基于分层递阶控制理论的城市电网自愈控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市是电力负荷中心,城市电网的持续安全可靠运行与社会生产和生活息息相关,电.能要求瞬时平衡,而城市电网及其运行环境日益复杂,不确定性增加,对城市电网的运行控制提出了更高的要求。根据生物体维持其自愈力的原理,结合城市电网的特点,研究适应城市电网运行控制要求的自愈控制方法,基于分层递阶控制理论和智能体群体系统理论建立城市电网自愈控制体系结构和控制模型,设计自愈控制的实现方法,在城市电网运行脆弱性评估基础上实施合理的控制方案。具体工作如下:
     (1)结合分层递阶控制理论和电力系统控制的基本框架,提出城市电网自愈的分层递阶控制体系结构,在该体系结构下,通过充分发挥分布式电源的有益补充和紧急支撑作用提高城市电网的自愈力;
     (2)结合分层递阶控制结构和智能体群体系统理论,提出基于MAS的城市电网分层递阶自愈控制结构,建立城市电网自愈控制的数学模型,提出控制策略的三维协调模式,在该模式下建立基于分层递阶控制理论的自愈控制模型,各层之间具有统一的接口模型;
     (3)定义动态随机变量,建立其概率模型,利用随机变量的半不变量和Gram-Charlier级数进行动态概率潮流计算,分析各种扰动对城市电网的危害,基于风险理论提出城市电网运行脆弱性评估指标和评估方法,通过对城市电网运行状态的评估为制定自愈控制方案提供依据;
     (4)基于提出的城市电网自愈的分层递阶控制体系结构和控制模型,设计城市电网自愈控制系统框架、各级智能体结构及其协调策略。
     通过上述的自愈控制体系结构、控制模型、分析方法和系统框架,搭建城市电网自愈控制系统,在南京六合电网和江宁电网进行实际应用,实现城市电网自适应闭环控制,保持向更健康状态转移的自愈力,保证用户的持续供电。
City is the center of electric power load. It is important that the urban power grid can provide continuous power supply and operate in security and reliability state, which is closely linked with social production and life. The operation of power system needs energy to be in instantaneous equilibrium. The urban power grid and its operating environment is increasingly complex with enlarged uncertainty, which increase the difficulty of the urban power grid control. According to the principle of maintaining the self-healing power of organisms, and considering the characteristics of the urban power grid, the self-healing control method adapting requirements of the urban power grid control is studied in this paper. The self-healing control architecture and control model is established based on hierarchical control theory and multi-agent system theory. The implementation method of self-healing control is designed, and a proper control scheme is implemented on the basis of vulnerability assessment for the operation of the urban power grid.
     The specific work is as follows:
     (1) Hierarchical control architecture of self-healing urban power grid is put forward by combing with hierarchical control theory and the basic framework of power system control. Under the architecture, the self-healing power of the urban power grid is raised by giving full play to the beneficial supplement and emergency supporting function of distributed generation.
     (2) Hierarchical self-healing control structure of the urban power grid based on multi-agent system is put forward by combined with hierarchical control theory and multi-agent system theory. The mathematical model of self-healing control and three-dimensional coordination mode of its control strategy are established for the urban power grid. The self-healing control model based on hierarchical control theory is established with unified interface model.
     (3) Dynamic random variable is defined, and its probability model is established. And then dynamic probability power flow is calculated by using semi-invariant of random variables and the Gram-Charlier progression. The harms to the urban power grid caused by various disturbances are analyzed in this paper. Evaluation index and method for the vulnerability assessment to the urban power grid are provided based on risk theory. It can provide the basis for making self-healing control scheme by evaluating the operating status of the urban power grid.
     (4) Based on hierarchical control architecture and control model of self-healing urban power grid provided in this paper, system framework of self-healing control for the urban power grid is designed, and then agent structure and its coordination strategy at all levels are provided.
     Self-healing control system of the urban power grid is established through the aforesaid self-healing control architecture, control model, analysis methods and system framework. The system is installed in Jiangning urban power grid and Luhe urban power grid in Nanjin. The practical application shows that the self-healing control sysemt could realize the adaptive closed-loop control in the urban power grid. So the urban power grid can keep the self-healing power of transferring to a more healthy state, and ensure continuous power supply for customers.
引文
[1]Chen-Ching Liu, Juhwan Jung, Heydt G. T., et al, The Strategic Power Infrastructure Defense (SPID) System. A Conceptual Design[J], IEEE Control Systems Magazine,2000,20(4):40-52.
    [2]薛禹胜.综合防御由偶然故障演化为电力灾难—北美“8.14”大停电的警示[J].电力系统自动化,2003,27(18):1-5,37.
    [3]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9):1-6.
    [4]陆佳政,蒋正龙,雷红才等.湖南电网2008年冰灾事故分析[J].电力系统自动化,2008, 32(11):16-19.
    [5]Amin M., Wollenberg B. F.. Toward a Smart Grid:Power Delivery for the 21st Century[J]. IEEE Power and Energy Magazine.2005,3(5):34-41.
    [6]You H., Vittal V, Yang Z.. Self-healing in power system:an approach using islanding and rate of frequency decline-based load shedding[J]. IEEE Transactions on Power Systems,2003,18(1):174-181.
    [7]Amin M.. Toward self-healing energy infrastructure systems[J]. IEEE Computer Applications in Power, 2001,14(1):20-28.
    [8]Amin A. EPRI/DOD complex interactive network/systems initiative:self-healing infrastructure[C]. Proceedings of 2nd DA RPA-JFACC Symp Advances in Enterprise Control Los Alamitos IEEE Computer Soc Press, USA,2000.
    [9]Chen-Ching Liu. Strategic Power Infrastructure Defense[C]. IEEE Power Engineering Society General Meeting, USA,2004.
    [10]余贻鑫,栾文鹏.智能电网[J].电网与清洁能源,2009,25(1):7-11.
    [11]谢开,刘永奇,朱治中,等.面向未来的智能电网[J].中国电力,2008,41(6):19-22.
    [12]Hughes J.. IntelliGrid Architecture Concepts and IEC61850[C]. IEEE Transmission and Distribution Conference and Exhibition, USA, May,2006.
    [13]Rahman S., Pipattanasomporn M., Teklu Y.. Intelligent Distributed Autonomous Power Systems (IDAPS)[C]. IEEE Power Engineering Society General Meeting, Jun.,2007.
    [14]柳明,何光宇,沈沉,等.IECSA项目介绍[J].电力系统自动化,2006,30(13):99-104.
    [15]郭志忠.电网自愈控制方案[J].电力系统自动化,2005,29(10):85-91.
    [16]王明俊.自愈电网与分布能源[J].电网技术,2007,31(6):1-7.
    [17]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-4,9.
    [18]Berizzi A. The Italian 2003 blackout[C]. Power Engineering Society General Meeting, IEEE, Denver, CO., USA,2004.
    [19]康葆生.伦敦南部地区大停电及其教训[J].电网技术,2003,27(11):1-5.
    [20]鲁顺,高立群,王珂,等.莫斯科大停电分析及启示[J].继电器,2006,34(16):27-31.
    [21]李再华,白晓民,丁剑,等.西欧大停电事故分析[J].电力系统自动化,2007,31(1):1-4.
    [22]周新风,施贵荣,赵刚.华北电网“4.28”事故分析[J].电力系统自动化,2000,24(12):61-64.
    [23]张德泉,王春明,杨钢,等.华中电网“1.17”事故及其分析[J].电力系统自动化,2000,24(21):61-63.
    [24]唐斯庆,张弥,李建设,等.海南电网“9.26”大面积停电事故的分析与总结[J].电力系统自动化,2006,30(1):1-7.
    [25]李铁,金世军,鲁顺,等.辽宁电网“3.4”事故处理过程及分析[J].电网技术,2007,31(11):38-42.
    [26]中华人民共和国国家经济贸易委员会DL 755-2001.电力系统安全稳定导则[M].北京:中国电力出版社,2001.
    [27]李军军,吴政球.风电参与一次调频的小扰动稳定性分析[J].中国电机工程学报,2011,31(13):1-9.
    [28]靳丹,丁坤吴,何世恩.丹麦风电调峰调频机制探讨及对中国的启示[J].电力科技与环保,2011,27(4):50-53.
    [29]张伯明,孙宏斌,吴文传.3维协调的新一代电网能量管理系统[J].电力系统自动化,2007,31(13):1-6
    [30]刘东,丁振华,滕乐天.配电自动化实用化关键技术及其进展[J].电力系统自动化,2004,28(7):16-19.
    [31]杨宛辉,王克文,王军,等.城市电网运行智能决策支持系统[J].继电器,2004,32(14):56-59,75.
    [32]姚建国,周大平,沈兵兵,等.新一代配电网自动化及管理系统的设计和实现[J].电力系统自动 化,2006,30(8):89-93.
    [33]Wang Can, Li Yang, Bu Jiajun. A Biological Formal Architecture of Self-Healing System[C].2004 IEEE International Conference on Systems, Man and Cybernetics,2004:5537-5541.
    [34]Fulvio A., Federica C., Eugenio I., et al. A Transparent, All-Optical, Metropolitan Network Experiment in a Field Environment:The "PROMETEO" Self-Healing Ring[J]. Journal of Lightwave Technology, 1997,15(12):2206-2213.
    [35]Jianxu Shi, John P., Fonseka. Hierarchical Self-Healing Rings[J]. IEEE/ACM Trans. on Networking, 1995,3(6):690-697.
    [36]Roy Sterritt, David F., Bantz. Personal Autonomic Computing Reflex Reactions and Self-Healing[J]. IEEE Trans, on Systems, Man and Cybernetics—Part C:Applications and reviews,2006,36(3): 304-314.
    [37]Latha Kant, Wai Chen. Service survivability in Wireless Networks via Multi-Layer Self-Healing[J]. IEEE Communications Society/WCNC 2005,10(1):2446-2452.
    [38]Pengchun Peng, Hongyih Tseng, Sien Chi. Self-healing fibre grating sensor system using tunable multiport fibre laser scheme for intensity and wavelength division multiplexing[J]. Electronics Leters,2002,38(24):2446-2452.
    [39]Pengchun Peng, Hongyih Tseng, Sien Chi. Self-healing Breakdown of Metallized Polypropylene[C]. 2001 IEEE 7th International Conference on Solid Dielectrics,2002,38(24):275-278.
    [40]Sam Kwong, Lam D. W. F., Tang K. S., et al. Optimization of Spare Capacity in Self-Healing Multicast ATM Network Using Genetic Algorithm[J]. IEEE Transactions on Industrial Electronics,2000,47(6): 1334-1343.
    [41]Chiasserini C.-F., Marsan M. A.. A Distributed Self-Healing Approach to Bluetooth Scatternet Formation[J]. IEEE Transactions on Wireless Communications,2005,4(6):2649-2654.
    [42]Moslehi K., Kumar A.B.R., Shurtleff D., et al. Framework for a Self-Healing Power Grid[C]. IEEE PES General Meeting-San Francisco, June 2005:1-8.
    [43]Su Sheng, K. K. Li, W. L. Chan, et al. Agent-Based Self-Healing Protection System[J]. IEEE Transactions on Power Delivery,2006,21(2):610-618.
    [44]Salehi Vahid, Mohammed Osama. Developing Virtual Protection System for Control and Self-healing of Power System[C].2011 IEEE Industry Applications Society Annual Meeting (IAS),2011:1-7.
    [45]Le-Thanh L., Caire R., Raison B., et al. Test bench for self-healing functionalities applied on distribution network with distributed generators.2009 IEEE Bucharest PowerTech.2009:1-6.
    [46]Samarakoon K., Ekanayake J., Jianzhong Wu. Smart metering and self-healing of distribution networks. 2010 IEEE International Conference on Sustainable Energy Technologies (ICSET),2010:1-5.
    [47]Haibo You, Vittal V., Zhong Yang. Self-Healing in Power Systems:An Approach Using Islanding and Rate of Frequency Decline-Based Load Shedding[J]. IEEE Transactions on Power Systems,2003,18(1): 174-181.
    [48]Butler-Purry K.L., Sarma N. D. R.. Self-Healing Reconfiguration for Restoration of Naval Shipboard Power Systems[J], IEEE Transactions on Power Systems,2004,19(2):754-762.
    [49]Butler-Purry K. L.. Multi-Agent Technology for Self-Healing Shipboard Power Systems[C]. IEEE PES General Meeting-San Francisco, June 2005:207-211.
    [50]Butler-Purry K. L. Sarma N. D. R.. Preventive Self-Healing Shipboard Power Distribution Systems[C]. Proceedings of 2005 IEEE/PES General Meeting, June 12-16,2005, San Francisco, CA.
    [51]Nakayama H., Fukazu T., Wada Y., et al. Development of High Voltage, Self-Healing Current Limiting Element and Verification of its Operating Parameters as a CLD for Distribution Substations[J]. IEEE Transactions on Power Delivery,1989,4(1):342-348.
    [52]Borghetti A., Nucci C. A., Pasini G., et al. Tests on Self-Healing Metallized Polypropylene Capacitors For Power Applications[J]. IEEE Transactions on Power Delivery,1995,10(1):556-561.
    [53]郭志忠.电网自愈控制方案[J].电力系统自动化,2005,29(10):85-91.
    [54]万秋兰.大电网实现自愈的理论研究方向[J].电力系统自动化,2009,33(17):29-32.
    [55]陈星莺,顾欣欣,余昆,等.城市电网自愈控制体系结构[J].电力系统自动化,2009,33(24):38-42.
    [56]李振坤.基于多代理技术的城市电网自愈控制策略研究[D].河海大学,2009.
    [57]崔凯,李敬如,陈伟,等.城市电网负荷预测方法研究[J].电力技术经济,2009,21(4):33-38.
    [58]侯汝锋,蔡泽祥,尹亮.基于最大负荷预测的地区电网静态安全分析[J].电网技术,2004,28(23):38-42.
    [59]张祖平,范明天,周莉梅.城市电网电磁环网的解环问题研究[J].电网技术,2007,32(19):42-44.
    [60]夏翔,熊军,胡列翔.地区电网的合环潮流分析与控制[J].电网技术,2004,28(22):76-80.
    [61]牟才荣,覃松涛,陈立.广西桂林220kV电网单机孤网稳定控制问题研究[J].广西电力,2008,(4):1-6.
    [62]吴蓓,张焰,陈闽江.空调负荷对城市电网电压稳定性影响的研究[J].华东电力,2006,34(4),23-27.
    [63]倪炜.地区电网稳定性研究[J].电力自动化设备,2002,22(6):71-74.
    [64]束洪春,胡泽江,刘宗兵.城市电网最大供电能力在线评估方法及其应用[J].电网技术,2008,32(9):46-50.
    [65]李红军,李敬如,杨卫红.基于信赖域法的城市电网供电能力充裕度评估[J].电网技术,2010,34(8):92-96.
    [66]邱丽萍,范明天.城市电网最大供电能力评价算法[J].电网技术,2006,30(9):68-71.
    [67]魏远航,刘思革,苏剑.基于枚举抽样法的城市电网风险评估[J].电网技术,2008,32(18):62-66.
    [68]赵书强,李聪.城市电网风险指标的获取[J].电力系统保护与控制,2010,38(19):114-117.
    [69]张文亮,周孝信,白晓民,等.城市电网应对突发事件保障供电安全的对策研究[J].中国电机工程学报,2008,28(22):1-7.
    [70]刘思革,范明天,张祖平,等.城市电网应急能力评估技术指标的研究[J].电网技术,2007,31(22):17-20.
    [71]李锐,陈颖,梅生伟.基于停电风险评估的城市配电网应急预警方法[J].电力系统及其自动化,2010,34(16),19-23.
    [72]Sheehan M., Williams S.. Optimal allocation of resources to distribution investments using the analytic hierarchy process to balance the impacts of investments on safety, customer interruption costs, levelized annual revenue requirement, contribution to margin and other considerations[C]. IEEE Power Engineering Society Summer Meeting,2000:1311-1316.
    [73]Pan J., Teklu Y., Rahman S., et al. An interval-based MADM approach to the identification of candidate alternatives in strategic resource planning[J]. IEEE Transactions on Power Systems, 2000,15(4):1441-1446.
    [74]肖峻,王成山,周敏.基于区间层次分析法的城市电网规划综合评判决策[J].中国电机工程学报,2004,24(4):50-57.
    [75]林济铿,李鸿路,罗萍萍,等.统一考虑变电站和网架优化的配电网综合规划[J].电力系统自动化,2006,30(19):42-46.
    [76]杨文宇,刘健.配电网架的多阶段不确定性规划[J].电工技术学报,2006.21(6):89-95.
    [77]Merlin A., Back H.. Search for a Minimal-Loss Operating Spanning Tree Configuration for an Urban Power Distribution System[J]. Proc. of PSCC, Cambridge,1975:1-2.6.
    [78]Baran M. E., Wu F. F.. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Transactions on Power Delivery,1989,4(4):1401-1407.
    [79]Fan Ji-Yuan, Zhang Lan, McDonald J. D.. Distribution Network Reconfiguration:Single Loop Optimization[J]. IEEE Transactions on Power Systems,1996.11(3):1643-1647.
    [80]Sarma N. D. R.. Prakasa Rao K. S.. A New 0-1 Integer Programming Method of Feeder Reconfiguration for Loss Minimization in Distribution Systems[J]. Electric Power System Research, 1995,33:125-131.
    [81]Abur Ali. Modified linear programming method for distribution system reconfiguration[J]. International Journal of Electrical Power and Energy System.1996,18(7):469-474.
    [82]Wagner T. P., Chikhani A. Y, Hackam R.. Feeder reconfiguration for loss reduction:An application of distribution automation[J]. IEEE Transactions on Power Delivery,1991,6(4):1922-1933.
    [83]邓佑满,张伯明,相年德.配电网络重构的递归虚拟流理论和算法[J].清华大学学报(自然科学版),1997,37(7):113-116.
    [84]Aoki K., Ichimor T. L., Kanezashi M.. Normal State Optimal Load Allocation in Distribution Systems[J]. IEEE Transactions on Power Delivery,1987,2(1):147-155.
    [85]刘柏私,谢开贵,周家启.配电网重构的动态规划算法[J].中国电机工程学报,2005,25(9):29-34.
    [86]Shirmohammadi D., Hong H. W.. Reconfiguration of electric distribution networks for resistive line losses reduction[J]. IEEE Transactions on Power Delivery,1989,4(2):1492-1498.
    [87]Borozan V., Rajicic D., Ackovski R.. Minimum Loss Reconfiguration of Unbalanced Distribution Networks[J]. IEEE Transactions on Power Delivery,1997,12(1):489-496.
    [88]Goswami S. K, Basu S. K. A New Algorithm for the Reconfiguration of Distribution Feeders for Loss Minimization[J]. IEEE Transactions on Power Delivery,1992,7(3):1484-1491.
    [89]邓佑满,张伯明,相年德.配电网络重构的改进最优流模式算法[J].电网技术,1995,19(7):47-50.
    [90]Borozan V, Rajicic D., Ackovski R.. Improved Method for Loss Minimization in Distribution Networks[J]. IEEE Transactions On Power Systems,1995,10(3):1420-1425.
    [91]Civanlar S., Grainger J. J., Yin H., et al. Distribution Feeder Reconfiguration for Loss Reduction[J]. IEEE Transactions on Power Delivery,1988,3(3):1127-1223.
    [92]Baran M. E., Wu F. F. Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing[J]. IEEE Transactions on Power Delivery,1989,4(2):1401-1407.
    [93]Kashem M. A, Ganapathy V., Jasmon G. B. Network Reconfiguration for Load Balancing in Distribution Networks[J]. IEE Proceedings-Generation, Transmission & Distribution, 1999,146(6):563-567.
    [94]Whei-Min Lin, Hong-Chan Chin.. A New Approach for Distribution Feeder Reconfiguration for Loss Reduction and Service Restoration[J]. IEEE Transactions on Power Delivery,1998,13(3):870-875.
    [95]Peponis G., Papadopoulos M.. Reconfiguration of Radial Distribution Networks:Application of Heuristic Methods on Large-Scale Networks[J]. IEE Proceedings-Generation, Transmission & Distribution,1995,142(6):631-638.
    [96]毕鹏翔,刘健,张文元.配电网络重构的改进支路交换法[J].中国电机工程学报,2001,21(8):98-103.
    [97]陈星莺,徐俊杰,余昆.配电网重构的逐级开关状态互换法[J].继电器,2006, Vo1.34,No.15:54-58.
    [98]Chiang H.-D., Rene J.-J.. Optimal Network Reconfigurationsin Distribution Systems:Part 1 A New Formulation and Solution Methodology[J]. IEEE Transactions on Power Delivery, 1990,5(4):1902-1909.
    [99]Chiang H.-D., Rene J.-J.. Optimal Network Reconfigurations in Distribution Systems:Part 2 Solution Algorithms and Numerical Results[J]. IEEE Transactions on Power Delivery,1990,5(3):1568-1574.
    [100]胡敏羡,陈元.配电系统最优网络重构的模拟退火算法[J].电力系统自动化,1994,18(2):24-28.
    [101]Chang, H. C. Kuo Ch.. Network Reconfiguration in Distribution Systems using Simulated Annealing[J]. Electric Power Systems Research,1994,29:227-238.
    [102]Jiang D., Baldick R.. Optimal Electric Distribution System Switch Reconfiguration and Capacitor Control[J]. IEEE Transactions on Power Systems,1995,11(2):890-897.
    [103]Young-Jae Jeon, Jae-Chal Kim, Jin-O Kim, et al. An Efficient Simulated Annealing Algorithm for Network Reconfiguration in Large-Scale Distribution Systems[J]. IEEE Transactions on Power Delivery,2002,17(4):1070-1078.
    [104]Kim H., Ko Y, Jung K. H.. Artificial Neural-Network Based Feeder Reconfiguration for Loss Reduction in Distribution Systems[J]. IEEE Transactions on Power Delivery,1993,8(3):1356-1366.
    [105]Kashem M. A., Ganapathy V, Ledwich G.. Artificial neural network techniques for on-Line distribution network reconfiguration base resistive loss reduction[J]. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications,2001,9(3):137-147.
    [106]Hayashi Y., Iwamoto S., Furuya S., et al. Efficient Determination of Optimal Radial Power System Structure Using Hopfield Neural Network with Constrained Noise[J]. IEEE Transactions on Power Delivery,1992,7(2):734-740.
    [107]刘莉,陈学允.基于模糊遗传算法的配电网络重构[J].中国电机工程学报,2000,20(2):66-69.
    [108]Nara K., Shiose A., Kitagawa M.. Implementation of Genetic Algorithm for Distribution Systems Loss Minimum Reconfiguration[J]. IEEE Transactions on Power Systems,1992,7(3):1044-1051.
    [109]余贻鑫,段刚.基于最短路算法和遗传算法的配电网络重构[J].中国电机工程学报,2000,20(9):44-49.
    [110]Lin W. M., Cheng F. S., Tsay M. T.. Disrtribution feeder reconfiguration with refined genetic algorithm[J]. IEE Proceedings:Generation, Transmission and Distribution,2000,147(6):349-354.
    [111]Song Y. H., Wang G. S., Johns A. T.. Distribution network reconfiguration for loss reduction using fuzzy controlled evolutionary programming[J]. IEE Proceedings:Generation, Transmission and Distribution, 1997,144(4):345-350.
    [112]Bouchard D. E., Chikhani A. Y., Salama M. M. A.. Distribution feeder reconfiguration for loss minimization using evolution strategies[J]. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications,2000,8(4)-.195-201.
    [113]李振坤,陈星莺,刘皓明,等.基于混合粒子群算法的配电网重构[J].中国电机工程学报,2008,28(31):35-41.
    [114]李振坤,陈星莺,赵波,等.配电网动态重构的多代理协调优化算法[J].中国电机工程学报,2008,28(34):72-79.
    [115]Liu Chen-Ching, Jae Lee S., Venkata S. S.. An Expert System Operational Aid for Restoration and Loss Reduction of Distribution Systems[J]. IEEE Transactions on Power Systems,1988,3(2):619-626.
    [116]Taylor T., Lubkeman D.. Implementation of Heuristic Search Strategies for Distribution Feeder Reconfiguration[J]. IEEE Transactions on Pbwer Delivery,1990,5(1):239-246.
    [117]Chang G., Zrida J., Birdwell J. D.. Knowledge-Based Distribution System Analysis and Reconfiguration[J]. IEEE Transactions on Power Systems,1990,5(2):744-749.
    [118]Civanlar S., Grainger J. J.. Volt/Var Control on Distribution Systems with Lateral Branches Using Shunt Capacitors and Voltage Regulators[J]. IEEE Trans on Power Apparatus and Systems, 1985,104(11):3291-3297.
    [119]庄侃沁,李兴源.变电站电压无功控制策略和实现方式[J].电力系统自动化,2001,25(15):47-50.
    [120]Jin-Cheng Wang, Hsiao-Dong Chiang, Miu K. N., et al. Capacitor Placement and Real Time Control in Larger-Scale Unbalanced Distribution Systems:Numerical Studies[J]. IEEE Transactions on Power Delivery,1997,12(2):959-964.
    [121]张明军,厉吉文,董洁.模糊边界的电压无功调节判据[J].电力自动化设备,2004,24(11):58-59.
    [122]赵登福,司喆.新型变电站电压无功综合控制装置的研制[J].电网技术,2000,24(6):14-17.
    [123]沈曙明.变电站电压无功综合自动控制的实现与探讨[J].继电器,2000,28(11):60-62.
    [124]Hobson E.. Active and reactive power security control using successive linear programming[J]. IEEE Transactions on Power Apparatus and Systems,1982,101(1):644-654.
    [125]Mamandur K. R. C., Chenoweth R. D.. Optimal control of reactive power for improvement in voltage profiles and for real loss minimization[J]. IEEE Transactions on Power Apparatus and Systems. 1981,100(7):446-451.
    [126]姚诸香,涂惠亚.基于灵敏度分析的无功优化潮流[J].电力系统及其自动化,1997,21(11):19-21.
    [127]Sun D.I., Ashley B., Brewer B., et al. Optimal power flow by Newton approach[J]. IEEE Transactions on Power Apparatus and Systems,1982,103(10):995-912.
    [128]谢驰坤,陈陈.配电网无功优化调度中调节次数的优化[J].电力系统及其自动化学报,2000,12(5):1-3.
    [129]Fan M., Zhang Z., Lin C. E.. Discrete Var Optimization in a Distribution System Using Mixed-Integer Programming with an Expert System[J]. Electric Poser System Research,1993(27):191-201.
    [130]邓佑满,张伯明,相年德.配电网络电容器实时优化投切的逐次线性整数规划法[J].中国电机工程学报,1995,15(6):375-383.
    [131]Jin-Cheng Wang, Hsiao-Dong Chiang, Miu K. N., et al. Capacitor Placement and Real Time Control in Larger-Scale Unbalanced Distribution Systems:Loss Reduction Formula, Problem Formulation, Solution Methodology and Mathematical Justification[J]. IEEE Transactions on Power Delivery, 1997(4):953-958.
    [132]Hsu Y. Y., Kuo H. C. Dispatch of Capacitors on Distribution Systems Using Dynamic Programming[J]. IEE Proceedings-C,1993(11):933-438.
    [133]陈星莺,钱锋,杨素琴.模糊动态规划法在配电网无功优化控制中的应用[J].电网技术,2003,27(2):68-71.
    [134]Yuan-Yih Hsu, Chien-Chuen Yang. A Hybrid Artificial Neural Network-Dynamic Programming Approach for Feeder[J]. Transactions on Power Systems,1994(5):1069-1075.
    [135]Santoso N. I., Tan O. T. Neural-net real time control of capacitors installed on distribution systems[J]. IEEE Transactions on Power Delivery,1990,5(1):266-272.
    [136]Das B., Verma P. K.. Artificial neural network-based optimal capacitor switching in a distribution system[J]. Electric Power Systems Research,2001,60(1):55-62.
    [137]文劲宇,江振华,蒋霞,等.基于遗传算法的无功优化在鄂州电网中的实现[J].电力系统自动化,2000(1):45-47.
    [138]卢鸿宇,胡林献,刘莉,等.基于遗传算法和TS算法的配电网电容器实时优化投切策略[J].电网技术,2000,24(11):56-59.
    [139]张学松,于尔铿.基于Tabu方法的配电网电容器投切策略[J].电网技术,1998,12(1):33-39.
    [140]邓集祥,张弘鹏.用改进的Tabu搜索方法优化补偿电容器分档投切的研究[J].电网技术,2000,24(2):46-49.
    [141]罗金山,罗毅,涂光瑜.基于随机Petri网模型的地区电网事故链监控研究[J].继电器,2006,34(7):32-37.
    [142]陈星莺,常慧,余昆,等.基于保护信息的城市电网故障元件定位方法[J].电力系统保护与控制.2010,Vol.38,No.21:1-5.
    [143]邓国新,赵冬梅,张旭.对地区电网故障诊断系统中信息纠错的研究[J].电力系统保护与控制,2009,37(1):50-54.
    [144]许君德,赵冬梅,张东英.基于双数据源的地区电网故障诊断实用化应用[J].电力系统自动化,2006,30(13):68-72.
    [145]Chien C. F., Chen S. L., Lin Y. S.. Using Bayesian network for fault location on distribution feeder[J]. IEEE Transactions on Power Delivery,2002,17(3):785-793.
    [146]Senger E. C., Manassero G. Jr., Goldemberg C., et al. Automated fault location system for primary distribution networks[J]. IEEE Transactions on Power Delivery,2005,20(2):1332-1340.
    [147]Salim R. H., de Oliveira K., Filomena A. D., et al. Hybrid fault diagnosis scheme implementation for power distribution systems automation[J]. IEEE Transactions on Power Delivery, 2008,23(4):1846-1856.
    [148]卫志农,何桦,郑玉平.配电网故障区间定位的高级遗传算法[J].中国电机工程学报,2002,22(4):127-130.
    [149]Heungjae L., Deungyong P., Bokshin A.. A fuzzy expert system for the integrated fault diagnosis[J]. IEEE Transactions on Power Delivery,2000,15(2):833-838.
    [150]Thukaram D., Khincha H. P., Vijaynarasimha H. P.. Artificial neural network and support vector machine approach for locating faults in radial distribution systems[J]. IEEE Transactions on Power Delivery,2005,20(2):710-721.
    [151]段振国,高曙,杨以涵.一种电网故障智能诊断求解模型的研究[J].中国电机工程学报,1997,17(6):399-402.
    [152]文福栓,韩祯祥,田磊,等.基于遗传算法的电力系统故障诊断的解析模型与算法(第一部分:模型与方法)[J].电力系统及其自动化学报,1998,10(3):1-7.
    [153]刘青松,夏道止.基于正反向推理的电力系统故障诊断专家系统[J].电网技术,1999,23(9):66-71.
    [154]段献忠,杨增力,程逍.继电保护在线整定和离线整定的定值性能比较[J].电力系统自动化,2005,29(19):58-61.
    [155]Morelat A. L., Monticelli A.. Heuristic Search Approach to Distribution System Restoration[J]. IEEE Transactions on Power Delivery,1989,4(4):125-131.
    [156]Hsu Y. Y., Huang H. M., Kuo H. C., et al. Distribution System Service Restoration Using a Heuristic Search Approach[J]. IEEE Transactions on Power Delivery,1992,4(2):152-161.
    [157]Liu C. C, Lee S. J., Venkata S. S.. An Expert System Operat ional Aid for Restoration and Loss Reduction of Distribution Systems[J]. IEEE Transactions on Power Systems,1988,3(2):333-337.
    [158]Liu C. C., Lee S. J., Khoi V.. Loss Minimization of Distribution Feeder:Optimality and Algorithms[J]. IEEE Transactions on Power Delivery,1989,4(2):291-299.
    [159]Bretas N. G., Delbem A. C. B., Carvalho de A.. Optimal Energy Restoration for General Distribution System by Genetic Algorithms[C]. POWERCON'98, Beijing(China),1998.
    [160]Fukuyama Y., Chiang H. D., Miu K. N.. Parallel Genetic Algorithm for Service Restoration in Electric Power Distribution Systems[C]. International Journal of Electrical Power & Energy System, 1996,18(2):1452-1461.
    [161]王平,余昆,李振坤,等.采用多代理技术提高高压配电网的供电可靠性[J].中国电机工程学报.2009,Vol.29,No.S1:50-54.
    [162]Naka S., Genji T., Fukuyama Y.. Practical Equipment Models for Fast Distribution Power Flow Considering Interconnection of Distributed Generators[C]. IEEE 2001 Power Engineering Society Summer Meeting, Vancouver, British Columbia, Canada,2001:1007-1012.
    [163]陈海焱,陈金富,段献忠.含分布式电源的配电网潮流计算[J].电力系统自动化,2006,30(1):35-40.
    [164]Chen Haiyan, Chen Jinfu, Duan Xianzhong. Multi-stage Dynamic Optimal Power Flow in Wind Power Integrated System[C]. IEEE Transmission and Distribution Conference and Exhibition:Asia and Pacific.Dalian, China,2005:1-5.
    [165]席喆,李海燕,孔庆东.风电场投切对地区电网电压的影响[J].电网技术,2008,30(10):58-62.
    [166]Villacct D., Bontempi G., Vaccaro A.. An adaptive local learning-based methodology for voltage regulation in distribution networks with dispersed generation[J]. IEEE Transactions on Power System, 2006,21(3):1131-1140.
    [167]Kubota Y., Genji T, Miyazato K., et al. Verification of cooperative control method for voltage control equipment on distribution network simulator considering interconnection of wind power generators[C]. IEEE Transmission and Distribution Conference and Exhibition, Yokohama, Japan,2002:1151-1156.
    [168]Kiprakis A. E., Wallace A. R.. Maximising Energy Capture from Distributed Generators in Weak Networks[J]. IEE Proceedings -Generation. Transmission & Distribution,2004,151(5):611-618.
    [169]Kojovic L. A.. Coordination of distributed generation and step voltage regulator operations for improved distribution system voltage regulation[C]. IEEE Power Engineering Society General Meeting, Montreal, Canada,2006:1611-1618.
    [170]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响[J].电力系统自动化,2004,28(16):56-60.
    [171]Sishuba S., Redfern M. A.. Adaptive Control System for Continuity of Supply Using Dispersed Generators[J]. IEE Proceedings -Generation Transmission & Distribution,2005,152(1):23-30.
    [172]Yasuda K., Ishii T.. Analysis and Autonomous Distributed Control of Super Distributed Energy Systems[C]. IEEE Transmission and Distribution. Conference and Exhibition, Yokohama, Japan, 2002:1628-1631.
    [173]Lopes J. A. P., Moreira C. L., Madureira A. G.. Defining Control Strategies for MicroGrids Islanded Operation[J]. IEEE Transactions on Power System,2006,21(2):916-924.
    [174]LU Yuping, YI Xin, WU Ji'an, et al. An Intelligent Islanding Technique Considering Load Balance for Distribution System with DGs[C]. IEEE Power Engineering Society General Meeting, Montreal, Canada,2006.
    [175]Hegazy Y. G., Chikhani A. Y. Intention Islanding of Distributed Generation for Reliability Enhancement[C]. CIGRE & IEEE Quality and Security of Electric Power Delivery Systems, Montreal, Canada,2003:208-213.
    [176]Seca L., Lopes J. A. P.. Intentional Islanding for Reliability Improvement in Distribution Networks with High DG Penetration[C]. IEEE Future Power Systems,2005 International Conference on Future Power Systems, Amsterdam, Netherlands,2005:1-5.
    [177]Khushalani S., Schulz N. N.. Restoration Optimization with Distributed Generation Considering Islanding[C]. IEEE Power Engineering Society General Meeting, San Francisco, USA, 2005:2445-2449.
    [178]Prada R. B., Souza L. J.. Voltage stability and thermal limit constraints on the maximum loading of electrical energy distribution feeders[J]. IEE Proceedings -Generation Transmission & Distribution, 1998,145(5):573-577.
    [179]Freitas W., Dasilva L. C. P., Morelato A.. Small-Disturbance Voltage Stability of Distribution Systems With Induction Generators[J]. IEEE Transactions on Power System,2005,20(3):1653-1654.
    [180]Jenkins N., Strbac G. Impact of embedded generation on distribution system voltage stability[C]//IEE. IEE Colloquium on Voltage Collapse, Apr.1997, London, UK:IEE,1997:1-4.
    [181]Dudgeon G. J. W., Leithead W. E., O'Reilly J., et al. Prospects for the decentralised control of small-scale power networks with embedded generation[C]. IEEE Power Engineering Society Winter Meeting, New York, USA,2005:1399-1404.
    [182]Chengting HSU. Chaoshun CHEN. Islanding operations for the distribution systems with dispersed generation systems[C]. IEEE Power Engineering Society General Meeting, San Francisco, USA, 2005:2962-2968.
    [183]邓向阳,晁勤,常喜强.含有风电场的地区电网解网后的风机频率电压特性分析[J].华东电力,2010,38(10):1543-1545.
    [184]Freitas W., Morelato A., Wilsun XU, et al. Impacts of AC Generators and DSTATCOM devices on the dynamic performance of distribution systems[J]. IEEE Transactions on Power Delivery,2005, 20(2):1493-1501.
    [185]LI S., Tomsovic K., Hiyama T.. Load following functions using distributed energy resources[C]. IEEE Power Engineering Society Summer Meeting, Washington, USA,2000:1756-1761.
    [186]王希舟,陈鑫,罗龙,等.分布式发电与配电网保护协调性研究[J].继电器,2006,26(3):15-19.
    [187]Girgis A., Brahma S.. Effect of distributed generation on protective device coordination in distribution system[C].2001 Large Engineering Systems Conference on Power Engineering, Piscataway, USA, 2001:115-119.
    [188]周耀烈,李仁飞,苏永智.分布式发电机组并网10kV开关站的保护新逻辑[J].高电压技术,2005,32(6):105-107.
    [189]李蓓,李兴源.分布式发电及其对配电网的影响[J].国际电力,2005,9(3):45-49.
    [190]Saad-Saoud Z., Jenkins N.. Models for predicting flicker induced by large wind turbines[J]. IEEE Transaction on Energy Conversion.1999,14(3):743-748.
    [191]Jenkins N., Strbac G.. Effects of small embedded generation on power quality[C]. IEE Colloquium on Issues in Power Quality, London, UK,1995:1-4.
    [192]吴汕,梅天华,龚建荣,等.分布式发电引起的电压波动和闪变[J].能源与环境,2006,(4):54-58.
    [193]Barker P. P., De Mello R. W.. Determining the Impact of Distributed Generation on Power Systems:Part 1 Radial Distribution systems[C]. IEEE Power Engineering Society Summer Meeting, Washington, USA,2000:1645-1656.
    [194]Celli G., Ghiani E., Mocci S., et al. A multi-objective evolutionary algorithm for the sizing and sitting of distributed generation[J]. IEEE Transactions on Power Systems,2005,20(15):750-757.
    [195]Keane A., O'Malley M.. Optimal Allocation of Embedded Generation on Distribution Networks[J]. IEEE Transactions on Power Systems,2005,20(3):1640-1646.
    [196]Freitas W., Vieira J. C. M., Morelato A., et al. Influence of excitation system control modes on the allowable penetration level of distributed synchronous generators[J]. IEEE Transaction on Energy Conversion,2005,20(2):474-480.
    [197]王成山,陈恺,谢莹华,等.配电网扩展规划中分布式电源的选址和定容[J].电力系统自动化,2006,30(3):38-43.
    [198]Oomori T., Genji T., Yura T., et al. Fast optimal setting for voltage control equipment considering interconnection of distributed generators[C]. IEEE Transmission and Distribution Conference and Exhibition, Yokohama, Japan,2002:1145-1150.
    [199]彭辉,樊庆玲,刘会金.配电网中TCSC和SVC的联合补偿[J].电力系统及其自动化学报.2002,14(4):16-18.
    [200]Bau In-Su, Kim Jin-O, Kim Jae-Chul, et al. Optimal operating strategy for distributed generation considering hourly reliability worth[J]. IEEE Transactions on Power Systems,2004,19(1):287-292.
    [201]Daley J. M., Siciliano R. L. Application of emergency and standby generation for distributed generation. Ⅰ. Concepts and hypotheses[J]. IEEE Transactions on Industry Applications,2003,39(4):1214-1225.
    [202]罗凯明,李兴源.基于多代理技术的不间断电力变电站设计方案[J].电网技术,2004,28(22):1-5.
    [1]Hughes J.. IntelliGrid Architecture Concepts and IEC61850[C]. IEEE Transmission and Distribution Conference and Exhibition, USA, May,2006.
    [2]Rahman S., Pipattanasomporn M., Teklu Y.. Intelligent Distributed Autonomous Power Systems (IDAPS)[C]. IEEE Power Engineering Society General Meeting,2007.
    [3]王明俊.自愈电网与分布能源[J].电网技术,2007,31(6):1-7.
    [4]Debanjan G., Raj Sharman, Rao H. R., et al. Self-healing systems-survey and synthesis[J]. Decision Support Systems,2007,42(4):2164-2185.
    [5]陈众,徐国禹,王官洁,等.分层递阶控制理论与电力系统自动化[J].电机与控制学报,2003, 7(4):352-355.
    [6]戴先中,张凯锋.复杂电力大系统的递阶结构化模型及自相似特性[J].中国电机工程学报,2007,27(25):6-12.
    [7]韩桢祥.电力系统稳定[M].北京:中国电力出版社,1995.
    [8]袁季修.电力系统安全稳定控制[M].北京:中国电力出版社,1996.
    [9]郭志忠.电网自愈控制方案[J].电力系统自动化,2005,29(10):85-91.
    [10]韦巍,何衍.智能控制基础[M].北京:清华大学出版社,2008.
    [11]孙增圻,张再兴.智能控制的理论与技术[J].控制与决策,1996,11(1):1-8.
    [12]王飞宇.分层递阶智能控制系统的分析与实践[D].大连海事大学.控制与决策,2006.
    [13]刘金琨.智能控制[M].北京:电子工业出版社,2005.
    [14]Saridis G. N.. Intelligent Robot Control[J]. IEEE transactions on Automatic Control.1983,28(5): 551-554.
    [15]Saridis G. N.. Analytic Formulation of the principle of increasing precision with decreasing intelligence for intelligent machines[J]. Automatica,1989,25(3):461-467.
    [16]Saridis G. N., Valavanis K.. Mathematical Formulation of the organization level of an intelligent machine[J]. IEEE International Conference on Robotics and Automation,1986,3:267-272.
    [17]Wang F. Y., Saridis G. N.. The Coordination of intelligent robots:a case study[J]. IEEE International Symposium on intelligent Control,1989,506-511.
    [18]Saridis G. N.. Entropy Formulation of Optimal and Adaptive Control[J]. IEEE transactions on Automatic Control,1988,33(8):712-721.
    [19]尹新权,吴蓉.大滞后系统的分层递阶智能控制研究[J].信息技术.2005,(10):22-24,85.
    [20]罗公亮,秦世引.智能控制导论[M].浙江:浙江科学技术出版社,1997.
    [21]杨霞,李强,梁中华.基于修改参考模型的自组织复合控制[J].控制工程.2003,10(S):118-120.
    [22]邓磊,李伟锋.《伤寒论》自愈机理的探讨[J].四川中医,2004,22(2):18-20.
    [23]小营卓夫.气血津液中未阐明的“气”的新概念[J].国外医学(中医中药分册),2003,(3):157.
    [24]王强芬,邹明亮.关于中西传统医学对人体自愈力研究的探讨[J].中国中医基础医学杂志,2011,17(2):213-214.
    [25]陈星莺,顾欣欣,余昆,等.城市电网自愈控制体系结构[J].电力系统自动化,2009,33(24):38-42.
    [1]Zhu Y., Tomsovic K.. Adaptive Power Flow Method for Distribution Systems With Dispersed Generation[J]. IEEE Transaction on Power Delivery,2002,17(3):822-827.
    [2]Ciric R. M., Padilha A., Denis I. F. E. D., Discussion of Adaptive Power Flow Method for Distribution Systems With Dispersed Generation[J]. IEEE Transaction on Power Delivery,2003,18(2):647-648.
    [3]丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110.
    [4]吴俊玲,周双喜,孙建锋,等.并网风力发电场的最大注入功率分析[J].电网技术,2004,28(20):28-32.
    [5]王成山,郑海峰,谢莹华,等.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化,2005,29(24):39-44.
    [6]Ackermann T., Andersson G., Soder L. Distributed generation:a definition[J]. Electric Power Systems Research,2001,57(6):195-204.
    [7]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75,88.
    [8]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [9]张志坚,王建东,马进,等.分布式发电及其关键技术[J].山西电力,2007,(2):57-61,64.
    [10]Villacci D., Bontempi G., Vaccaro A.. An adaptive local learning-based methodology for voltage regulation in distribution networks with dispersed generation[J]. IEEE Transactions on Power System, 2006,21(3):1131-1140.
    [11]Oomori T., Genji T., Yura T., et al. Fast optimal setting for voltage control equipment considering interconnection of distributed generators[C]. IEEE Transmission and Distribution Conference and Exhibition, Yokohama, Japan,2002:1145-1150.
    [12]张世钦,汪晓岩.福建中小水电并网管理的探索与实践[J].水电自动化与大坝监测,2005,29(3):25-29.
    [13]陈星莺,李刚,廖迎晨,等.考虑环境成本的城市电网最优潮流模型[J].电力系统自动化,2010,34(15):29-35.
    [14]阎维平,刘忠,王春波.电站燃煤锅炉石灰石湿法烟气脱硫装置运行与控制[M].北京:中国电力出版社,2005.
    [15]焦树建.关于电厂发电成本计算方法的探讨[J].燃气轮机技术,2000,(3):7-12.
    [16]Song Y. H.. Nitric oxide formation during pulverized coal combustion. Combustion science and technology,1982(28):31-39.
    [17]戴恩贤.火电机组绿色成本核算及环境效益评价[D].重庆:重庆大学,2007.
    [18]董万银.热电联产环境效益分析方法研究[D].北京:华北电力大学,2005.
    [19]祁含.基于优化汽耗量特性的母管制汽轮发电机组经济运行研究[D].武汉:武汉大学,2004.
    [20]蔡惠红.燃料电池模型及其发电系统的研究[D].成都:四川大学,2003.
    [21]张明,袁益超,刘聿拯.生物质直接燃烧技术的发展研究[J].能源研究与信息,2005,21(1):15-20.
    [22]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    [23]排污收费征收标准及其计算方法[EB/OL]. http://tieba.baidu.com/f?kz=265700293.
    [24]魏学好,周浩.中国火力发电行业减排污染物的环境价值标准估算[J].环境科学研究,2003,16(1):53-56.
    [25]胡学浩.分布式发电(电源)技术及其并网问题[J].电工技术杂志,2004,31(10):1-5.
    [26]朱守真,张昊,郑竟宏,等.分布式电源与配电系统并网运行的探讨[J].沈阳工程学院学报(自然科学版),2005,1(4):1-4.
    [27]章健.电力系统负荷模型与辨识[M].北京:中国电力出版社,2007.
    [28]春兰.独立运行光伏发电系统功率控制研究[D].内蒙古工业大学,2007.
    [29]戴欣平,马广,杨晓红,等.太阳能发电变频器驱动系统的最大功率跟踪控制法[J].中国电机工程学报,2005,25(5):95-99.
    [30]顾和荣,杨子龙,邬伟扬,等.并网逆变器输出电流滞环跟踪控制技术研究[J].中国电机工程学报,2006,26(9):108-112.
    [31]李彩霞,赵玉珍,郭建锋.电网中低电压运行的危害及预防措施[J].煤炭技术,2007,26(1):37-39.
    [32]程浩忠.电能质量讲座第二讲电压偏差与频率偏差[J],现代建筑电气篇,2007,4.
    [33]刘春玲,耿卫星,刘建武,等.一起电力系统谐振事故分析[J].电力系统保护与控制,2010,38(2):108-117.
    [34]潘朝洪.电压质量扰动分析算法研究[D].浙江大学,2006.
    [35]罗杰,钟庆,武志刚,等.高新技术企业用户电压质量问题分析[J].电网技术,2007,,31:61-63.
    [36]张国荣.电能质量综合调节器_UPQC_及其控制策略研究[D].合肥工业大学,2008.
    [37]陈为化.基于风险的电力系统静态安全分析与预防控制[D].浙江大学,2007.
    [38]杨玉民.过载、过负荷、短路、过电流的异同点[J].农村电工,2001(3):32.
    [39]蔺英杰.地区电网故障恢复中过载处理的研究与实现[D].华北电力大学,2007.
    [40]Borkowska B.. Probabilistic load flow[J]. IEEE Transactions on Power Apparatus and Systems,1974, 93(3):752-759.
    [41]Karaki S. H., Chedid R. B., Ramadan R.. Probabilistic Performance Assessment of Autonomous Solar-Wind Energy Conversion Systems[J]. IEEE Transactions on Energy Conversion,1999. 14(3):766-772.
    [42]Allan R. N., Al-Shakarchi M. R. G.. Probabilistic techniques in AC load flow analysis[J]. Proceedings of the Institution of Electrical Engineers,1977,124(2):154-160.
    [43]Dopazo J. F., Klitin O. A., Sasson A. M.. Stochastic load flows[J]. IEEE Transactions on Power Apparatus and Systems,1975,94(2):299-309.
    [44]胡金磊,张尧,李聪.交直流电力系统概率潮流计算[J].电网技术,2008,32(18):36-40.
    [45]刘浩,侯博渊.保留非线性的快速P-Q分解随机潮流分析[J].电力系统及其自动化学报,1996,8(1):8-17.
    [46]丁明,李生虎,黄凯.基于蒙特卡罗模拟的概率潮流计算[J].电网技术,2001,25(11):10-14,22.
    [47]Ei-Khattam W., Hegazy Y. G., Salama M. M. A.. Investigating distributed generation systems performance using Monte Carlo simulation[J]. IEEE Transactions on Power Systems,2006, 21(2):524-532.
    [48]Caramia P., Carpinelli G., Pagano M., et al. Probabilistic three-phase load flow for unbalanced electrical distribution systems with wind farms[J]. IET Renewable Power Generation,2007,1 (2):115-122.
    [49]Zhang Pei, Lee S T. Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion [J]. IEEE Transactions on Power Systems,2004,19(1):676-682.
    [50]胡泽春,王锡凡,张显,等.考虑线路故障的随机潮流[J].中国电机工程学报,2005,25(24):26-33.
    [51]林海源.交流模型下电力系统概率潮流计算[J].电力自动化设备,2006,26(6):53-56.
    [52]元玉栋,董雷.电力系统概率潮流新算法及其应用[J].现代电力,2007,24(4):5-9.
    [53]程侃.寿命分布类与可靠性数学理论[M].科学出版社,1999:499-501.
    [54]陈启卷.电气设备及系统[M].北京:中国电力出版社,2006.
    [55]Fouad A. A., Qin Zhou, Vittal V. System vulnerability as a concept to assess power system dynamic security[J]. IEEE Transactions on Power Systems,1994,9(2):1009-1015.
    [56]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9):1-6.
    [57]Chen-Ching Liu, Juhwan Jung, Heydt G. T., et al. The Strategic Power Infrastructure Defense(SPID) System. A Conceptual Design[J]. IEEE Control Systems Magazine,2000,20(4):40-52.
    [58]McCalley J. D., Fouad A. A., Vittal V., et al. A risk-based security index for determining operating limits in stability-limited electric power system[J]. IEEE Transactions on Power Systems.1997, 12(3):1210-1219.
    [59]陈为化,江全元,曹一家,等.基于风险理论的复杂电力系统脆弱性评估[J].电网技术,2005,29(4):12-17.
    [60]刘新东,江全元,曹一家,等.基于风险理论和模糊推理的电力系统暂态安全风险评估[J].电力 自动化设备,2009,29(2):15-20.
    [61]秦寿康等著.综合评价原理与应用[M].北京:电子工业出版社,2003.
    [62]王武平.面向群评价的混合多属性群决策方法研究[D].天津大学,2008.
    [63]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990,6.
    [1]Thukaram D., Khincha H. P., Vijaynarasimha H. P.. Artificial neural network and support vector machine approach for locating faults in radial distribution systems[J]. IEEE Transactions on Power Delivery,2005,20(2):710-721.
    [2]Heungjae L., Deungyong P., Bokshin A.. A fuzzy expert system for the integrated fault diagnosis[J]. IEEE Transactions on Power Delivery,2000,15(2):833-838.
    [3]段献忠,杨增力,程逍.继电保护在线整定和离线整定的定值性能比较[J].电力系统自动化,2005,29(19):58-61.
    [4]文福栓,韩祯祥,田磊,等.基于遗传算法的电力系统故障诊断的解析模型与算法(第一部分:模型与方法)[J].电力系统及其自动化学报,1998,10(3):1-7.
    [5]陈荣.城市高压配电网优化重构的研究[D].河海大学,2007.
    [6]王平,童颙,李国柱,等.基于分布式结构的电压无功协调控制系统[J].江苏电机工程,2006,Vo1.25.No.4:15-17.
    [7]Wooldridge M., Jennings N. R.. Intelligent agents:theory and practice[J]. The Knowledge Engineering review,1995,10(2):115-152.
    [8]史忠植.智能主体及其应用[M].北京:科学出版社, 2000.
    [9]Jiming Liu著,靳小龙,张世武,Jiming Liu译.多智能体原理与技术[M].北京,清华大学出版社,2003.
    [10]曹一家.多Agent系统协调理论中的几个关键问题.技术跨越与高新技术产业发展[M].北京:中国科学技术出版社,2002.
    [11]范玉顺,曹军威.多代理系统理论、方法与应用[M].北京:清华大学出版社,2002.
    [12]Wooldridge M.. Agent-based software engineering[J]. IEE Proceedings:Software,1997,144(1):26-37.
    [13]李振坤.基于多代理技术的城市电网自愈控制策略研究[D].河海大学,2009.
    [14]黄铮,邹群,邹国平.基于Multi-Agent的高速公路集成交通控制系统[J].交通运输工程学报,2005,5(5):116-119.
    [15]彭军,刘亚,吴敏.基于状态预测的多智能体动态协作算法[J].系统仿真学报,2008,20(20):5511-5515.
    [16]Bryan H., Victor L.. A survey of multi-agent organizational paradigms[J]. The Knowledge Engineering Review, Cambridge University Press,2004,19(4):281-316.
    [17]Wittig T.. ARCHON:An architecture for multi-agent System[M]. Chichester England:Ellis Horwood, 1992.
    [18]高波,费奇,陈学广.Agent交互层次模型[J].计算机科学,2001,28(8):105-109.
    [19]赵龙文,侯义斌.Agent的概念模型及其应用技术[J].计算机工程与科学,2000,22(6):77-78.
    [20]张金江.基于多智能体技术的变电站设备信息集成研究[D].浙江大学,2009.
    [21]王俊普,陈埠,徐杨,等.基于Agent的集散递阶智能控制的研究[J].控制与决策,2001, 16(?)0
    [22](?)阶控制的智能机群技术研究[D].西南交通大学,2006.
    [23](?)张宝霖.动态电力系统的理论与分析[M].北京:清华大学出版社,2002.
    [24](?).复杂电力系统的接口概念与结构化模型[J].中国电机工程学报,2007,27(7):(?)
    [1]陈星莺,顾欣欣,余昆,等.城市电网自愈控制体系结构[J].电力系统自动化,2009,33(24):38-42.
    [2]冯少荣,肖文俊.并行分布环境下的黑板模型[J].华东理工大学学报,2008,34(1):96-102.
    [3]刘君强,王勋,孙晓莹,等.黑板系统的关键技术与开发[J].计算机时代,2003,1(8):1-3.
    [4]范玉顺,曹军威.多代理系统理论、方法与应用[M].北京:清华大学出版社,2002.
    [5]韦巍,何衍.智能控制基础[M].北京:清华大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700