康状态、运行控制、副产品处置对FGD系统可靠性影响的基础上,探讨了影响脱硫烟道、增压风机、烟道风门挡板、气-气换热器、浆液循环泵、吸收塔、石灰石制备系统、石膏脱水系统等主设备健康状态的因素,研究结果表明腐蚀、结垢、磨损、堵塞、积灰、泄漏等是影响主设备可靠性的主要原因,提出通过改善工艺条件、优化运行控制、加强维护检修以提高主设备可靠性的综合措施。
     以2×600MW湿法FGD运行可靠性为研究对象,分析了已建成脱硫系统的运行可靠性。构建了运行可靠性功能框图;建立了系统运行可靠性模型;将投运率(SR)设为系统运行可靠性中可靠度的特征量,采用预计故障率分配法分配总的可靠性指标,进行了实例计算;提出了各子系统中可靠性指标的分配方法;划分该运行可靠性模型为系统、子系统、设备、部件四个层次;对构成部件进行了故障模式、影响及危害度分析;确立了影响运行可靠性的关键设备部件及故障模式,为系统优化提供了依据。
     综合设备及部件所处环境的介质性质、干湿状态、温度、磨损、侵蚀性离子等情况,为采取针对性的防护措施,进行了腐蚀、磨损状态区域划分。对FGD防腐材料的失效机理进行了探讨,将有关损伤容限理论引入到玻璃鳞片防腐层的评价中,对在役玻璃鳞片防腐层失效损伤进行了阶段划分,定义了每个阶段的失效特征和处理措施,为玻璃鳞片防腐层的施工、检查、检修维护提供了依据。建立了纤维增强塑料(FRP)构件老化过程的可靠度及使用寿命的计算模型。从设计、运行监控和检修维护三方面分析了FGD的结垢原因,针对系统中最易发生结垢的设备和部件,提出了相应的综合防垢措施。
     将以可靠性为中心的维修引入到FGD的维修策略优化中,设计了湿法FGD系统维修策略优化流程,采用定性的方法分析了烟气脱硫系统故障发生概率,采用系统的观点评估了故障后果危害程度等级,建立了FGD风险评价矩阵,根据风险评价的结果实现对设备的分类和定修。
The flue-gas desulphurization (FGD) system in coal-fired power plants is in the initial period of large-scale construction and operation in China. Strict monitoring began to be conducted over the operating status of the desulphurization system, which has already become an evidence of assessment on the onto-grid electricity prices for FGD equipment in power plants. It is very hard for the enterprise to reach the requirements of power plant on security, reliability, economization and high efficiency due to poor reliability of desulphurization system. At present, few researches are developed on the reliability of FGD. Most of thermal power plants have measured FGD reliabilities mainly in accordance with the desulphurization efficiency and the service rate. The article has dealt with the reliability of flue-gas desulphurization system from these aspects including the assessment of reliability, analysis of factors and Optimization of maintainment.
     The evaluation system for the reliability of FGD system is established in accordance with the feature of desulphurization system and the requirements of operating verification index. Firstly, it is necessary to make reasonable division on the status of FGD reliability; secondly, to proposed 12 characteristic; finally, Procedure for point estimates and confidence intervals of 5 characteristic is provided. The maintenance factor is given to describe the status of reliability so as to set up the model of FGD reliability growth. After the flue-gas desulphurization facilities have been constructed, the acceptance inspection and compliance test are required to be done on the reliability status of the facilities. The total time for acceptance inspection and the appraisal evidences shall be determined for reliability characteristic qualities. A project of verification test shows the effectiveness of the proposed method in the article.
     In the article, detail analyses are made on the factors which may affect the health conditions of main equipments including desulphurization flue, booster fan, flue damper, flue gas heat exchanger, circulation slurry pump, absorption tower, limestone preparing system and plaster dehydrating system. Corrosion, scaling, wear, clogging, fouling and leaks are thought to be main reasons which may affect the reliability of main equipment. Comprehensive measures have been provided to improve the reliability of main equipment through the enhancement of process conditions, the control of optimum operation and the increase of maintenance and repairing.
     Taking the reliability of 2×600MW wet-process FGD operation as research object, its operational reliability is researched with the tool of reliability design technology. The reliability block diagram of the system is drawn; reliability model is established according to the logic and relationships of the subsystems; fix the service rate (SR) as the characteristic quantity of reliability in the system operational reliability; allocate total reliability indexes by using estimated failure rate allocation method and calculate the examples; divide the operational reliability model into four levels such as system, subsystem, equipment and parts; make failure mode, effects and criticality analysis (FMECA) on those parts; establish key equipment parts which may affect operational reliability of the system and its failure mode so as to supply analysis evidence for the optimization of the system.
     In accordance to media property of the environment to which main equipment and equipment parts attribute, dry/wet state, temperature, wear and the corrosive ion concentration, it is divided into strong corrosive division, weak corrosive division, non-corrosive division, strong wear division and weak wear division. The failure mechanism of anticorrosive material used in FGD installations is approached. By introducing relevant theories related to damage tolerance into the evaluation of glass-flake coatings, put forward the evaluation test method on damage tolerance of glass-flake coatings, formulate the steps of damage tolerance evaluation and enact the evaluation test standard on damage tolerance of glass-flake coatings. The damage failure period of anti-corrosive glass-flake coatings is divided into four stages, stipulating the failure features of every stage and treatment measures with strong operation. Aiming at more use of fiber reinforce plastic (FRP) structural components in FGD system and the failure to judge its aging in the course of use, the reliability of aging course for FRP structural components and the model for service life calculation are seted up.
     Reliability centered maintenance (RCM) is introduced into the maintenance and inspection of FGD system. The optimization procedure of maintenance strategy is designed. In the course of the implementation of maintenance strategy optimization, the norms to evaluate the probability of failure occurrence in FGD system has been formulated by virtue of qualitative method. The influence of the failure upon the equipment itself and the whole system is estimated by taking the systematic view. The matrix of FGD risk evaluation is established, and the classification of equipment and regular maintenance in accordance with the result of risk evaluation is realized
引文
[1]中国电力企业联合会,美国环保协会.中国燃煤电厂大气污染物控制现状[R]. 2008, 3~7
    [2]国家发展改革委,国家环保总局.现有燃煤电厂二氧化硫治理“十一五”规划. 2007
    [3]环境保护部. 2008年度各省区市和五大电力集团主要污染物总量减排考核结果[R]. 2009. 5~7
    [4]国家发展和改革委员会.燃煤发电机组脱硫电价及脱硫设施运行管理办法(试行). 2007. 4~9
    [5]周至祥,段建中,薛建明.火电厂湿法烟气脱硫技术手册[M].北京:中国电力出版社, 2006. 6~13
    [6]郭东明编著.脱硫工程技术与设备[M].北京:化学工业出版社, 2007. 4~7
    [7]中国环境保护产业协会锅炉炉窑脱硫除尘委员会.我国火电厂脱硫脱硝行业2008年发展综述[J].中国环保产业, 2009, 17(9): 2~6
    [8]郭永基编著.可靠性工程原理[M].北京:清华大学出版社, 2002. 8~10
    [9] DL/T793-2001,发电设备可靠性评价规程[S]. 2002
    [10]电力可靠性管理委员会.电力可靠性管理文集(第一集)[C]. 1984. 4~10
    [11]陈绍敏.珞璜电厂湿式石灰石石膏法脱硫系统运行中存在的问题及其分析[J].热力发电, 2004, 16(7): 46~50
    [12]孟志坚,林天立.中小型燃煤工业锅炉湿法烟气脱硫设备存在的问题及对策[J].能源环境保护, 2004, 18(2): 49~51
    [13]阎维平,刘忠,王春波.电站燃煤锅炉石灰石一石膏湿法烟气脱硫装置运行与控制[M].北京:中国电力出版社, 2006. 15~21
    [14]中国电力企业联合会.中国火电厂烟气脱硫设备使用现状调查报告[R]. 2009. 35~96
    [15]曾庭华著.湿法烟气脱硫系统的安全性和优化[M].北京:中国电力出版社,2003. 18~19
    [16]孙克勤.烟气脱硫设计中运用可靠性技术[J].热机技术, 2003(11): 41~59
    [17]李小宇,朱跃.运用现代设计方法优化烟气脱硫系统设计[J].锅炉制造. 2006(3): 39~42
    [18]周山明,金保升,仲兆平等.大型烟气脱硫塔的流体动力学模拟及优化设计[J].东南大学学报(自然科学版), 2005 (1) : 105~110
    [19]孙克勤,钟秦编著.火电厂烟气脱硫系统设计、建造及运行[M].北京:化学工业出版社, 2006. 34~42
    [20] DL5022-93,火力发电厂土建结构设计技术规定[S]. 1993
    [21]曾庭华,马斌.石灰石/石膏湿法FGD系统的优化[J].电站系统工程, 2004, 20(1): 12~15
    [22]郭毅,李荫堂,李军.烟气脱硫喷淋塔本体设计与分析[J].热力发电, 2004(1): 39~41
    [23]蔡明坤. FGD系统用GGH设备设计[J].锅炉技术, 2004, 35(5): 1~4
    [24] Delleney, R. Dean, Burke, M. Advanced wet FGD system design concepts[C]. International Exhibition & Conference for the Power Generation Industries - Power-Gen, 1999, 4: 447~458
    [25] Hargrove, O. W. Results of limestone clear liquor scrubbing tests at EPRI environmental control technology center (ECTC), EPRI[C]. 1995 SO2 Control Symposium, Book 2, Session 5B: 256~258
    [26]郭明星.湿法烟气脱硫系统安全性的探讨[J].华北电力技术, 2006, 32(1): 12~16.
    [27] Miszczyk, K. Darowicki. Reliability of flue gas desulfurization installations - the essential condition of efficient air pollution control[J]. Polish Journal of Environmental Studies, 2002, 21(3): 205~209
    [28] Naohiko Ukawa, Susumu Okino and Toru Iwaki. The effects of fluoride complexes in wet limestone flue gas desulfurization[J]. Journal of Chemical Engineering of Japan. 1998(25): 2~7
    [29]杨红. JBR脱硫除尘设备的可靠性分析[J].机械设计与制造, 2001, 28(1): 9~12
    [30] Liu Yi, Du Yungui. Flue gas desulfurization development in China coal-fired power plants[C]. World Engineers Convention, 2004. 356~358
    [31] ANSI/IEEE Std762. IEEE standard definition for use in reporting electric generating unit reliability, Availability and productivity[S]. 1988
    [32] JB/DQ 1515-1989,统计发电设备可靠性使用的术语定义[S]. 1989
    [33] North American Electric Reliability Council. Generating availabilty data system analyses and reports[C]. 2007. 120~135
    [34]北美电力可靠性协会.发电设备可靠性统计规程[S]. 1982
    [35]王锡凡,王秀丽,别朝红,毛玉宾.我国发电系统可靠性指标研究[J].中国电力, 1999, 32(2): 15~18
    [36]史进渊,杨宇,危奇.发电设备可靠性术语定义的分析研究[J].发电设备, 2004(1): 26~30
    [37]史进渊,杨宇,陈洪溪等.统计评价燃气轮机发电机组可靠性的术语定义[J].热力透平, 2003. 32(3): 178~181
    [38]史进渊,杨宇,陈健等.燃气轮机发电机组可靠性评价指标的计算公式[J].热力透平. 2003, 32(4): 234~236
    [39]史进渊.大容量电站锅炉的可靠性统计和分析[J].动力工程, 2006, 26(6): 61~65
    [40]王超,王金.机械可靠性工程[M].北京:冶金工业出版社, 1998. 123~146
    [41]茹诗松,王玲玲.可靠性统计[M].上海:华东师范大学出版社, 1984. 112~132
    [42] Kapur K C, Lmberson L R. Reliability in engineering design[C]. John Wiley&Sons, 1997. 248~250
    [43] Mann N R, et al. Methods for statistical analysis of reliability and life data[C]. John Wiley&Sons, 1998. 351~355
    [44] GB/T 15174-2004,可靠性增长大纲[S]. 2004
    [45] GB 5080.4-2005,设备可靠性试验:可靠性测定试验的点估计和区间估计方法(指数分布)[S]. 2005
    [46]史进渊.发电设备主机的可靠性模型[J].动力工程, 1997, 11(1): 12~16
    [47]林振坤,史进渊,何新土等.大型火电机组可靠性的分析和改进[J].动力工程, 1992, 12(4): 46~52
    [48]史进渊,杨宇,严宏强等.发电设备薄弱环节的统计分析[J].发电设备, 2001(10): 1~3
    [49]宋云亭,郭永基,程林.电力系统可靠性基本数据的统计分析[J].继电器. 2002, 30(7): 14~17
    [50]张红云,崔琪,郭春欣.输电设施可靠性统计数据自动生成系统的研发与应用[J].电力系统自动化, 2005, 29(20): 97~99
    [51]孙福寿,汪雄海.一种分析继电保护系统可靠性的算法[J].电力系统自动化, 2006, 30(16): 32~35
    [52]鲁宗相.电厂事故的可靠性预测与防范[M].北京:中国电力出版社, 2007. 103~115
    [53] Billinton R, Alan R. Reliability evaluation of power systems[M]. Plenum Press, 1999. 201~215
    [54]赵渊,周家启,周念成等.大电力系统可靠性评估的解析计算模型[J].中国电机工程学报, 2006, 26(5): 19~25
    [55]许洪全,史进渊.电站辅机可靠性考核验证方案[J].热能动力工程, 2008, 31(6): 48~52
    [56]史进渊,杨宇.大型火电机组可靠性的增长模型和现场验证[J].中国电机工程学报, 2002, 20(2): 142~145
    [57]谢华文,孙奉仲. 600MW机组运行可靠性数据的数学建模与分析[J].电力勘测设计, 2005(5): 48~53
    [58]史进渊,郑云之.大功率汽轮机可靠性技术研究的新发展[J].上海汽轮机, 2002(2): 152~156
    [59]史进渊,杨宇,邓志成.汽轮发电机组研制与生产可用性大纲[S].上海发电设备成套设计研究院, 2007. 113~139
    [60] DL/T 5196-2004火力发电厂烟气脱硫设计技术规程[S]. 2004
    [61] Lancia A. Analysis of relevant steps in wet flue gas desulphurization processesusing limestone slurries[J]. Intern Environ Studies, 1992, 41(12): 27~41
    [62] Liang H, Shinohara K, Minoshima H, et al. Analysis of constant rate period of spray drying of slurry[J]. Chemical Engineering Science, 2001, 56(6): 2205~2213
    [63] Yang H M, Kim S S. Experimental study on the spray characteristics in the spray drying absorber[J]. Environ Sci Technol, 2000, 34(21): 4582~4586
    [64] Slack, A. V. Lim-limestone scrubbing design considerations[R]. CEP, 1978, 2: 71~75
    [65]曾庭华,马斌.石灰石/石膏湿法FGD系统的优化[J].电站系统工程, 2004, 20(1): 89~93
    [66]曾德勇.从设计角度提高脱硫烟塔合一系统的安全性和可靠性[J].电力建设, 2008, 29(3): 56~59
    [67]周文林,张恪.脱硫石灰石粉生产线设计及应用[J].电力环境保护, 2009, 25(3): 27~30
    [68]薛静.珠江电厂烟气脱硫改造对老厂脱硫项目设计的启示[C]. 2007年“创新?科学?发展”学术交流会论文集. 2007. 182~186
    [69]金定强.脱硫除雾器设计[J].电力环境保护, 2007, 17(4): 16~18
    [70]叶勇健.取消脱硫增压风机的论证与实例[C]. 2007年电力建设学术年会论文, 2008. 210~214
    [71]文传顺,樊卫国.大型脱硫循环泵用新型机械密封装置的设计[J].润滑与密封, 2009, 34(8): 88~90
    [72] Frangopol, D. M. Sensitivity of reliability based optimum design[J]. Struct. Eng, ASCE, 1985, 111(8): 1703~1721
    [73] Nikolaidis E, Burdisso R. Reliability based optimization-a safety index approach Comput[J]. Stract, 1988, 28(6): 781~788
    [74] Ready M V, Grandhi R V, Hopkins D A. Reliability based structural optimization : a simplified safety index approach [J]. Struct, 2004, 53(6): 1407~1418
    [75]张义民.汽车零部件可靠性设计[M].北京:北京理工大学出版社, 2000. 307~314
    [76]宋笔锋.大型结构可靠性优化设计的大系统方法[J].力学进展, 2000, 30(1) : 29~36
    [77]李兴斯,钱令希.基于概率极限状态的结构优化设计[J].计算结构力学及其应用, 1996, 13(4): 379~384
    [78] Youn B D, Choi K K. A new response surface methodology for reliability-based design optimization[J]. Comput. Struct. 2004, 82(2-3): 241~256
    [79]郭毅,李荫堂,李军.烟气脱硫喷淋塔本体设计与分析[J].热力发电, 2004, 23(1): 39~41
    [80]李小宇,朱跃.运用现代设计方法优化烟气脱硫系统设计[J].锅炉制造, 2006, 35(3): 39~42
    [81]孙克勤.烟气脱硫设计中运用可靠性技术[J].热机技术, 2003, 3(11): 41~59
    [82] Bordzitowski, J. and D arrowicki K. Anti-corrosion protection of chimneys and flue gas ducts[J]. Anti-corrosion methods and materials, 2009, 45(6): 388~396
    [83] Karlsson, H. T. Technical aspects of lime/limestone scrubbers for coal一fired power plants[J]. Part I: Process chemistry and scrubber systems, Journal of the air pollution control association, 1998, 30(6): 710~714
    [84] Michael A. R. Innovative wet FGD design features at kentucky utilities generating station[C]. Unit l, EPRI, SO2 Control Symposium, Book 2, 1995. 1208~1215
    [85]郑卫京,罗永禄,张可矩.火电厂烟气脱硫装置腐蚀与防护[J].电力环境保护, 1999, 15(2): 23~26
    [86]郑卫京.火电厂烟气脱硫装置腐蚀与防护II[J].电力环境保护, 1999, 15 (3): 40~46
    [87]翁子懋.电站烟气脱硫装置的腐蚀机理及其防护选材[J].腐蚀与防护, 2003, 24(5): 200~206
    [88]邓徐帧,裴耀先,顾成志.石灰石-石膏湿法烟气脱硫装置的防腐蚀[J].电力环境保护, 2002, 18(2): 11~17
    [89] Ganapathy V. Solve Waste-fuel boiler corrosion problems in procurement[J]. Power Engineering, 1991, 9: 34~36
    [90] Berger D M. Determining corrosivity of flue gas condensate[J]. Power Engineering, 2001, 10: 56~58
    [91] Ganapathy V. Cold end corrosion causes and cures[J]. Hydrocarbon Processing, 1989, 1: 57~59
    [92]李中华,刘洪文.降低排烟温度减轻低温腐蚀方法研究[J].节能技术, 1997, 3(2): 41~43
    [93]陈绍敏.珞璜电厂湿式石灰石石膏法脱硫系统运行中存在的问题及其分析[J].热力发电, 2004, 12(7): 46~50
    [94] Berger D M. Flue gas condensate sampling and analysis study [J]. NACE, 1984, 296: 1~11
    [95] White R C. A laborary evaluation technique for predicting the behavior of organic coatings in FGD systems[J]. Materials Performance, 1986, 12: 9~12
    [96] Hodge F Galen, Silence W L. Predicting the corrosivity of an operating FGD system [J]. Power Engineering, 2004, 12: 30~33
    [97]林景崎,张曾隆,翁继志,李胜隆.钛合金在FGD系统中的腐蚀行为研究[J].电化学, 2001, 7(2): 195~203
    [98]史润选,姜平.烟气除尘脱硫设备耐腐蚀材料耐蚀性的模拟实验研究[J].贵州环保科技, 1997, 3(1): 16~22
    [99]赵立章.燃煤锅炉低温受热面发生酸性腐蚀的原因分析[J].工业锅炉, 2001, 6: 45~48
    [100]周玉昆.烟气脱硫系统的腐蚀与防腐[J].化工环保, 1997, 17: 16~19
    [101]乔光辉,李卫军,孔庆宝.玻璃钢湿法烟气脱硫装置应用潜力的分析[J].电力环境保护, 2001, 17(1): 30~32
    [102] Fenner J.发电厂烟气脱硫装置中的防腐橡胶衬里[J].电力环境保护, 2005, 11 (2): 28~35
    [103]刘观政,张东兴等.复合材料的腐蚀寿命预测模型[J].纤维复合材料, 2007, 11(1): 34~37
    [104]钟秦.亚硫酸钙非均相氧化动力学的研究.南京理工大学学报[J]. 2000, 24 (2):172~176
    [105] Owens, D. R. , et al. Adding sulfur to fgd absorber reduces scale[J]. Ups Performance Power, May 1998. 15~17
    [106] Huss A, Schlitt W, Joseph P, et a1. Oxidation of aqueous sulfurdioxide at low pH[J]. Phys Chem, 2002, 86: 4224~4228
    [107] David H. Mechanism of CaSO4 scale deposition on heat transfer surfaces[J]. Ind Eng Chem Fundamentals. 1999, 9: 1~10
    [108] Bohnet M. Fouling of heat transfer surfaces[J]. Chem Eng Technol, 1985, 10: 113~125
    [109] Mori H, Nakamura M, Toyama S. Crystallization fouling of CaSO4·2H2O on heat transfer surfaces[J]. Chem Eng, 1996, 29(1): 166~173
    [110] Bansal B, Muller-steinhangen H. Crystallisation fouling in heat exchangers[J]. Heat Transfer, 1993, 115: 584~591
    [111] Krause S. Fouling of heat transfer surface by crystallization and sedimentation[J]. international chemical engineering, 2003, 33(3): 355~401
    [112] Najibi S H, Muller-steinhagen H, Jamialahmadi M. Calcium sulphate scale formation during subcooled flow boiling[J]. Chemical Engineering Science, 1997, 52(8): 1265~1284
    [113] Curley, G. Michael, Danz, Ray. Impact of FGD systems. Availability losses experienced by flue gas desulfurization systems[R]. Proceedings of the American Power Conference, 1992, 1(54): 554~559
    [114] Chang J. C. S. , et al. Pilot testing of sodium thiosulfate[J]. Environmental Progress, 2001, 5(4): 225~233
    [115] Karlsson, H. T, et al. Technical aspects of lime/limestone scrubbers for coal-fired power plants, part i: process chemistry and scrubber systems[J]. Journal of the Air Pollution Control Association, 1999, 30(6): 710~714
    [116] Lim, P. K. , et al. The effects of chelating agents and phenolic antioxidants[J]. Journal of Physical Chemistry, 1982, 86(21): 4233~4237
    [117] Owens, D. R. Adding sulfur to fgd absorber reduces scale[J]. Ups Performance Power, 2003, 5: 15~17
    [118]苏大雄,钱枫.石灰湿法脱硫过程中pH条件对结垢的影响研究[J].环境污染与防治, 2005, 27(3): 198~200
    [119]谢超环.火力发电厂脱硫系统GGH结垢探讨[J].电站辅机, 2008, 107(4): 12~16
    [120]陈水龙.电厂脱硫系统中除雾器结垢和局部塌陷问题的分析和对策[J].电力环境保护, 2008, 24(4): 14~16
    [121] Rowley C W. Application of RCM to ASME code requirements for inservice testing. american society of mechanical engineers[J]. Nuclear Engineering Division, 2000, 4: 127~129
    [122] Corio M R. Trade-off between reliability and operation&maintenance expenditures in fossil-fire steam plant[C]. International Exhibition&Conference for the Power Generation Industries, 1998, 11: 465~479
    [123] Boward W. L. Brinkmann A. M. S. Retrofit FGD system price trends and influence factors. Proceedings of the american power conference. reliability and economy - technology focus for competition and globalization, 1998, 1: 326-356
    [124] Rausand M. eliability centered maintenance[J]. Reliability Engineering&System Safety, 1998, 60(2): 121~132
    [125] JA1011 - Evaluation criteria for rcm processions[S]. International society of automotive engineers standards, USA , 1999
    [126] Moubray John. Reliability centred maintenance[M]. Butterworth Heinnemann, 2004. 421~432
    [127] Mitchell Leslie. reventive maintenance and RCM II[J]. Manufacturing Engineer, 1999, 81(4): 153~155
    [128] Tomey Greg, Plasterer Russ. SRCM program changing the way utilities are doing maintenance[C]. American Society of Mechanical Engineers, Power Division PWR, 2002, 34(2): 691~698
    [129] Krishnasamy Loganathan, Khan Faisal, Haddara Mahmoud. Development of arisk-based maintenance (RBM) strategy for a power-generating plant[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(2): 69~81
    [130] Hamel W R. E-Maintenance robotics in hazardous environments[C]. IEEE International Conference on Intelligent Robots and Systems, 2000, 2: 838~842
    [131] Gatti Franco. E-maintenance: Closing the gap between automation and information technology[C]. Technical papers of isa: integrated manufacturing solutions supply, chain/management strategies, 2002, 5: 45~57
    [132] Lee Jay, Ni Jun, Djurdjanovic Dragan, et al. Intelligent prognostics tools and e-maintenance[J]. Computers in Industry, 2006, 57(6): 476~489
    [133] Han Tian, Yang Bo-Suk. Development of an e-maintenance system integrating advanced techniques. Computers in Industry, 2006, 57(6): 569~580
    [134] Lee Jay. Measurement of machine performance degradation using a neural network model[J]. Computers in Industry, 2006, 30(3): 193~209
    [135] Lee Jay. Integrating e-intelligence into product and service automation[C]. Proceedings of the world congress on intelligent control and automation(WCICA), 2000, 3: 15~ 34, 4: 22~96, 5: 30~62
    [136] Chen Zaifeng, Lee Jay, Qiu Hai. Intelligent infotronics system platform for remote monitoring and E-maintenance. International Journal of Agile Manufacturing, 2005, 8(1): 3~11
    [137] Al-Najjar B, Wang W. A conceptual model for fault detection and decision making for rolling element bearings in paper mills[J]. Journal of Quality in Maintenance Engineering, 2001, 7(3): 192~206
    [138] Al-Najjar B, Alsyouf I. Enhancing a company's profitability and competitiveness using integrated vibration-based maintenance: A case study[J]. Journal of European Operation Reasearch, 2004, 157(3): 643~657
    [139]黄树红.火电厂设备状态检修[J].湖北电力, 1999, 23 (1) : 52~56
    [140]黄树红,李建兰,陈非.我国火电设备状态检修的发展与展望[J].汽轮机技术, 2007, 49(4): 241~245
    [141]曹钟中,杨昆,顾煌炯等.电站给水泵组RCM定量分析方法的研究[J].中国电机工程学报, 2003, 23(9): 207~211
    [142]靳东来.火力发电设备状态检修技术及其应用[J].电力设备, 2004, 5(5): 2~6
    [143]李耀君,于新颖.火电厂设备状态检修技术[J].中国电力, 2005, 38(4): 9~15
    [144]苏坚,史进渊,杨宇等.可靠性分析技术在电站主机和辅机状态检修中的应用[J].动力工程, 2003, 23(6): 28~35
    [145]陆颂元,汪江,刘晓锋.关于我国发电设备状态检修实施模式的探讨[J].汽轮机技术, 2004, 46(6): 401~404
    [146]郭基伟,柳纲,唐国庆等.电力设备检修策略的马尔可夫决策[J].电力系统及其自动化学报, 2004, 16(4): 6~10
    [147]曹钟中,杨昆,傅忠广等.汽轮机及其辅助设备系统实施RCM的基本策略[J].汽轮机技术. 2002, 44(2): 106~108
    [148]刘晓锋,陆颂元.发电设备RCM实施方法的研究与探讨[J].汽轮机技术, 2005, 47(4): 244~247
    [149]张勇,曹先常,蒋安众.以可靠性为中心的电站风机状态检修技术研究与分析[J].华东电力, 2003, 31(3): 1~4
    [150]黄华炜,沈海华,姚军.国产引进型300MW机组大修周期延长的要素分析及应对策略[J].华东电力, 2005, 33(7): 49~52
    [151]王振明.对于点检制的探讨[J].中国设备工程, 2006, 3: 16~17
    [152]张志松.点检制在石油钻井勘探设备管理中的应用[J].设备管理于维修, 1991, 5(2): 26~29
    [153]赵振宇,赵振宙.点检制与RCM在发电厂的应用[J].华北电力技术, 2004, 3: 17~20
    [154]林诗庄.强化设备管理的点检和大小修综合信息平台建设[J].中国电力, 2004, 37(10): 77~79
    [155]李雁峰,张玉新.电力企业EAM系统和点检系统综合应用分析[J].电力信息化, 2005, 3(10): 84~86
    [156]梅春晓.设备点检中需测量的重要参数[J].中国电力, 2005, 38(8): 90~92
    [157]马晓芳,高学东,贾希胜等.发电设备点检周期模型[J].中国电力, 2007, 40(11): 67~71
    [158]高社生,张玲霞编著.可靠性理论与工程应用[M].北京:国防工业出版社, 2002. 212~251
    [159] Rui Xu, Fugeng, Li. Environmental impacts of coal ash from a power plant with FGD installation[C]. International Conference on Environmental Science and Information Application Technology, ESIAT 2009, 1:148~151
    [160]曹靖华,程侃.可靠性数学引论[M].北京:科学出版社, 1986. 35~65
    [161]王少萍编著.工程可靠性[M].北京:北京航空航天大学出版社, 2000. 113~152
    [162]梅文华编著.可靠性增长试验[M].北京:国防工业出版社, 2003. 33~59
    [163]赵东元,樊虎等.可靠性工程与应用[M].北京:国防工业出版社, 2009. 98~111
    [164]李莉,王胜开,陆汝玉等译.实用可靠性工程(第四版)[M].北京:电子工业出版社, 2004. 221~234
    [165]肖文德,吴志良.二氧化硫脱除与吸收[M].北京:化学工业出版社, 2001. 85~98
    [166]叶奕森,柴发和等.硫氮污染物的控制对策及治理技术[M].北京:中国环境科学出版社, 2004. 31~39
    [167]阎维平.洁净煤发电技术[M].北京:中国电力出版社, 2002. 132~139
    [168]国电黄金埠发电厂600MW机组除灰脱硫运行规程[S]. 2006
    [169] P. N.切雷米西诺夫, R. A.杨格.大气污染控制设计手册[M].北京:化学工业出版社, 1991. 1032~1048
    [170] Dr. Heinz-Georg Beiers.电厂脱硫技术[R].中能电力科技开发公司, 2007. 32~51
    [171]白新德.材料腐蚀与控制[M].北京:清华大学出版社, 2005. 113~158
    [172]符若文,李谷,冯开才.高分子物理[M].北京:化学工业出版社, 2005: 203~239
    [173] F. J. Fischer, M. M. Salama. Emerging and potential composites applications for deepwater operations. Composites Engineering and Applications Center for Petroleum Exploration and Production, 2005. 35~37
    [174]周学良.功能高分子材料[M].北京:化学工业出版社, 2002. 232~241
    [175]肖纪美,曹楚南.材料腐蚀原理[M].化学土业出版社, 2002. 181~183
    [176]曹楚南.中国材料的自然环境腐蚀[M].化学土业出版社, 2005. 185~198
    [177] N. S. Newman. Steric effects in organic chemistry [M]. Mechanics of Composite Materials. 2002. 13~18
    [178]张以康.环氧乙烯基醋树脂在复合材料工业中的应用[J].纤维复合材料, 1998, 31(6): 49~52
    [179]周润培,侯锐钢等. MFE乙烯基醋树脂及其在防腐蚀领域的应用研究[J].玻璃钢/复合材料, 2002, 7: 92-97
    [180]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社, 2002. 49~56
    [181] T. SWIFT著.损伤容限设计技术及其应用[M].中国民用航空总局航空器适航司编译, 1999. 9~21
    [182]斯而健.耐久性与损伤容限设计技术[J].民用飞机设计研究, 2003, 2: 15~18
    [183]吴杨,吴凡.玻璃鳞片衬里防腐材料在电厂烟气脱硫中的应用[J].清洗世界, 2007, 23(6): 29~33
    [184]王天堂,陆士平.国内外乙烯基树脂品种及性能概述[J].高分子材料, 2009, 12(4): 10~13
    [185]邓力,徐美君.鳞片玻璃的生产应用及市场[J].玻璃与搪瓷, 2003, 31(3): 51~54
    [186] D. Fred, Bagonluri-Nuun. Simulation of fatigue performance and creep rupture of FRC for infrastrcture applications[C]. Master of Science in Engineering Mechanics, Blackbury, Virginia, 2003. 17~21
    [187] Young, Charles S. Schutz, Ronald W. Grauman, James S. Titanium for flue gas desulfurization systems: testing and evaluation[S]. ASTM special technical publication, 2006. 30~42
    [188] G. Lewis, S. W. Bedder, I. Reid. Stress corrosion of glass fibers in acid environments[J]. Journal of Materials Science Letters, 2004, 3: 723~728
    [189]杨勇新. FRP耐久性评价方法[J].工业建筑, 2006, 36(8): 6~9
    [190] Faramarz Azarm, et al. Comparison of SO2 removal by limestone, limestone+DBA, and magnesium一containing lime in the wet scrubbers at the gibbons creek steamelectric station[C], EPRI, 1995 S02 control symposium, book 1, 2: 612~618
    [191] Ellison, W. FGD contenders challenge supremacy of wet limestone[J]. Electric Power International, 1997, 6: 43~46
    [192] Rui Xu, Yang Changzhu, Hou Fengsheng, Qiu Shengrui. Disposition and reuse of waste in a high-capacity power plant[C]. International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2008. 2849~2852
    [193] Dick, Warren A. Kost, David A. Beneficial land application uses of FGD products[C]. 23rd Annual International Pittsburgh Coal Conference, PCC- Coal-Energy, Environment and Sustainable Development, 2006. 1213~1216
    [194] Long Hui, Lu An-long. Feasibility study on the application of SDA FGD process in 600 MW power generation units[J]. 2008, 4(41): 80~83
    [195] Klingspor, J. S. Tokerud, A. Ahman, S. Low-cost FGD systems for emerging markets[R]. ABB Review, 2008, 1: 30~40
    [196] Modes, R. Polypropylene reduces FGD cost and improves operation flexibility[C]. Air and Waste Management Association - 7th Power Plant Air Pollutant Control Mega Symposium. 2008, 2: 1306~1320
    [197] Liu, Xiaoming. Stabilization of FGD by-products by using fly ash, cement and sialite[C]. 3rd World of Coal Ash, WOCA Conference - Proceedings, 2009, 2: 256~260
    [198] Tian He-zhong, Hao Ji-ming, Zhao Zhe. Utilization and potential analysis of FGD gypsum in coal-fired power plants[J]. Electric Power, 2006, 2(39): 64~73
    [199] Hoydick Michael T, Brodsky Ira, Smolenski John, Muehlenkamp Rob. FGD system foaming operational issues and design considerations[C]. Air and Waste Management Association-7th Power Plant Air Pollutant Control Mega Symposium. 2008, 1: 653~662
    [200] Alvarez-Ayuso, E. Querol, X. Study of the use of coal fly ash as an additive to minimise fluoride leaching from FGD gypsum for its disposal[J]. Chemosphere, 2008, 71(1): 140~146
    [201] Moser, R. E. Colley, J. D. Jones, A. F. Troubleshooting utility FGD chemical process problems[C]. Energy Technology: Proceedings of the Energy Technology Conference, 2008, 15: 167~178
    [202] Wang Lei. Design of FGD control system of large size thermal power generating units[J]. Electric Power, 2005, 38(1): 76~84
    [203] Blythe, Gary M. K. Searcy W. Forbes R. Risk-based model for optimizing FGD equipment redundancy[R]. Combined Power Plant Air Pollutant Control Mega Symposium, 2004. 1477~1489
    [204] Pillar, C. S. Rao, R. Rizkalla, S. High availability prediction of FGD resulting from early reliability assessment[C]. 10th Annual Engineering Conference on RAM for the Electric Power Industry, 2003. 176~183
    [205] Long Hui, Zhong Ming-hui. Main factor affecting the power consumption rate of wet FGD equipment for 600 MW power unit[J] Electric Power, 2006, 39(2): 74~81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700